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Abstract

We show that the number generated by the q-ary integer part of an entire function of logarithmic order,
where the function is evaluated over the natural numbers and the primes, respectively, is normal in base q.
This is an extension of related results for polynomials over the real numbers established by Nakai and
Shiokawa.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

Let q � 2 be a fixed integer and θ = 0.a1a2 . . . be the q-ary expansion of a real number θ with
0 < θ < 1. We write d1 . . . dl ∈ {0,1, . . . , q − 1}l for a block of l digits in the q-ary expansion.
By N (θ;d1 . . . dl;N) we denote the number of occurrences of the block d1 . . . dl in the first N

digits of the q-ary expansion of θ . We call θ normal to the base q if for every fixed l � 1

RN(θ) = RN,l(θ) = sup
d1...dl

∣∣∣∣ 1

N
N (θ;d1 . . . dl;N) − 1

ql

∣∣∣∣ = o(1)
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as N → ∞, where the supremum is taken over all blocks d1 . . . dl ∈ {0,1, . . . , q − 1}l .
We want to look at numbers whose digits are generated by the integer part of entire functions.

Let f be any function and [f (n)]q denote the base q expansion of the integer part of f (n), then
define

θq = θq(f ) = 0.
[
f (1)

]
q

[
f (2)

]
q

[
f (3)

]
q

[
f (4)

]
q

[
f (5)

]
q

[
f (6)

]
q
. . . ,

τq = τq(f ) = 0.
[
f (2)

]
q

[
f (3)

]
q

[
f (5)

]
q

[
f (7)

]
q

[
f (11)

]
q

[
f (13)

]
q
. . . , (1.1)

where the sequences of the arguments run through the positive integers and the primes, respec-
tively.

In this paper we consider the construction of normal numbers in base q as concatenation of
q-ary integer parts of certain functions. The first result on that topic was achieved by Champer-
nowne [2], who was able to show that

0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

is normal in base 10. This construction can be easily generalised to any integer base q . Copeland
and Erdös [4] were able to show that

0.2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 . . .

is normal in base 10. These examples correspond to the choice f (x) = x in (1.1). Davenport and
Erdös [5] considered the case where f (x) is a polynomial whose values at x = 1,2, . . . are always
integers and showed that in this case the numbers θq(f ) and τq(f ) are normal. For f (x) a poly-
nomial with rational coefficients Schiffer [10] was able to show that RN(θq(f )) = O(1/ logN).
Nakai and Shiokawa [8] extended his results and showed that RN(τq(f )) = O(1/ logN). In the
case of real coefficients Nakai and Shiokawa [7] proved the same estimate for RN(θq(f )). In this
paper we want to discuss the case where f (x) is a transcendental entire function (i.e., an entire
function that is not a polynomial) of small logarithmic order. Recall that we say an increasing
function S(r) has logarithmic order λ if

lim sup
r→∞

logS(r)

log log r
= λ. (1.2)

We define the maximum modulus of an entire function f to be

M(r,f ) := max
|x|�r

∣∣f (x)
∣∣. (1.3)

If f is an entire function and logM(r,f ) has logarithmic order λ, then we call f an entire
function of logarithmic order λ.

To achieve our results we combine the following ingredients:

• The first part of the proofs concerns the estimation for the number of solutions of the equation
f (x) = a where a ∈ C (cf. [3], [11, Section 8.21]) for entire functions of zero order.

• Following the methods of Nakai and Shiokawa [7,8] we reformulate the problem in an esti-
mation of exponential sums.
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• Finally, the resulting exponential sums are treated by an exponential sum estimate of
Baker [1], which was originally used to show that the sequences

(
f (n)

)
n�1 and

(
f (p)

)
p prime

are uniformly distributed modulo 1 for f an entire function with logarithmic order 1 <

α < 4
3 .

The main results of our paper are as follows.

Theorem 1. Let f (x) be a transcendental entire function which takes real values on the real
line. Suppose that the logarithmic order α = α(f ) of f satisfies 1 < α < 4

3 . Then for any block
d1 . . . dl ∈ {0,1, . . . , q − 1}l , we have

N
(
θq(f );d1 . . . dl;N

) = 1

ql
N + o(N)

as N tends to ∞. The implied constant depends only on f , q , and l.

For primes we show that τq(f ) is normal in the following theorem.

Theorem 2. Let f (x) be a transcendental entire function which takes real values on the real
line. Suppose that the logarithmic order α = α(f ) of f satisfies 1 < α < 4

3 . Then for any block
d1 . . . dl ∈ {0,1, . . . , q − 1}, we have

N
(
τq(f );d1 . . . dl,N

) = 1

ql
N + o(N)

as N tends to ∞. The implied constant depends only on f , q , and l.

