775 research outputs found
The conservation of energy-momentum and the mass for the graviton
In this work we give special attention to the bimetric theory of gravitation
with massive gravitons proposed by Visser in 1998. In his theory, a prior
background metric is necessary to take in account the massive term. Although in
the great part of the astrophysical studies the Minkowski metric is the best
choice to the background metric, it is not possible to consider this metric in
cosmology. In order to keep the Minkowski metric as background in this case, we
suggest an interpretation of the energy-momentum conservation in Visser's
theory, which is in accordance with the equivalence principle and recovers
naturally the special relativity in the absence of gravitational sources.
Although we do not present a general proof of our hypothesis we show its
validity in the simple case of a plane and dust-dominated universe, in which
the `massive term' appears like an extra contribution for the energy density.Comment: 9 pages, accepted for publishing in GR
Cosmological implications of massive gravitons
The van Dam-Veltman-Zakharov (vDVZ) discontinuity requires that the mass
of the graviton is exactly zero, otherwise measurements of the deflection of
starlight by the Sun and the precession of Mercury's perihelion would conflict
with their theoretical values. This theoretical discontinuity is open to
question for numerous reasons. In this paper we show from a phenomenological
viewpoint that the hypothesis is in accord with Supernova Ia and CMB
observations, and that the large scale structure of the universe suggests that
eV.Comment: 13 pages, 1 figur
Bounding the mass of the graviton using gravitional-wave observations of inspiralling compact binaries
If gravitation is propagated by a massive field, then the velocity of
gravitational waves (gravitons) will depend upon their frequency and the
effective Newtonian potential will have a Yukawa form. In the case of
inspiralling compact binaries, gravitational waves emitted at low frequency
early in the inspiral will travel slightly slower than those emitted at high
frequency later, modifying the phase evolution of the observed inspiral
gravitational waveform, similar to that caused by post-Newtonian corrections to
quadrupole phasing. Matched filtering of the waveforms can bound such
frequency-dependent variations in propagation speed, and thereby bound the
graviton mass. The bound depends on the mass of the source and on noise
characteristics of the detector, but is independent of the distance to the
source, except for weak cosmological redshift effects. For observations of
stellar-mass compact inspiral using ground-based interferometers of the
LIGO/VIRGO type, the bound on the graviton Compton wavelength is of the order
of km, about double that from solar-system tests of Yukawa
modifications of Newtonian gravity. For observations of super-massive black
hole binary inspiral at cosmological distances using the proposed laser
interferometer space antenna (LISA), the bound can be as large as km. This is three orders of magnitude weaker than model-dependent
bounds from galactic cluster dynamics.Comment: 8 pages, RevTeX, submitted to Phys. Rev.
The Power of Brane-Induced Gravity
We study the role of the brane-induced graviton kinetic term in theories with
large extra dimensions. In five dimensions we construct a model with a
TeV-scale fundamental Planck mass and a {\it flat} extra dimension the size of
which can be astronomically large. 4D gravity on the brane is mediated by a
massless zero-mode, whereas the couplings of the heavy Kaluza-Klein modes to
ordinary matter are suppressed. The model can manifest itself through the
predicted deviations from Einstein theory in long distance precision
measurements of the planetary orbits. The bulk states can be a rather exotic
form of dark matter, which at sub-solar distances interact via strong 5D
gravitational force. We show that the induced term changes dramatically the
phenomenology of sub-millimeter extra dimensions. For instance, high-energy
constraints from star cooling or cosmology can be substantially relaxed.Comment: 24 pages, 4 eps figures; v2 typos corrected; v3 1 ref. added; PRD
versio
Post-Einsteinian tests of gravitation
Einstein gravitation theory can be extended by preserving its geometrical
nature but changing the relation between curvature and energy-momentum tensors.
This change accounts for radiative corrections, replacing the Newton
gravitation constant by two running couplings which depend on scale and differ
in the two sectors of traceless and traced tensors. The metric and curvature
tensors in the field of the Sun, which were obtained in previous papers within
a linearized approximation, are then calculated without this restriction.
