3,088 research outputs found
Robustness of edge states in graphene quantum dots
We analyze the single particle states at the edges of disordered graphene
quantum dots. We show that generic graphene quantum dots support a number of
edge states proportional to circumference of the dot over the lattice constant.
Our analytical theory agrees well with numerical simulations. Perturbations
breaking electron-hole symmetry like next-nearest neighbor hopping or edge
impurities shift the edge states away from zero energy but do not change their
total amount. We discuss the possibility of detecting the edge states in an
antidot array and provide an upper bound on the magnetic moment of a graphene
dot.Comment: Added figure 6, extended discussion (version as accepted by Physical
Review B
Quantized conductance at the Majorana phase transition in a disordered superconducting wire
Superconducting wires without time-reversal and spin-rotation symmetries can
be driven into a topological phase that supports Majorana bound states. Direct
detection of these zero-energy states is complicated by the proliferation of
low-lying excitations in a disordered multi-mode wire. We show that the phase
transition itself is signaled by a quantized thermal conductance and electrical
shot noise power, irrespective of the degree of disorder. In a ring geometry,
the phase transition is signaled by a period doubling of the magnetoconductance
oscillations. These signatures directly follow from the identification of the
sign of the determinant of the reflection matrix as a topological quantum
number.Comment: 7 pages, 4 figures; v3: added appendix with numerics for long-range
disorde
Graphene Rings in Magnetic Fields: Aharonov-Bohm Effect and Valley Splitting
We study the conductance of mesoscopic graphene rings in the presence of a
perpendicular magnetic field by means of numerical calculations based on a
tight-binding model. First, we consider the magnetoconductance of such rings
and observe the Aharonov-Bohm effect. We investigate different regimes of the
magnetic flux up to the quantum Hall regime, where the Aharonov-Bohm
oscillations are suppressed. Results for both clean (ballistic) and disordered
(diffusive) rings are presented. Second, we study rings with smooth mass
boundary that are weakly coupled to leads. We show that the valley degeneracy
of the eigenstates in closed graphene rings can be lifted by a small magnetic
flux, and that this lifting can be observed in the transport properties of the
system.Comment: 12 pages, 9 figure
Visual Experience Shapes Orthographic Representations in the Visual Word Form Area
Current neurocognitive research suggests that the efficiency of visual word recognition rests on abstract memory representations of written letters and words stored in the visual word form area (VWFA) in the left ventral occipitotemporal cortex. These representations are assumed to be invariant to visual characteristics such as font and case. In the present functional MRI study, we tested this assumption by presenting written words and varying the case format of the initial letter of German nouns (which are always capitalized) as well as German adjectives and adverbs (both usually in lowercase). As evident from a Word Type × Case Format interaction, activation in the VWFA was greater to words presented in unfamiliar case formats relative to familiar case formats. Our results suggest that neural representations of written words in the VWFA are not fully abstract and still contain information about the visual format in which words are most frequently perceived
Barrier transmission of Dirac-like pseudospin-one particles
We address the problem of barrier tunneling in the two-dimensional T_3
lattice (dice lattice). In particular we focus on the low-energy,
long-wavelength approximation for the Hamiltonian of the system, where the
lattice can be described by a Dirac-like Hamiltonian associated with a
pseudospin one. The enlarged pseudospin S = 1 (instead of S = 1/2 as for
graphene) leads to an enhanced "super" Klein tunneling through rectangular
electrostatic barriers. Our results are confirmed via numerical investigation
of the tight-binding model of the lattice. For a uniform magnetic field, we
discuss the Landau levels and we investigate the transparency of a rectangular
magnetic barrier. We show that the latter can mainly be described by
semiclassical orbits bending the particle trajectories, qualitatively similar
as it is the case for graphene. This makes it possible to confine particles
with magnetic barriers of sufficient width
Energy balance closure for the LITFASS-2003 experiment
In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by the measurement uncertainty of the single components of the surface energy balance or by the length of the flux-averaging period. In the second part, secondary circulations due to heterogeneities in the surface characteristics (roughness, thermal and moisture properties) are discussed as a possible cause for the observed energy balance non-closure. This hypothesis seems to be supported from the fluxes derived from area-averaging measurement techniques (scintillometers, aircraft)
Some aspects of the energy balance closure problem
International audienceAfter briefly discussing several reasons for the energy balance closure problem in the surface layer, the paper focuses on the influence of the low frequency part of the turbulence spectrum on the residual. Changes in the turbulent fluxes in this part of the turbulence spectrum were found to have a significant influence on the changes of the residual. Using the ogive method, it was found that the eddy-covariance method underestimates turbulent fluxes in the case of ogives converging for measuring times longer than the typical averaging interval of 30 min. Additionally, the eddy-covariance method underestimates turbulent fluxes for maximal ogive functions within the averaging interval, both mainly due to advection and non-steady state conditions. This has a considerable influence on the use of the eddy-covariance method
Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure
The prospect of coupling a two-dimensional (2D) semiconductor heterostructure
to a superconductor opens new research and technology opportunities, including
fundamental problems in mesoscopic superconductivity, scalable superconducting
electronics, and new topological states of matter. For instance, one route
toward realizing topological matter is by coupling a 2D electron gas (2DEG)
with strong spin-orbit interaction to an s-wave superconductor. Previous
efforts along these lines have been hindered by interface disorder and unstable
gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with
patterned epitaxial Al, yielding multilayer devices with atomically pristine
interfaces between semiconductor and superconductor. Using surface gates to
form a quantum point contact (QPC), we find a hard superconducting gap in the
tunneling regime, overcoming the soft-gap problem in 2D
superconductor-semiconductor hybrid systems. With the QPC in the open regime,
we observe a first conductance plateau at 4e^2/h, as expected theoretically for
a normal-QPC-superconductor structure. The realization of a hard-gap
semiconductor-superconductor system that is amenable to top-down processing
provides a means of fabricating scalable multicomponent hybrid systems for
applications in low-dissipation electronics and topological quantum
information.Comment: includes main text, supplementary information and code for
simulations. Published versio
- …