2. Notation

Throughout the paper let f be a transcendental entire function of logarithmic order α satisfy-
ing 1 < α < 4

3 and taking real values on the real line. Let

f (x) =
∞∑

k=1

akx
k

be the power series expansion of f . By logx and logq x we denote the natural logarithm and the
logarithm with respect to base q , respectively. Moreover, we set e(β) := exp(2πiβ).

Let p always denote a prime and
∑′ be a sum over primes. By an integer interval I we mean

a set of the form I = {a, a + 1, . . . , b − 1, b} for arbitrary integers a and b.
Furthermore, we denote by n(r, f ) the number of zeros of f (x) for |x| � r .
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3. Lemmas

First we state the above-mentioned result of Baker that will permit us to estimate exponential
sums over entire functions with small logarithmic order by choosing the occurring parameters
appropriately.

Lemma 3.1. (See [1, Theorem 4].) Let d and h be integers, with 8 � h � d . Let a1, . . . , ad be
real numbers and suppose that

N−h exp

(
20

logN

(log logN)2

)
< |ah| < exp

(−103h2), (3.1)

|ak| � exp

(
−20

logN

(log logN)2

)
(h < k � d). (3.2)

Suppose further that

logN � 105d3(logd)5. (3.3)

Then, writing g(x) = adxd + · · · + a1x, we have

S =
∑
n�N

e
(
g(n)

) � N exp

(
−1

2
(logN)1/3

)
+ N |ah|1/(10h). (3.4)

Lemma 3.2. (See [1, Theorem 3].) Under the hypotheses of Lemma 3.1 we have

S =
∑′

p�P

e
(
g(p)

) � P exp
(−c(log logP)2) + P(logP)−1|ah|1/(10h),

where c is a constant depending on g.

The following lemma due to Vinogradov provides an estimate of the Fourier coefficients of
certain Urysohn functions.

Lemma 3.3. (See [12, Lemma 12].) Let α, β , Δ be real numbers satisfying

0 < Δ <
1

2
, Δ � β − α � 1 − Δ.

Then there exists a periodic function ψ(x) with period 1, satisfying

(1) ψ(x) = 1 in the interval α + 1
2Δ � x � β − 1

2Δ,

(2) ψ(x) = 0 in the interval β + 1
2Δ � x � 1 + α − 1

2Δ,
(3) 0 � ψ(x) � 1 in the remainder of the interval α − 1Δ � x � 1 + α − 1Δ,
2 2
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(4) ψ(x) has a Fourier series expansion of the form

ψ(x) = β − α +
∞∑

ν=−∞
ν �=0

A(ν)e(νx),

where

∣∣A(ν)
∣∣ � min

(
1

ν
,β − α,

1

ν2Δ

)
.

Finally, we give an easy result on the limit of quotients of sequences that will be used in our
proof.

Lemma 3.4. Let (an)n�1 and (bn)n�1 be two sequences with 0 < an � bn for all n and

lim
n→∞

an

bn

= 0. (3.5)

Then

lim
n→∞

∑n
i=1 ai∑n
i=1 bi

= 0.

Proof. Let ε > 0 be arbitrary. Then by (3.5) there exists n0 such that

an

bn

<
ε

2
(3.6)

for n > n0. Let A(N) := ∑N
n=1 an and B(N) := ∑N

n=1 bn. We show that there exists n1 such
that A(n)/B(n) < ε for n > n1. Therefore we define C(N) := ∑N

n=n0+1 bn. As (3.6) implies that
an < ε

2bn for n > n0 we get

A(n)

B(n)
= A(n0) + ∑n

i=n0+1 ai

B(n0) + ∑n
i=n0+1 bi

<
A(n0) + ε

2C(n)

B(n0) + C(n)
.

As bn > 0 we have that C(n) → ∞ for n → ∞. Thus

lim
n→∞

A(n0) + ε
2C(n)

B(n0) + C(n)
= ε

2
.

Therefore there is n1 � n0 such that A(n)/B(n) � ε for n > n1 which proves the lemma. �
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4. Value distribution of entire functions

Before we start with the proof of the theorems, we need an estimation of the number of
solutions for the equation f (x) = a with f a transcendental entire function and a ∈ C.

In this section we want to show the following result.

Proposition 1. Let f be a transcendental entire function of logarithmic order α. Then for the
number of solutions of the equation f (x) = a the following estimate holds

n(r, f − a) � (log r)α−1. (4.1)

As usual in Nevanlinna theory we do not deal with n(r, f − a) directly but use a strongly
related function, which is defined by

N(r,f ) =
r∫

1

n(t, f ) − n(0, f )

t
dt − n(0, f ) log r (4.2)

in order to prove the proposition. The connection between n(r, f − a) and N(r,f − a) is illus-
trated in the following lemma.

Lemma 4.1. (See [3, Theorem 4.1].) Let f (x) be a nonconstant meromorphic function in C.
For each a ∈ C, N(r,f − a) is of logarithmic order λ + 1, where λ is the logarithmic order of
n(r, f − a).

