19 research outputs found

    Altered Expression of the CB1 Cannabinoid Receptor in the Triple Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD

    Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice

    Get PDF
    By enhancing brain anandamide tone, inhibitors of fatty acid amide hydrolase (FAAH) induce anxiolytic-like effects in rodents and enhance brain serotonergic transmission. Mice lacking the faah gene (FAAH(-/-)) show higher anandamide levels. However, their emotional phenotype is still debated and their brain serotonergic tone remained unexplored. In this study, we tested FAAH(-/-) mice in the social interaction and the open field tests performed under different lighting conditions (dim and bright) since variations of the experimental context were proposed to explain opposite findings. Moreover, by microdialysis performed under dim light, we analyzed their serotonergic transmission in frontal cortex (FC) and ventral hippocampus (vHIPP). In both light conditions, FAAH(-/-) mice showed reduced emotionality, compared to wt controls, as suggested by the increased rearing and reduced thigmotaxis displayed in the open field and by the longer time spent in social interaction. Basal serotonergic tone was higher in the FC of mutant mice as compared to control mice, while no difference was observed in the vHIPP. K(+)-induced depolarization produced similar increases of serotonin in both areas of both genotypes. An acute treatment with the CB1 antagonist rimonabant completely abolished the emotional phenotype of FAAH(-/-) mice and prevented the K(+)-stimulated release of serotonin in their FC and vHIPP, without producing any effect in wt mice. Our results support the role of FAAH in the regulation of emotional reactivity and suggest that anandamide-mediated hyperactivation of CB1 is responsible for the emotional phenotype of FAAH(-/-) mice and for their enhanced serotonergic tone

    Morpho-physiological aspects of Scenedesmus acutus PVUW12 cultivated with a dairy industry waste and after starvation

    No full text
    Among green microalgae, Scenedesmus sp. is known for its potential in wastewater remediation and lipid production, especially under starvation. Moreover, it is often characterised by a mixotrophic metabolism. In this work, we cultivated S. acutus PVUW12 in the presence of a liquid fraction of scotta (LFS), a cheese whey by-product, as source of nutrients. Subsequently, cultures were starved to evaluate lipid production. Cells were analysed to obtain information about growth, nutrient consumption during LFS cultivation, morphology and photosynthetic efficiency. We found that the alga boosted its growth when cultured in presence of LFS. Production of stromatic starch grains, polyphosphate granules, cell wall enlargement and reduction of the photosynthetic efficiency were also induced. Massive lipid accumulation was observed only during starvation, which also induced a strong slowdown of growth, loss of polyphosphate grains and further decrease in photosynthetic efficiency. This study demonstrates that S. acutus PVUW12 can be involved in a two-step cultivation, first by promoting growth using a by-product from cheese industry and second by transferring the microalgae on starvation to induce lipid accumulation for bioenergetics purposes

    Altered serotonergic function may partially account for behavioral endophenotypes in steroid sulfatase-deficient mice

    No full text
    The X-linked gene STS encodes the steroid hormone-modulating enzyme steroid sulfatase. Loss-of-function of STS, and variation within the gene, have been associated with vulnerability to developing attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition characterized by inattention, severe impulsivity, hyperactivity, and motivational deficits. ADHD is commonly comorbid with a variety of disorders, including obsessive-compulsive disorder. The neurobiological role of steroid sulfatase, and therefore its potential role in ADHD and associated comorbidities, is currently poorly understood. The 39,X Y*O mouse, which lacks the Sts gene, exhibits several behavioral abnormalities relevant to ADHD including inattention and hyperactivity. Here, we show that, unexpectedly, 39,X Y*O mice achieve higher ratios than wild-type mice on a progressive ratio (PR) task thought to index motivation, but that there is no difference between the two groups on a behavioral task thought to index compulsivity (marble burying). High performance liquid chromatography analysis of monoamine levels in wild type and 39,X Y*O brain tissue regions (the frontal cortex, striatum, thalamus, hippocampus, and cerebellum) revealed significantly higher levels of 5-hydroxytryptamine (5-HT) in the striatum and hippocampus of 39,X Y*O mice. Significant correlations between hippocampal 5-HT levels and PR performance, and between striatal 5-HT levels and locomotor activity strongly implicate regionally-specific perturbations of the 5-HT system as a neurobiological candidate for behavioral differences between 40,XY and 39,X Y*O mice. These data suggest that inactivating mutations and functional variants within STS might exert their influence on ADHD vulnerability, and disorder endophenotypes through modulation of the serotonergic system. © 2012 American College of Neuropsychopharmacology. All rights reserved

    EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase

    No full text
    Ephrins are cell surface-associated ligands for Eph receptors and are important regulators of morphogenic processes such as axon guidance and angiogenesis. Transmembrane ephrinB ligands act as "receptor-like" signaling molecules, in part mediated by tyrosine phosphorylation and by engagement with PDZ domain proteins. However, the underlying cell biology and signaling mechanisms are poorly understood. Here we show that Src family kinases (SFKs) are positive regulators of ephrinB phosphorylation and phosphotyrosine-mediated reverse signaling. EphB receptor engagement of ephrinB causes rapid recruitment of SFKs to ephrinB expression domains and transient SFK activation. With delayed kinetics, ephrinB ligands recruit the cytoplasmic PDZ domain containing protein tyrosine phosphatase PTP-BL and are dephosphorylated. Our data suggest the presence of a switch mechanism that allows a shift from phosphotyrosine/SFK-dependent signaling to PDZ-dependent signaling

    Role of the basolateral amygdala in mediating the effects of the fatty acid amide hydrolase inhibitor URB597 on HPA axis response to stress

    Get PDF
    none8norestrictedBedse, G.; Colangeli, R.; Lavecchia, A.M.; Romano, A.; Altieri, F.; Cifani, C.; Cassano, T.; Gaetani, S.Bedse, G.; Colangeli, R.; Lavecchia, A. M.; Romano, A.; Altieri, F.; Cifani, C.; Cassano, T.; Gaetani, S
    corecore