1,245 research outputs found

    Modula-2*: An extension of Modula-2 for highly parallel programs

    Get PDF
    Parallel programs should be machine-independent, i.e., independent of properties that are likely to differ from one parallel computer to the next. Extensions are described of Modula-2 for writing highly parallel, portable programs meeting these requirements. The extensions are: synchronous and asynchronous forms of forall statement; and control of the allocation of data to processors. Sample programs written with the extensions demonstrate the clarity of parallel programs when machine-dependent details are omitted. The principles of efficiently implementing the extensions on SIMD, MIMD, and MSIMD machines are discussed. The extensions are small enough to be integrated easily into other imperative languages

    Alternatives to standard puncture initial data for binary black hole evolution

    Full text link
    Standard puncture initial data have been widely used for numerical binary black hole evolutions despite their shortcomings, most notably the inherent lack of gravitational radiation at the initial time that is later followed by a burst of spurious radiation. We study the evolution of three alternative initial data schemes. Two of the three alternatives are based on post-Newtonian expansions that contain realistic gravitational waves. The first scheme is based on a second-order post-Newtonian expansion in Arnowitt, Deser, and Misner transverse-traceless (ADMTT) gauge that has been resummed to approach standard puncture data at the black holes. The second scheme is based on asymptotic matching of the 4-metrics of two tidally perturbed Schwarzschild solutions to a first-order post-Newtonian expansion in ADMTT gauge away from the black holes. The final alternative is obtained through asymptotic matching of the 4-metrics of two tidally perturbed Schwarzschild solutions to a second-order post-Newtonian expansion in harmonic gauge away from the black holes. When evolved, the second scheme fails to produce quasicircular orbits (and instead leads to a nearly head-on collision). This failure can be traced back to inaccuracies in the extrinsic curvature due to low order matching. More encouraging is that the latter two alternatives lead to quasicircular orbits and show gravitational radiation from the onset of the evolution, as well as a reduction of spurious radiation. Current deficiencies compared to standard punctures data include more eccentric trajectories during the inspiral and larger constraint violations, since the alternative data sets are only approximate solutions of Einstein's equations. The eccentricity problem can be ameliorated by adjusting the initial momentum parameters.Comment: 11 pages, 11 figures, 1 appendix, typos corrected, removed duplicate reference, matches published versio

    Quasi-equilibrium binary black hole sequences for puncture data derived from helical Killing vector conditions

    Full text link
    We construct a sequence of binary black hole puncture data derived under the assumptions (i) that the ADM mass of each puncture as measured in the asymptotically flat space at the puncture stays constant along the sequence, and (ii) that the orbits along the sequence are quasi-circular in the sense that several necessary conditions for the existence of a helical Killing vector are satisfied. These conditions are equality of ADM and Komar mass at infinity and equality of the ADM and a rescaled Komar mass at each puncture. In this paper we explicitly give results for the case of an equal mass black hole binary without spin, but our approach can also be applied in the general case. We find that up to numerical accuracy the apparent horizon mass also remains constant along the sequence and that the prediction for the innermost stable circular orbit is similar to what has been found with the effective potential method.Comment: 6 pages, 3 figures, 1 tabl

    Bosonic behavior of entangled fermions

    Full text link
    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson states. We derive the two-fermion-states that extremize the normalization ratio for a fixed single-fermion purity P, and establish general tight bounds for this indicator. For very small purities, P<1/N^2, the upper and lower bounds converge, which allows to quantify accurately the departure from perfectly bosonic behavior, for any state of many composite bosons.Comment: 9 pages, 5 figures, accepted by PR

    A single-domain spectral method for black hole puncture data

    Full text link
    We calculate puncture initial data corresponding to both single and binary black hole solutions of the constraint equations by means of a pseudo-spectral method applied in a single spatial domain. Introducing appropriate coordinates, these methods exhibit rapid convergence of the conformal factor and lead to highly accurate solutions. As an application we investigate small mass ratios of binary black holes and compare these with the corresponding test mass limit that we obtain through a semi-analytical limiting procedure. In particular, we compare the binding energy of puncture data in this limit with that of a test particle in the Schwarzschild spacetime and find that it deviates by 50% from the Schwarzschild result at the innermost stable circular orbit of Schwarzschild, if the ADM mass at each puncture is used to define the local black hole masses.Comment: 13 pages, 6 figures; published version with one important change, see Fig. 4 and the corresponding changes to the tex

    Improved initial data for black hole binaries by asymptotic matching of post-Newtonian and perturbed black hole solutions

    Full text link
    We construct approximate initial data for non-spinning black hole binary systems by asymptotically matching the 4-metrics of two tidally perturbed Schwarzschild solutions in isotropic coordinates to a resummed post-Newtonian 4-metric in ADMTT coordinates. The specific matching procedure used here closely follows the calculation in gr-qc/0503011, and is performed in the so called buffer zone where both the post-Newtonian and the perturbed Schwarzschild approximations hold. The result is that both metrics agree in the buffer zone, up to the errors in the approximations. However, since isotropic coordinates are very similar to ADMTT coordinates, matching yields better results than in the previous calculation, where harmonic coordinates were used for the post-Newtonian 4-metric. In particular, not only does matching improve in the buffer zone, but due to the similarity between ADMTT and isotropic coordinates the two metrics are also close to each other near the black hole horizons. With the help of a transition function we also obtain a global smooth 4-metric which has errors on the order of the error introduced by the more accurate of the two approximations we match. This global smoothed out 4-metric is obtained in ADMTT coordinates which are not horizon penetrating. In addition, we construct a further coordinate transformation that takes the 4-metric from global ADMTT coordinates to new coordinates which are similar to Kerr-Schild coordinates near each black hole, but which remain ADMTT further away from the black holes. These new coordinates are horizon penetrating and lead, for example, to a lapse which is everywhere positive on the t=0 slice. Such coordinates may be more useful in numerical simulations.Comment: 25 pages, 21 figures. Replaced with accepted versio

    Efficient parallel computation on workstation clusters

    Get PDF
    We present novel hard- and software that efficiently implements communication primitives for parallel execution on Workstation clusters. We provide low communication latencies, minimal protocol, zero operating system overhead, and high throughput. With this technology, it is possible to build effective parallel systems using off-the-shelf workstations. Our goal is to develop a standard interfaceboard and the necessary software for interfacing any number of computers, from a workstation to a cabinet full of workstation-boards

    Normality of numbers generated by the values of entire functions

    Get PDF
    AbstractWe show that the number generated by the q-ary integer part of an entire function of logarithmic order, where the function is evaluated over the natural numbers and the primes, respectively, is normal in base q. This is an extension of related results for polynomials over the real numbers established by Nakai and Shiokawa

    Latency hiding in parallel systems: a quantitative approach

    Get PDF
    In many parallel applications, network latency causes a dramatic loss in processor utilization. This paper examines software pipelining as a technique for network latency hiding. It quantifies the potential improvements with detailed,instruction-level simulations. The benchmarks used are the Livermore Loop kernels and BLAS Level 1. These were parallelized and run on the instruction-level RISC simulator DLX, extended with both a blocking and a pipelined network. Our results show that prefetch in a pipelined network improves performance by a factor of 2 to 9, provided the network has sufficient bandwidth to accept at least 10 requests per processor
    • …
    corecore