The next lemma provides us with a very good estimation of the order of N(r,f − a).

Lemma 4.2. (See [9, Theorem].) If f is an entire function of logarithmic order α where 1 <

α � 2, then for all values a ∈ C

logM(r,f ) ∼ N(r,f − a) ∼ logM
(
r(log r)2−α, f

) ∼ N
(
r(log r)2−α, f

)
.

Now it is easy to prove Proposition 1.

Proof of Proposition 1. As f fulfills the assumptions of Lemma 4.2 we have that

N(r,f − a) ∼ M(r,f ) � (log r)α. (4.3)

Thus we have that N(r,f − a) is of logarithmic order α and therefore by Lemma 4.1 we get
that n(r, f − a) is of logarithmic order α − 1. �
5. Proof of Theorem 1

We fix the block d1 . . . dl throughout the proof. Moreover, we adopt the following notation. Let
N (f (n)) be the number of occurrences of the block d1 . . . dl in the q-ary expansion of the integer
part 
f (n)�. Furthermore, denote by �(m) the length of the q-ary expansion of the integer m,
i.e., �(m) = 
logq m� + 1. Define M by
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M−1∑
n=1

�
(
f (n)

)
< N �

M∑
n=1

�
(
f (n)

)
. (5.1)

Because f is of logarithmic order α < 4
3 we easily see that

�
(
f (n)

) � (logM)α (1 � n � M).

Thus ∣∣∣∣∣N (
θq(f );d1 . . . dl;N

) −
M∑

n=1

N
(
f (n)

)∣∣∣∣∣ � lM.

We denote by J and J̄ the maximum length and the average length of 
f (n)� for n ∈
{1, . . . ,N}, respectively, i.e.,

J := max
1�n�M

�
(⌊

f (n)
⌋) �� (logM)α,

J̄ := 1

M

M∑
n=1

�
(⌊

f (n)
⌋) �� (logM)α, (5.2)

where �� stands for both � and �. Note that from these definitions we immediately see that

N = MJ̄ +O
(
(logM)α

)
. (5.3)

Thus in order to prove the theorem it suffices to show

M∑
n=1

N
(
f (n)

) = 1

ql
N + o(N). (5.4)

In order to count the occurrences of the block d1 . . . dl in the q-ary expansion of 
f (n)�
(1 � n � M) we define the indicator function

I(t) =
{

1 if
∑l

i=1 diq
−i � t − 
t� <

∑l
i=1 diq

−i + q−l ,

0 otherwise,
(5.5)

which is a 1-periodic function. Indeed, write f (n) in q-ary expansion for every n ∈ {1, . . . ,M},
i.e.,

f (n) = brq
r + br−1q

r−1 + · · · + b1q + b0 + b−1q
−1 + · · · ,

then the function I(t) is defined in a way that

I
(
q−j f (n)

) = 1 ⇐⇒ d1 . . . dl = bj−1 . . . bj−l .
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In order to write
∑

n�M N (f (n)) properly in terms of I we define the subsets Il, . . . , IJ of
{1, . . . ,M} by

n ∈ Ij ⇐⇒ f (n) � qj (l � j � J ).

Every Ij consists of those n ∈ {1, . . . ,M} for which we can shift the q-ary expansion of 
f (n)�
at least j digits to the right to count the occurrences of the block d1 . . . dl . Using these sets we
get

∑
n�M

N
(
f (n)

) =
J∑

j=l

∑
n∈Ij

I
(

f (n)

qj

)
. (5.6)

In the next step we fix j and show that Ij = Ij (M) consists of integer intervals which are of
asymptotically increasing length for M increasing. As Ij consists of all n such that f (n) � qj

these n have to be between two zeros of the equation f (x) = qj . By Proposition 1 the number
of solutions for this equation is n(M,f − qj ) � (logM)α−1. Therefore we can split Ij into kj

integer subintervals

Ij =
kj⋃

i=1

{nji, . . . , nji + mji − 1}

where mji is the length of the integer interval and kj � (logM)α−1. Thus the length of the
integer intervals is increasing, i.e., M(logM)1−α � mji � M . Thus we get that

∑
n�M

N
(
f (n)

) =
J∑

j=l

kj∑
i=1

∑
nji�n<nji+mji

I
(

f (n)

qj

)
. (5.7)

Following Nakai and Shiokawa [7,8] we want to approximate I from above and from below
by two 1-periodic functions having small Fourier coefficients. In particular, we set

α− =
l∑

λ=1

dλq
−λ + (2δi)

−1, β− =
l∑

λ=1

dλq
−λ + q−l − (2δi)

−1, Δ− = δ−1
i ,

α+ =
l∑

λ=1

dλq
−λ − (2δi)

