968 research outputs found

    Performance modelling with the Unified Modelling Language and stochastic process algebras

    Get PDF

    Where did all the pangolins go? International CITES trade in pangolin species

    Get PDF
    Available online 24 October 2016The pangolin is greatly sought after for its various body parts, largely driven by demand from China. The mammal has been driven to the edge of extinction in Asia, with two Asian species listed as Critically Endangered in the International Union for Conservation of Nature Red List. With declining Asian pangolin populations, a shift in trade from Asian to African pangolin species has been suggested. The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Trade Database provides a unique opportunity to investigate global trends in pangolin trade at the species level, across a broad temporal scale (1977–2014). We found that CITES trade in Asian pangolin species decreased through time, whilst trade in African species increased post 2000. The total number of incidents involving Asian species declined since 2000, yet they were still being traded in large volumes (more than 17,500 estimated whole Asian pangolins were traded from 2001 to 2014) despite a zero export quota for all wild sourced Asian species, traded for primarily commercial purposes. In 2014 all eight pangolin species were recorded in the CITES trade for the first time. An increasingly complex international network was identified through time, with the United States of America (US) being the dominant player in the global pangolin trade that was reported to CITES. The US was the most frequent trade country throughout the entire period and was the greatest importer of pangolins, and their products; measured both in volume as well as frequency. We hope that identifying these global trade network characteristics, and pangolin trade dynamics will help to inform pangolin conservation efforts, and guide enforcement and legislative changes in the future.Sarah Heinrich, Talia A. Wittmann, Thomas A.A. Prowse, Joshua V. Ross, Steven Delean, Chris R. Shepherd, Phillip Casse

    Thermoresponsive worms for expansion and release of human embryonic stem cells

    Get PDF
    The development of robust suspension cultures of human embryonic stem cells (hESCs) without the use of cell membrane disrupting enzymes or inhibitors is critical for future clinical applications in regenerative medicine. We have achieved this by using long, flexible, and thermoresponsive polymer worms decorated with a recombinant vitronectin subdomain that bridge hESCs, aiding in hESC's natural ability to form embryoid bodies (EBs) and satisfying their inherent requirement for cell-cell and cell-extracellular matrix contact. When the EBs reached an optimal upper size where cytokine and nutrient penetration becomes limiting, these long and flexible polymer worms facilitated EB breakdown via a temperature shift from 37 to 25 C. The thermoresponsive nature of the worms enabled a cyclical dissociation and propagation of the cells. Repeating the process for three cycles (over eighteen days) provided a >30-fold expansion in cell number while maintaining pluripotency, thereby providing a simple, nondestructive process for the 3D expansion of hESC

    Dynamic simulation of the THAI heavy oil recovery process

    Get PDF
    Toe-to-Heel Air Injection (THAI) is a variant of conventional In-Situ Combustion (ISC) that uses a horizontal production well to recover mobilised partially upgraded heavy oil. It has a number of advantages over other heavy oil recovery techniques such as high recovery potential. However, existing models are unable to predict the effect of the most important operational parameters, such as fuel availability and produced oxygen concentration, which will give rise to unsafe designs. Therefore, we have developed a new model that accurately predicts dynamic conditions in the reservoir and also is easily scalable to investigate different field scenarios. The model used a three component direct conversion cracking kinetics scheme, which does not depend on the stoichiometry of the products and, thus, reduces the extent of uncertainty in the simulation results as the number of unknowns is reduced. The oil production rate and cumulative oil produced were well predicted, with the latter deviating from the experimental value by only 4%. The improved ability of the model to emulate real process dynamics meant it also accurately predicted when the oxygen was first produced, thereby enabling a more accurate assessment to be made of when it would be safe to shut-in the process, prior to oxygen breakthrough occurring. The increasing trend in produced oxygen concentration following a step change in the injected oxygen rate by 33 % was closely replicated by the model. The new simulations have now elucidated the mechanism of oxygen production during the later stages of the experiment. The model has allowed limits to be placed on the air injection rates that ensure stability of operation. Unlike previous models, the new simulations have provided better quantitative prediction of fuel laydown, which is a key phenomenon that determines whether, or not, successful operation of the THAI process can be achieved. The new model has also shown that, for completely stable operation, the combustion zone must be restricted to the upper portion of the sand pack, which can be achieved by using higher producer back pressure

    Warm strange hadronic matter in an effective model with a weak Y-Y interaction

    Full text link
    An effective model is used to study the equation of state of warm strange hadronic matter with nucleons, Lambda-hyperons, Xi-hyperons, sigmastar and phi. In the calculation, a newest weak Y-Y interaction deduced from the recent observation of a He double hypernucleus is adopted. Employing this effective model, the results with strong Y-Y interaction and weak Y-Y interaction are compared.Comment: 9 pages, 9 figure

    Light Lambda-Lambda Hypernuclei and the Onset of Stability for Lambda-Xi Hypernuclei

    Full text link
    New Faddeev-Yakubovsky calculations for light Lambda-Lambda hypernuclei are presented in order to assess the self consistency of the Lambda-Lambda hypernuclear binding-energy world data and the implied strength of the Lambda-Lambda interaction, in the wake of recent experimental reports on Lambda-Lambda-4H and Lambda-Lambda-6He. Using Gaussian soft-core simulations of Nijmegen one-boson-exchange model interactions, the Nijmegen soft-core model NSC97 simulations are found close to reproducing the recently reported binding energy of Lambda-Lambda-6He, but not those of other species. For stranger systems, Faddeev calculations of light Lambda-Xi hypernuclei, using a simulation of the strongly attractive Lambda-Xi interactions due to the same model, suggest that Lambda-Xi-6He marks the onset of nuclear stability for Xi hyperons.Comment: 5 pages, 3 postscript figures; fig.2 replaced, minor changes, accepted as Rapid Communication in PR

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Arctic system on trajectory to new state

    Get PDF
    The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state
    corecore