Modifications of gravitational effects on geodesics are then studied, allowing
one to explore phenomenological consequences of extensions lying in the
vicinity of general relativity. Some of these extended theories are able to
account for the Pioneer anomaly while remaining compatible with tests involving
the motion of planets. The PPN Ansatz corresponds to peculiar extensions of
general relativity which do not have the ability to meet this compatibility
challenge.Comment: 19 pages Corrected typo
A Mouse Model of Huntington’s Disease Shows Altered Ultrastructure of Transverse Tubules in Skeletal Muscle Fibers
Huntington’s disease (HD) is a fatal and progressive condition with severe debilitating motor defects and muscle weakness. Although classically recognized as a neurodegenerative disorder, there is increasing evidence of cell autonomous toxicity in skeletal muscle. We recently demonstrated that skeletal muscle fibers from the R6/2 model mouse of HD have a decrease in specific membrane capacitance, suggesting a loss of transverse tubule (t-tubule) membrane in R6/2 muscle. A previous report also indicated that Cav1.1 current was reduced in R6/2 skeletal muscle, suggesting defects in excitation–contraction (EC) coupling. Thus, we hypothesized that a loss and/or disruption of the skeletal muscle t-tubule system contributes to changes in EC coupling in R6/2 skeletal muscle. We used live-cell imaging with multiphoton confocal microscopy and transmission electron microscopy to assess the t-tubule architecture in late-stage R6/2 muscle and found no significant differences in the t-tubule system density, regularity, or integrity. However, electron microscopy images revealed that the cross-sectional area of t-tubules at the triad were 25% smaller in R6/2 compared with age-matched control skeletal muscle. Computer simulation revealed that the resulting decrease in the R6/2 t-tubule luminal conductance contributed to, but did not fully explain, the reduced R6/2 membrane capacitance. Analyses of bridging integrator-1 (Bin1), which plays a primary role in t-tubule formation, revealed decreased Bin1 protein levels and aberrant splicing of Bin1 mRNA in R6/2 muscle. Additionally, the distance between the t-tubule and sarcoplasmic reticulum was wider in R6/2 compared with control muscle, which was associated with a decrease in junctophilin 1 and 2 mRNA levels. Altogether, these findings can help explain dysregulated EC coupling and motor impairment in Huntington’s disease
Can the Pioneer anomaly be of gravitational origin? A phenomenological answer
In order to satisfy the equivalence principle, any non-conventional mechanism
proposed to gravitationally explain the Pioneer anomaly, in the form in which
it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave
out of consideration its impact on the motion of the planets of the Solar
System as well, especially those orbiting in the regions in which the anomalous
behavior of the Pioneer probes manifested itself. In this paper we, first,
discuss the residuals of the right ascension \alpha and declination \delta of
Uranus, Neptune and Pluto obtained by processing various data sets with
different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second,
we use the latest determinations of the perihelion secular advances of some
planets in order to put on the test two gravitational mechanisms recently
proposed to accommodate the Pioneer anomaly based on two models of modified
gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered
Uranus and Neptune to perform a further, independent test of the hypothesis
that a Pioneer-like acceleration can also affect the motion of the outer
planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the
merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081.
Final version to appear in Foundations of Physic
An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis
Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is
a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a
complex disease caused by metastasis of tumor cells from their primary site and
is characterized by intricate interplay of molecular interactions.
Identification of targets for multifactorial diseases such as SBC, the most
frequent complication of breast and prostate cancers, is a challenge. Towards
achieving our aim of identification of targets specific to SBC, we constructed
a 'Cancer Genes Network', a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are
relevant for generic mechanisms of cancers and have a role in biological
essentiality. We also compiled a curated dataset of 391 SBC genes from
published literature which serves as a basis of ontological correlates of
secondary bone cancer. Building on these results, we implement a strategy based
on generic cancer genes, SBC genes and gene ontology enrichment method, to
obtain a set of targets that are specific to bone metastasis. Through this
study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in
cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have
broader implications in understanding the role of molecular regulators in
mechanisms of cancers. Specifically, our study provides a set of potential
targets that are of ontological and regulatory relevance to secondary bone
cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary
information). Revised after critical reviews. Accepted for Publication in
PLoS ON
- …