−1, β+ =
l∑

λ=1

dλq
−λ + q−l + (2δi)

−1, Δ+ = δ−1
i . (5.8)

We apply Lemma 3.3 with (α,β,Δ) = (α−, β−,Δ−) and (α,β,Δ) = (α+, β+,Δ+), respec-
tively, in order to get two functions I− and I+. By the choices of (α±, β±,Δ±) it is immediate
that

I−(t) � I(t) � I+(t) (t ∈ R). (5.9)

Lemma 3.3 also implies that these two functions have Fourier expansions
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I±(t) = q−l ± δ−1
i +

∞∑
ν=−∞
ν �=0

A±(ν)e(νt) (5.10)

satisfying

∣∣A±(ν)
∣∣ � min

(|ν|−1, δi |ν|−2). (5.11)

In a next step we want to replace I by I+ in (5.6). To this matter we observe, using (5.9), that

∣∣I(t) − I+(t)
∣∣ �

∣∣I+(t) − I−(t)
∣∣ � δ−1

i +
∞∑

ν=−∞
ν �=0

A±(ν)e(νt).

Together with (5.6) this implies that

∑
n�M

N
(
f (n)

)

=
J∑

j=l

kj∑
i=1

∑
nji�n<nji+mji

(
I+

(
f (n)

qj

)
+O

(
δ−1
i +

∞∑
ν=−∞
ν �=0

A±(ν)e

(
ν
f (n)

qj

)))
.

Inserting the Fourier expansion of I+ this yields

∑
n�M

N
(
f (n)

)

=
J∑

j=l

kj∑
i=1

∑
nji�n<nji+mji

(
1

ql
+O

(
δ−1
i +

∞∑
ν=−∞
ν �=0

A±(ν)e

(
ν
f (n)

qj

)))
. (5.12)

Because of the definition of M and J̄ in (5.1) and (5.2), respectively, and the estimate in (5.3)
we get that

J∑
j=l

kj∑
i=1

∑
nji�n<nji+mji

1 = J̄M +O(lM) = N +O(lM). (5.13)

Inserting this in (5.12) and subtracting the main part Nq−l we obtain

∣∣∣∣ ∑
n�M

N
(
f (n)

) − N

ql

∣∣∣∣

�
J∑

j=l

kj∑
i=1

∑
nji�n<nji+mji

(
δ−1
i +

∞∑
ν=−∞

A±(ν)e

(
ν

qj
f (n)

))
+ lM. (5.14)
ν �=0
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Now we consider the coefficients A±(ν). Noting (5.11) one sees that

A±(ν) �
{

ν−1 for |ν| � δi ,

δiν
−2 for |ν| > δi .

Estimating trivially all summands with |ν| > δi we get

∞∑
ν=−∞
ν �=0

A±(ν)e

(
ν

qj
f (n)

)
�

δi∑
ν=1

ν−1e

(
ν

qj
f (n)

)
+ δ−1

i . (5.15)

Using this in (5.14) and changing the order of summation yields

∣∣∣∣ ∑
n�M

N
(
f (n)

) − N

ql

∣∣∣∣

�
J∑

j=l

kj∑
i=1

∑
nji�n<nji+mji

(
δ−1
i +

δi∑
ν=1

ν−1e

(
ν

qj
f (n)

))
+ lM. (5.16)

The crucial part is now to estimate the exponential sum containing the entire function f .
Define

S(X) :=
∑
n�X

e

(
ν

qj
f (n)

)
. (5.17)

We now treat the sum S(X) by a similar reasoning as in the proof of Baker [1, Theorem 2]. We
will show that the sum only depends on f and X.

To this matter we let the parameter d occurring in Lemma 3.1 be a function of X, in particular,
we set

d = d(X) = ⌊
10−2(logX)

1
3 (log logX)−2⌋, (5.18)

which tends to infinity with X (see Eq. (11) of [1]). Moreover, we define the polynomial

gj (x) = ν

qj

(
a1x + · · · + adxd

)

by the first d summands of the power series of ν
qj f . The parameter h of Lemma 3.1 will also be

a function of X. In particular, we set h = h(X) to be the largest positive integer such that h � d

and

X−h+ 1
2 <

∣∣∣∣ ν

qj
ah

∣∣∣∣. (5.19)

As shown in [1], h also tends to infinity with X.
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Up to now we have not chosen a value for δi . For the moment, we just assume that δi � h

because this choice implies that the summation index ν varies only over positive integers that are
less than h. Thus the logarithmic order of ν

qj f (n) is less than 4
3 . Indeed,

log

(
ν

qj
f (n)

)
< logh − j logq + logf (n) < log logX + (logX)α < (logX)ᾱ (5.20)

where ᾱ = α + ε < 4
3 . Note that gj satisfies the conditions of Lemma 3.1. The estimate for the

logarithmic order of ν
qj f (n) will enable us to replace f by gj in (5.17) causing only a small

error term. This will then permit us to apply Lemma 3.1 in order to estimate S(X).
By (5.20), Eq. (15) of [1] implies that for d as in (5.18)

∑
t>d

∣∣∣∣ ν

qj
at

∣∣∣∣Xt < (2X)−1 (5.21)

and therefore (see [1]) ∣∣∣∣∑
n�X

e

(
ν

qj
f (n)

)∣∣∣∣ �
∣∣∣∣∑
n�X

e
(
gj (n)

)∣∣∣∣ + π.

