19 research outputs found
Dissipation of Magnetohydrodynamic Waves on Energetic Particles: Impact on Interstellar Turbulence and Cosmic Ray Transport
The physical processes involved in diffusion of Galactic cosmic rays in the
interstellar medium are addressed. We study the possibility that the nonlinear
MHD cascade sets the power-law spectrum of turbulence which scatters charged
energetic particles. We find that the dissipation of waves due to the resonant
interaction with cosmic ray particles may terminate the Kraichnan-type cascade
below wavelengths 10^13 cm. The effect of this wave dissipation has been
incorporated in the GALPROP numerical propagation code in order to asses the
impact on measurable astrophysical data. The energy-dependence of the
cosmic-ray diffusion coefficient found in the resulting self-consistent model
may explain the peaks in the secondary to primary nuclei ratios observed at
about 1 GeV/nucleon.Comment: 15 pages, 20 figures, 1 table, emulateapj.cls; To be published in ApJ
10 May 2006, v.64
The 60 month all-sky Burst Alert Telescope survey of active galactic nucleus and the anisotropy of nearby AGNs
Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of ~2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent ~5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to ~10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9+4.1 - 2.9 × 10-5 Mpc-3 for objects with a de-absorbed luminosity larger than 2 × 1042 erg s-1. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (<=85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions
Discovery of GeV Emission from the Circinus galaxy with the Fermi-LAT
We report the discovery of gamma-ray emission from the Circinus galaxy using
the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope.
Circinus is a nearby (~4 Mpc) starburst with a heavily obscured Seyfert-type
active nucleus, bipolar radio lobes perpendicular to the spiral disk, and
kpc-scale jet-like structures. Our analysis of 0.1-100 GeV events collected
during 4 years of LAT observations reveals a significant (~ 7.3 sigma) excess
above the background. We find no indications of variability or spatial
extension beyond the LAT point-spread function. A power-law model used to
describe the 0.1-100 GeV gamma-ray spectrum yields a flux of
(18.8+/-5.8)x10^{-9} ph cm^{-2} s^{-1} and photon index 2.19+/-0.12,
corresponding to an isotropic gamma-ray luminosity of 3 x 10^{40} erg s^{-1}.
This observed gamma-ray luminosity exceeds the luminosity expected from
cosmic-ray interactions in the interstellar medium and inverse Compton
radiation from the radio lobes. Thus the origin of the GeV excess requires
further investigation.Comment: 7 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Recommended from our members
Cosmic-ray Propagation and Interactions in the Galaxy
We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10{sup 15} eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes are explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data including direct and indirect--especially gamma-ray--observations, and indicate what we can learn about cosmic-ray propagation. Some particular important topics including electrons and antiparticles are chosen for discussion
Probing the Disk-jet Connection of the Radio Galaxy 3C120 Observed with Suzaku
Broad line radio galaxies (BLRGs) are a rare type of radio-loud AGN, in which the broad optical permitted emission lines have been detected in addition to the extended jet emission. Here we report on deep (40ksec x4) observations of the bright BLRG 3C~120 using Suzaku. The observations were spaced a week apart, and sample a range of continuum fluxes. An excellent broadband spectrum was obtained over two decades of frequency (0.6 to 50 keV) within each 40 ksec exposure. We clearly resolved the iron K emission line complex, finding that it consists of a narrow K_a core (sigma ~ 110 eV or an EW of 60 eV), a 6.9 keV line, and an underlying broad iron line. Our confirmation of the broad line contrasts with the XMM-Newton observation in 2003, where the broad line was not required. The most natural interpretation of the broad line is iron K line emission from a face-on accretion disk which is truncated at ~10 r_g. Above 10 keV, a relatively weak Compton hump was detected (reflection fraction of R ~ 0.6), superposed on the primary X-ray continuum of Gamma ~ 1.75. Thanks to the good photon statistics and low background of the Suzaku data, we clearly confirm the spectral evolution of 3C120, whereby the variability amplitude decreases with increasing energy. More strikingly, we discovered that the variability is caused by a steep power-law component of Gamma ~2.7, possibly related to the non-thermal jet emission. We discuss our findings in the context of similarities and differences between radio-loud/quiet objects
Candidate Isolated Neutron Stars and Other Optically Blank X-ray Fields Identified from the ROSAT All-Sky and Sloan Digital Sky Surveys
Only seven radio-quiet isolated neutron stars (INSs) emitting thermal X rays
are known, a sample that has yet to definitively address such fundamental
issues as the equation of state of degenerate neutron matter. We describe a
