12,142 research outputs found

    Numerical constraints on the model of stochastic excitation of solar-type oscillations

    Full text link
    Analyses of a 3D simulation of the upper layers of a solar convective envelope provide constraints on the physical quantities which enter the theoretical formulation of a stochastic excitation model of solar p modes, for instance the convective velocities and the turbulent kinetic energy spectrum. These constraints are then used to compute the acoustic excitation rate for solar p modes, P. The resulting values are found ~5 times larger than the values resulting from a computation in which convective velocities and entropy fluctuations are obtained with a 1D solar envelope model built with the time-dependent, nonlocal Gough (1977) extension of the mixing length formulation for convection (GMLT). This difference is mainly due to the assumed mean anisotropy properties of the velocity field in the excitation region. The 3D simulation suggests much larger horizontal velocities compared to vertical ones than in the 1D GMLT solar model. The values of P obtained with the 3D simulation constraints however are still too small compared with the values inferred from solar observations. Improvements in the description of the turbulent kinetic energy spectrum and its depth dependence yield further increased theoretical values of P which bring them closer to the observations. It is also found that the source of excitation arising from the advection of the turbulent fluctuations of entropy by the turbulent movements contributes ~ 65-75 % to the excitation and therefore remains dominant over the Reynolds stress contribution. The derived theoretical values of P obtained with the 3D simulation constraints remain smaller by a factor ~3 compared with the solar observations. This shows that the stochastic excitation model still needs to be improved.Comment: 11 pages, 9 figures, accepted for publication in A&

    Fisheries Management under Irreversible Investment: Does Stochasticity Matter?

    Get PDF
    We present a continuous, nonlinear, stochastic and dynamic model for capital investment in the exploitation of a renewable resource. Both the resource stock and capital stock are treated as state variables. The resource owner controls fishing effort and the investment rate in an optimal way. Biological stock growth and capital depreciation rate are stochastic in the model. We find that the stochastic resource should be managed conservatively. The capital utilization rate is found to be a non-increasing function of stochasticity. Investment could be either higher or lower depending on the interaction between the capital and the resource stocks. In general a stochastic capital depreciation rate has only weak influence on optimal management. In the long run, the steady state harvest for a stochastic resource becomes lower than the deterministic level.Physical capital; irreversible investment; stochastic growth; long-term sustainable optimal

    Magnetohydrodynamic turbulence in warped accretion discs

    Get PDF
    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    The response of a turbulent accretion disc to an imposed epicyclic shearing motion

    Get PDF
    We excite an epicyclic motion, whose amplitude depends on the vertical position, zz, in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays we can obtain information about the interaction between the warp and the disc turbulence. A high amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, αv\alpha_{\rm v}, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, αh\alpha_{\rm h}, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, αv\alpha_{\rm v} is approximately equal to αh\alpha_{\rm h} and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (0.01\sim 0.01) of αv\alpha_{\rm v} and αh\alpha_{\rm h} we conclude that for β=pgas/pmag10\beta = p_{\rm gas}/p_{\rm mag} \sim 10 the timescale for diffusion or damping of a warp is much shorter than the usual viscous timescale. Finally, we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte

    Simulations of Oscillation Modes of the Solar Convection Zone

    Get PDF
    We use the three-dimensional hydrodynamic code of Stein and Nordlund to realistically simulate the upper layers of the solar convection zone in order to study physical characteristics of solar oscillations. Our first result is that the properties of oscillation modes in the simulation closely match the observed properties. Recent observations from SOHO/MDI and GONG have confirmed the asymmetry of solar oscillation line profiles, initially discovered by Duvall et al. In this paper we compare the line profiles in the power spectra of the Doppler velocity and continuum intensity oscillations from the SOHO/MDI observations with the simulation. We also compare the phase differences between the velocity and intensity data. We have found that the simulated line profiles are asymmetric and have the same asymmetry reversal between velocity and intensity as observed. The phase difference between the velocity and intensity signals is negative at low frequencies and jumps in the vicinity of modes as is also observed. Thus, our numerical model reproduces the basic observed properties of solar oscillations, and allows us to study the physical properties which are not observed.Comment: Accepted for publication in ApJ Letter

    The Poisson-Boltzmann model for implicit solvation of electrolyte solutions: Quantum chemical implementation and assessment via Sechenov coefficients.

    Get PDF
    We present the theory and implementation of a Poisson-Boltzmann implicit solvation model for electrolyte solutions. This model can be combined with arbitrary electronic structure methods that provide an accurate charge density of the solute. A hierarchy of approximations for this model includes a linear approximation for weak electrostatic potentials, finite size of the mobile electrolyte ions, and a Stern-layer correction. Recasting the Poisson-Boltzmann equations into Euler-Lagrange equations then significantly simplifies the derivation of the free energy of solvation for these approximate models. The parameters of the model are either fit directly to experimental observables-e.g., the finite ion size-or optimized for agreement with experimental results. Experimental data for this optimization are available in the form of Sechenov coefficients that describe the linear dependence of the salting-out effect of solutes with respect to the electrolyte concentration. In the final part, we rationalize the qualitative disagreement of the finite ion size modification to the Poisson-Boltzmann model with experimental observations by taking into account the electrolyte concentration dependence of the Stern layer. A route toward a revised model that captures the experimental observations while including the finite ion size effects is then outlined. This implementation paves the way for the study of electrochemical and electrocatalytic processes of molecules and cluster models with accurate electronic structure methods

    Giant Spin Relaxation Anisotropy in Zinc-Blende Heterostructures

    Full text link
    Spin relaxation in-plane anisotropy is predicted for heterostructures based on zinc-blende semiconductors. It is shown that it manifests itself especially brightly if the two spin relaxation mechanisms (D'yakonov-Perel' and Rashba) are comparable in efficiency. It is demonstrated that for the quantum well grown along the [0 0 1] direction, the main axes of spin relaxation rate tensor are [1 1 0] and [1 -1 0].Comment: 3 pages, NO figure

    Weak Measurements of Light Chirality with a Plasmonic Slit

    Get PDF
    We examine, both experimentally and theoretically, an interaction of tightly focused polarized light with a slit on a metal surface supporting plasmon-polariton modes. Remarkably, this simple system can be highly sensitive to the polarization of the incident light and offers a perfect quantum-weak-measurement tool with a built-in post-selection in the plasmon-polariton mode. We observe the plasmonic spin Hall effect in both coordinate and momentum spaces which is interpreted as weak measurements of the helicity of light with real and imaginary weak values determined by the input polarization. Our experiment combines advantages of (i) quantum weak measurements, (ii) near-field plasmonic systems, and (iii) high-numerical aperture microscopy in employing spin-orbit interaction of light and probing light chirality.Comment: 5 pages, 3 figure

    What Causes P-mode Asymmetry Reversal?

    Full text link
    The solar acoustic p-mode line profiles are asymmetric. Velocity spectra have more power on the low-frequency sides, whereas intensity profiles show the opposite sense of asymmetry. Numerical simulations of the upper convection zone have resonant p-modes with the same asymmetries and asymmetry reversal as the observed modes. The temperature and velocity power spectra at optical depth τcont=1\tau_{\rm cont} = 1 have the opposite asymmetry as is observed for the intensity and velocity spectra. At a fixed geometrical depth, corresponding to =1=1, however, the temperature and velocity spectra have the same asymmetry. This indicates that the asymmetry reversal is produced by radiative transfer effects and not by correlated noise.Comment: 16 pages, 10 figures, submitted to Astrophysical Journa
    corecore