By this we can use Baker’s estimations for exponential sums over entire functions contained in
Lemma 3.1 and get with d = d(X) and h = h(X) defined in (5.18) and (5.19), respectively,

S(X) � X exp

(
−1

2
(logX)

1
3

)
+ X exp(−h). (5.22)

Now it is time to set δi for every i. As ν changes the coefficients of the function under con-
sideration we calculate for every ν = 1, . . . , d(mji) the corresponding hν(mji). In order to fulfill
the constraint on the logarithmic order we need to chose δi smaller than the smallest hν(mji)

with ν � δi . Thus we set

δi := max
{
r � d(mji): r � min

{
hν(mji): ν � r

}}
. (5.23)

This is always possible since hν(mji) � 1. For this choice we also have δi � hν(mji) and
δi → ∞ as mji → ∞ because the minimum of the hν(mji) tends to infinity for mji → ∞.
Doing this for every i = 1, . . . , k (i.e., for every integer interval comprising the set Ij ) we can
apply (5.22) with X = mji and use the fact that δi is the smallest hν(mji) for i. This yields

kj∑
i=1

δi∑
ν=1

ν−1
∑

nji�n<nji+mji

e

(
ν

qj
f (n)

)

�
kj∑

i=1

δi∑
ν=1

ν−1S(mji) �
kj∑

i=1

δi∑
ν=1

ν−1mji exp

(
−1

2
(logmji)

1
3

)
+ mji exp(−δi)

�
kj∑(

mji exp

(
−1

2
(logmji)

1
3

)
+ mji exp(−δi)

)
log δi .
i=1
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As we do not know the asymptotic behavior of δi we have to distinguish the cases whether

exp(−δi) is greater or smaller than exp(− 1
2 (logmji)

1
3 ). In both cases we can assume that mji is

sufficiently large.

• Suppose first that exp(− 1
2 (logmji)

1
3 ) > exp(−δi) holds. As δi � d(mji) � (logmji)

1
3 we

get

exp

(
−1

2
(logmji)

1
3

)
log δi � exp

(
−1

2
(logmji)

1
3

)
(log logmji) � exp

(
−1

3
(logmji)

1
3

)

and thus(
exp

(
−1

2
(logmji)

1
3

)
+ exp(−δi)

)
log δi � exp

(
−1

3
(logmji)

1
3

)
+ exp(−δi/2).

• For the second case assume that exp(− 1
2 (logmji)

1
3 ) � exp(−δi) holds. This implies that

log δi � log logmji and we get

exp

(
−1

2
(logmji)

1
3

)
log δi � exp

(
−1

2
(logmji)

1
3

)
(log logmji) � exp

(
−1

3
(logmji)

1
3

)
.

Therefore we also have(
exp

(
−1

2
(logmji)

1
3

)
+ exp(−δi)

)
log δi � exp

(
−1

3
(logmji)

1
3

)
+ exp(−δi/2).

By this we have the estimation

δi∑
ν=1

ν−1
∑

nji�n<nji+mji

e

(
ν

qj
f (n)

)

�
k∑

i=1

mji

(
exp

(
−1

3
(logmji)

1
3

)
+ exp(−δi/2)

)
. (5.24)

By (5.16) we get that

∣∣∣∣ ∑
n�M

N
(
f (n)

) − N

ql

∣∣∣∣ �
J∑

j=l

kj∑
i=1

∑
nji�n<nji+mji

(
δ−1
i +

δi∑
ν=1

ν−1e

(
ν

qj
f (n)

))
+ lM.

Thus it remains to show that

kj∑
i=1

∑
nji�n<nji+mji

δ−1
i =

kj∑
i=1

mji

δi

= o
(|Ij |

)
(5.25)

and
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kj∑
i=1

∑
nji�n<nji+mji

δi∑
ν=1

ν−1e

(
ν

qj
f (n)

)
= o

(|Ij |
)
, (5.26)

where |Ij | = ∑kj

i=1 mji is the sum of the lengths of the integer intervals.
First we consider (5.25). Therefore we set ai = mji

δi
and bi = mji . By noting that ai

bi
=

δ−1
i → 0 we are able to apply Lemma 3.4 and get

0 �
∑k

i=1
mji

δi∑k
i=1 mji

→ 0.