selection algorithm based on a cross-correlation of the ROSAT All-Sky Survey
(RASS) and the Sloan Digital Sky Survey (SDSS) that identifies X-ray error
circles devoid of plausible optical counterparts to the SDSS g~22 magnitudes
limit. We quantitatively characterize these error circles as optically blank;
they may host INSs or other similarly exotic X-ray sources such as radio-quiet
BL Lacs, obscured AGN, etc. Our search is an order of magnitude more selective
than previous searches for optically blank RASS error circles, and excludes the
99.9% of error circles that contain more common X-ray-emitting subclasses. We
find 11 candidates, nine of which are new. While our search is designed to find
the best INS candidates and not to produce a complete list of INSs in the RASS,
it is reassuring that our number of candidates is consistent with predictions
from INS population models. Further X-ray observations will obtain pinpoint
positions and determine whether these sources are entirely optically blank at
g~22, supporting the presence of likely isolated neutron stars and perhaps
enabling detailed follow-up studies of neutron star physics.Comment: Accepted for publication in the AJ; higher resolution figures
available at http://www.astro.washington.edu/agueros/pub
Recommended from our members
INTEGRAL and RXTE Observations of Centaurus A
INTEGRAL and RXTE performed three simultaneous observations of the nearby radio galaxy Centaurus A in 2003 March, 2004 January, and 2004 February with the goals of investigating the geometry and emission processes via the spectral/temporal variability of the X-ray/low energy gamma ray flux, and intercalibration of the INTEGRAL instruments with respect to those on RXTE. Cen A was detected by both sets of instruments from 3-240 keV. When combined with earlier archival RXTE results, we find the power law continuum flux and the line-of-sight column depth varied independently by 60% between 2000 January and 2003 March. Including the three archival RXTE observations, the iron line flux was essentially unchanging, and from this we conclude that the iron line emitting material is distant from the site of the continuum emission, and that the origin of the iron line flux is still an open question. Taking X-ray spectral measurements from satellite missions since 1970 into account, we discover a variability in the column depth between 1.0 x 10{sup 23} cm{sup -2} and 1.5 x 10{sup 23} cm{sup -2} separated by approximately 20 years, and suggest that variations in the edge of a warped accretion disk viewed nearly edge-on might be the cause. The INTEGRAL OSA 4.2 calibration of JEM-X, ISGRI, and SPI yields power law indices consistent with the RXTE PCA and HEXTE values, but the indices derived from ISGRI alone are about 0.2 greater. Significant systematics are the limiting factor for INTEGRAL spectral parameter determination
NuSTAR Detection of the Blazar B2 1023+25 at Redshift 5.3
B2 1023+25 is an extremely radio-loud quasar at z = 5.3 that was first identified as a likely high-redshift blazar candidate in the SDSS+FIRST quasar catalog. Here, we use the Nuclear Spectroscopic Telescope Array (NuSTAR) to investigate its non-thermal jet emission, whose high-energy component we detected in the hard X-ray energy band. The X-ray flux is ~ 5.5 x 10^(-14)erg cm^(-2) s^(-1) (5-10 keV) and the photon spectral index is Γ_X ≃ 1.3-1.6. Modeling the full spectral energy distribution, we find that the jet is oriented close to the line of sight, with a viewing angle of ~3°, and has significant Doppler boosting, with a large bulk Lorentz factor ~13, which confirms the identification of B2 1023+25 as a blazar. B2 1023+25 is the first object at redshift larger than 5 detected by NuSTAR, demonstrating the ability of NuSTAR to investigate the early X-ray universe and to study extremely active supermassive black holes located at very high redshift
Recommended from our members
AGN Clustering in the Local Universe: An Unbiased Picture from Swift-BAT
We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-correlation function and detected a signal significant on projected scales lower than 200 Mpc/h. We measured a correlation length of r{sub 0} = 5.56{sup +0.49}{sub -0.43} Mpc/h and a slope {gamma} = 1.64{sup -0.08}{sub -0.07}. We also measured the auto-correlation function of Tyep I and Type II AGN and found higher correlation length for Type I AGN. We have a marginal evidence of luminosity dependent clustering of AGN, as we detected a larger correlation length of luminous AGN than that of low luminosity sources. The corresponding typical host DM halo masses of Swift-BAT are {approx} log(M{sub DMH) {approx} 12-14 h{sup -1}M/M{sub {circle_dot}} which is the typical mass of a galaxy group. We estimated that the local AGN population has a typical lifetime {tau}{sub AGN} {approx}0.7 Gyr, it is powered by SMBH with mass M{sub BH} {approx}1-10x10{sup 8} M{sub {circle_dot}} and accreting with very low efficiency, log({epsilon}){approx}-2.0>. We also conclude that local AGN galaxies are typically red-massive galaxies with stellar mass of the order 2-80x10{sup 10} h{sup -1}M{sub {circle_dot}}. We compared our results with clustering predictions of merger-driven AGN triggering models and found a good agreement