Finally we have to show (5.26). We again want to apply Lemma 3.4 by setting

ai := mji exp

(
−1

3
(logmji)

1
3

)
+ mji exp(−δi/2),

bi := mji.

As M(logM)1−α � mji � M we get that both exp(− 1
3 (logmji)

1
3 ) and exp(−δi/2) tend to zero.

Thus we have that ai

bi
→ 0 for M → ∞. An application of Lemma 3.4 together with (5.24) gives

0 �
∑k

i=1
∑δi

ν=1 ν−1 ∑
nji�n<nji+mji

e( ν
qj f (n))

|Ij |

�
∑k

i=1 mji(exp(− 1
3 (logmji)

1
3 ) + exp(−δi/2))∑k

i=1 mji

→ 0

for M → ∞ and thus (5.26) holds.
We put (5.25) and (5.26) in our estimate (5.16) and get together with (5.13) that

∣∣∣∣ ∑
n�M

N
(
f (n)

) − N

ql

∣∣∣∣ �
J∑

j=l

kj∑
i=1

∑
nji�n<nji+mji

(
δ−1
i +

δi∑
ν=1

ν−1e

(
ν

qj
f (n)

))
+ lM

�
J∑

j=l

o
(|Ij |

) + lM = o(J̄M) = o(N).

Thus by (5.4) the theorem is proven.

6. Proof of Theorem 2

Throughout the proof p will always denote a prime and π(x) will denote the number of primes
less than or equal to x. As in the proof of Theorem 1 we fix the block d1 . . . dl and write N (f (p))

for the number of occurrences of this block in the q-ary expansion of 
f (p)�. By �(m) we denote
the length of the q-ary expansion of an integer m. We define an integer P by
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∑′

p�P−1

�
(⌊

f (p)
⌋)

< N �
∑′

p�P

�
(⌊

f (p)
⌋)

. (6.1)

As above we get that

�
(⌊

f (p)
⌋)

� (logP)α (2 � p � P).

Again we set J the greatest and J̄ the average length of the q-ary expansions over the primes.
Thus

J := max
p�P prime

�
(⌊

f (p)
⌋) �� (logP)α, (6.2)

J̄ := 1

π(P )

∑′

p�P

�
(⌊

f (p)
⌋) �� (logP)α. (6.3)

Note that by these definitions we have

N = J̄ P +O
(
(logP)α

)
. (6.4)

Thus by the same reasoning as in the proof of Theorem 1 it suffices to show that

∑′

p�P

N
(
f (p)

) = N

ql
+ o(N). (6.5)

We define the indicator function as in (5.5) and also the subsets Il, . . . , IJ of {2, . . . ,P } by

n ∈ Ij ⇐⇒ f (n) � qj (l � j � J ).

Following the proof of Theorem 1 we see that

∑′

p�P

N
(
f (p)

) =
J∑

j=l

∑′

p∈Ij

I
(

f (p)

qj

)
+O

(
lπ(P )

)
. (6.6)

Now we fix j and split Ij into kj integer intervals of length mji for i = 1, . . . , k. Thus

Ij =
kj⋃

i=1

{nji, nji + 1, . . . , nji + mji − 1}.

By Proposition 1 we again get that kj � (logP)α−1. Thus the length of the mji is asymptotically
increasing for P , indeed, we have P(logP)1−α � mji � P . Now we can rewrite (6.6) by

∑′

p�P

N
(
f (p)

) =
J∑

j=l

kj∑
i=1

∑′

n �p<n +m

I
(

f (p)

qj

)
+O

(
lπ(P )

)
. (6.7)
j i j i j i
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Following Nakai and Shiokawa [7,8] again we get as in the proof of Theorem 1 that there exist
two functions I− and I+. We replace I by I+ in (6.7) and together with the Fourier expansion
of I+ in (5.10) we get in the same manner as in (5.12) that

∑′

p�P

N
(
f (p)

)

=
J∑

j=l

kj∑
i=1

∑′

nji�p<nji+mji

(
1

qj
+O

(
δ−1
i +

∞∑
ν=−∞
ν �=0

A±(ν)e

(
ν
f (n)

qj

)))
. (6.8)

By (6.1) and (6.2) together with (6.4) we have

J∑
j=l

kj∑
i=1

∑′

nji�p<nji+mji

1 = J̄ π(P ) +O
(
lπ(P )

) = N +O
(
lπ(P )

)
. (6.9)

We subtract the main part Nq−l in (6.8) and get by (6.9)

∣∣∣∣∑′

p�P

N
(
f (p)

) − N

ql

∣∣∣∣

�
J∑

j=l

kj∑
i=1

∑′

nji�p<nji+mji

(
δ−1
i +

∞∑
ν=−∞
ν �=0

A±(ν)e

(
ν

qj
f (n)

))
+ lπ(P ). (6.10)

We estimate the coefficients A±(ν) in the same way as in (5.15). Then (6.10) simplifies to

∣∣∣∣∑′

p�P

N
(
f (p)

) − N

ql

∣∣∣∣

�
J∑

j=l

kj∑
i=1

∑′

nji�p<nji+mji

(
δ−1
i +

δi∑
ν=1

ν−1e

(
ν

qj
f (p)

))
+ lπ(P ). (6.11)

Again the crucial part is the estimation of an exponential sum over the primes. We apply quite
the same reasoning as in the proof of Theorem 1. We set

S′(X) :=
∑′

p�X

e

(
ν

qj
f (p)

)
(6.12)

and use the functions d(X) and h(X) defined in (5.18) and (5.19), respectively. If we assume that
δi � h(X) then we get that the logarithmic order of ν

qj f (x) is less than 4
3 as in (5.20). We set

gj (x) = ν

j

(
adxd + · · · + a1x

)
.

q
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By (5.21) we also get that ∣∣∣∣∑′

p�X

e

(
ν

qj
f (p)

)∣∣∣∣ �
∣∣∣∣∑′

p�X

e
(
gj (p)

)∣∣∣∣ + π.

We can apply Lemma 3.2 to get the estimate

S′(X) � X exp
(−cν(log logX)2) + X

logX
exp(−h), (6.13)

where cν is a constant depending on ν and h = h(X) is the function defined in (5.19).
Now we fix i and for every ν = 1, . . . , d(mji) we calculate the corresponding hν(mji) and cν .

We set

δi := max
{
r � d(mji): r � min

{
hν(mji): ν � r

}}
,

c̄i := min{cν : ν = 1, . . . , δi}. (6.14)

By the above reasoning we have that δi → ∞ for mji and therefore for P .
By this we get a δi for every i = 1, . . . , k and we can estimate the exponential sum in (6.11)

with help of (6.13) and the definitions of δi and c̄i in (6.14) to get

kj∑
i=1

∑′

nji�p<nji+mji

δi∑
ν=1

ν−1e

(
ν

qj
f (p)

)

�
kj∑

i=1

δi∑
ν=1

ν−1S′(mji) �
kj∑

i=1

δi∑
ν=1

ν−1mji

(
exp

(−c̄i (log logmji)
2) + exp(−δi)

logmji

)

�
kj∑

i=1

mji

(
exp

(−c̄i (log logmji)
2) + exp(−δi)

logmji

)
log δi . (6.15)

As we do not know the asymptotic behavior of δi we want to merge it with the ex-
pression in the parentheses and therefore have to distinguish two cases according whether
exp(−δi)(logmji)

−1 is greater or smaller than exp(−c̄i (log logmji)
2).

• If exp(−c̄i (log logmji)
2) > exp(−δi)(logmji)

−1 then as δi � (logP)1/3 we have that

exp
(−c̄i (log logmji)

2) log δi � exp
(−c̄i (log logmji)

2) log logmji

< exp
(−c̄i/2(log logmji)

2).
Thus

(
exp

(−c̄i (log logmji)
2) + exp(−δi)(logmji)

−1) log δi

� exp
(−c̄i/2(log logmji)

2) + exp(−δi/2)(logmji)
−1.
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• On the contrary we have exp(−c̄i (log logmji)
2) � exp(−δi)(logmji)

−1 and this implies
δi � c(log logmji)

2 for a positive constant c. Therefore we get

exp
(−c̄i (log logmji)

2) log δi � exp
(−c̄i (log logmji)

2)c(log logmji)
2

< exp
(−c̄i/2(log logmji)

2).
We again have

(
exp

(−c̄i (log logmji)
2) + exp(−δi)(logmji)

−1) log δi

� exp
(−c̄i/2(log logmji)

2) + exp(−δi/2)(logmji)
−1.

By this we have

kj∑
i=1

δi∑
ν=1

ν−1
∑′

nji�p<nji+mji

e

(
ν

qj
f (p)

)

�
kj∑

i=1

mji

(
exp

(−c̄i/2(log logmji)
2) + exp(−δi/2)(logmji)

−1). (6.16)

The considerations above can be used in (6.11) in order to obtain

∣∣∣∣∑′

p�P

N
(
f (p)

) − N

ql

∣∣∣∣ �
J∑

j=l

kj∑
i=1

∑′

nji�p<nji+mji

(
δ−1
i +

δi∑
ν=1

ν−1e

(
ν

qj
f (p)

))
+ lπ(P ).

Thus it remains to show that

kj∑
i=1

∑′

ni�p<ni+mji

δ−1
i = o

(
π(Ij )

)
(6.17)

and

δi∑
ν=1

ν−1
kj∑

i=1

∑′

nji�p<nji+mji

e

(
ν

qj
f (p)

)
= o

(
π(Ij )

)
, (6.18)

where π(Ij ) stands for the number of primes in the interval Ij .
First we have to estimate the number of primes in Ij for every j . Therefore we set m′

ji :=
π({nji, . . . , nji +mji − 1}). Thus the number of primes in Ij is the sum of the m′

ji , i.e., π(Ij ) =∑kj

i=1 m′
ji . As

P(logP)1−α � mji � P (i = 1, . . . , kj ) (6.19)
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holds we consider an integer interval [x −y, x]∩Z with x(logx)1−α � y < x. We set y := xβ−1

and get

1 < β � (logx)α−1. (6.20)

To estimate the number of primes we apply the Prime Number Theorem in the following form
(which is a weaker result than in Chapter 11 of [6]):

π(x) = x

logx
+O

(
x

(logx)2

)
. (6.21)

Thus we get with (6.20) and (6.21)

π
([x − y, x] ∩ Z

) = π(x) − π(x − y)

= x

logx
− x − xβ−1

log(x − xβ−1)
+O

(
x

(logx)2

)

= x

logx
− x − xβ−1

logx +O(β−1)
+O

(
x

(logx)2

)

= x

logx
− x − xβ−1

logx

(
1 +O

(
β−1(logx)−1)) +O

(
x

(logx)2

)

= y

logx
+O

(
x

(logx)2

)
. (6.22)

Now we reformulate (6.22) by setting x = P and y = mji and get with (6.19)

m′
ji = π

({ni, . . . , ni + mji − 1}) = mji

logP
+O

(
P

(logP)2

)
. (6.23)

Now we use the estimation (6.23) in order to show (6.17). By setting ai = m′
j i

δi
and bi = m′

ji

we note that as m′
ji → ∞ we get that mji → ∞ which implies ai

bi
→ 0. Therefore we can apply

Lemma 3.4 and get

0 �
∑′

p∈Ij
δ−1
i

π(Ij )
=

∑k
i=1

m′
j i

δi∑k
i=1 m′

ji

→ 0.

Finally we show that (6.18) holds. We set

ai = mji

(
exp

(−c̄i/2(log logmji)
2) + exp(−δi/2)(logmji)

−1),
bi = m′

ji .

By the estimation in (6.23) we get that ai

bi
→ 0 for P → ∞ and we are able to apply Lemma 3.4.

Thus with (6.16) we get
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0 �
∑kj

i=1

∑δi

ν=1 ν−1 ∑′
nji�p<nji+mji

e( ν
qj f (p))

π(Ij )

�
∑kj

i=1 mji(exp(−c̄i/2(log logmji)
2) + exp(−δi/2)(logmji)

−1)∑kj

i=1 m′
ji

→ 0.

Thus by putting (6.11), (6.18), and (6.17) together we get

∣∣∣∣∑′

p�P

N
(
f (p)

) − N

ql

∣∣∣∣ �
J∑

j=l

kj∑
i=1

∑′

nji�p<nji+mji

(
δ−1
i +

δi∑
ν=1

ν−1e

(
ν

qj
f (p)

))
+ lπ(P )

�
J∑

j=l

o
(
π(Ij )

) + lπ(P ) � o(J̄P ) � o(N),

which, together with (6.5), proves Theorem 2.

References

[1] R.C. Baker, Entire functions and uniform distribution modulo 1, Proc. London Math. Soc. (3) 49 (1) (1984) 87–110.
[2] D.G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933)

254–260.
[3] P.T.-Y. Chern, On meromorphic functions with finite logarithmic order, Trans. Amer. Math. Soc. 358 (2) (2006)

473–489 (electronic).
[4] A.H. Copeland, P. Erdös, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946) 857–860.
[5] H. Davenport, P. Erdös, Note on normal decimals, Canad. J. Math. 4 (1952) 58–63.
[6] H. Davenport, Multiplicative Number Theory, second ed., Grad. Texts in Math., vol. 74, Springer-Verlag, New York,

1980, revised by Hugh L. Montgomery.
[7] Y. Nakai, I. Shiokawa, Discrepancy estimates for a class of normal numbers, Acta Arith. 62 (3) (1992) 271–284.
[8] Y. Nakai, I. Shiokawa, Normality of numbers generated by the values of polynomials at primes, Acta Arith. 81 (4)

(1997) 345–356.
[9] Q.I. Rahman, On a class of integral functions of zero order, J. London Math. Soc. 32 (1957) 109–110.

[10] J. Schiffer, Discrepancy of normal numbers, Acta Arith. 47 (2) (1986) 175–186.
[11] E.C. Titchmarsh, The Theory of Functions, second ed., Oxford Univ. Press, London, 1975.
[12] I.M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Interscience Publishers, London

and New York, 1954, translated, revised and annotated by K.F. Roth and Anne Davenport.


