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Abstract 26 

The endocannabinoid system (ECS) has gained much attention as a new potential 27 

pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's 28 

disease (AD). However, the association between CB1 alterations and the development of AD 29 

neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 30 

protein levels were analysed in 3×Tg-AD mice and compared to wild-type littermates at 2, 6 31 

and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. 32 

Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), 33 

prelimbic cortex (PrL), dorsal hippocampus (DH), basolateral amygdala complex (BLA) and 34 

ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by 35 

neuropathology in 3×Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA 36 

and protein levels in 3×Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. 37 

However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, 38 

DH, BLA and lower in VH in 3×Tg-AD mice compared to wild-type littermates. CB1 39 

immunohistochemistry revealed that CB1 protein expression was unchanged in 3×Tg-AD at 2 40 

and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was 41 

detected in the BLA and DH of 12-month-old 3×Tg-AD mice, with no sign of alteration in 42 

other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-43 

dependent, indicating an involvement of the ECS in AD pathology and supporting the ECS as 44 

a potential novel therapeutic target for treatment of AD. 45 

 Keywords: 46 
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Introduction  51 

Alzheimer’s disease (AD) is progressive, degenerative and irreversible neurological disorder 52 

that causes deterioration of memory, judgment and reasoning in the elderly. AD is 53 

characterized by accumulation of extracellular insoluble plaques, intracellular neurofibrillary 54 

tangles (NFTs) in the brain and selective synaptic and neuronal loss. Extracellular plaques 55 

consist of amyloid-β (Aβ) protein and NFTs are composed of hyperphosphorylated tau protein 56 

[1]. Although Aβ plaques and NFTs pathology are prominent, other pathological alterations in 57 

neurotransmitter systems and concomitant changes in synthetic enzymes and associated 58 

receptors are also an important feature of AD. For example, cholinergic and glutamatergic 59 

neurotransmitter systems are known to be affected by AD [2].   60 

The endocannabinoid system (ECS) has gained much attention as a new potential 61 

pharmacotherapeutic target in various neurodegenerative diseases including AD. The CB1-62 

type cannabinoid receptor (CB1) is the most abundant G protein–coupled receptor expressed 63 

in the central nervous system (CNS) and through the activation of CB1 receptors in the CNS, 64 

the ECS exerts important functions such as retrograde inhibition of neurotransmitter release, 65 

control of neuronal excitability, and regulation of various forms of synaptic plasticity [3]. 66 

Aberrant patterns of brain CB1 receptor expression and densities have been observed 67 

postmortem in patients suffering from AD and in animal models of AD. However, these 68 

observations are sparse and often contradictory [4-8], so the relationship between alterations 69 

in CB1 expression and the development of AD neuropathology is still unclear.  70 

Oddo and his colleagues developed a triple transgenic mouse model of AD (3×Tg-AD) 71 

harbouring three mutant human genes PS1M146V, APPSwe, and TauP301L [9]. This model mimics 72 

critical aspects of AD neuropathology observed in the human AD patients [10, 11]: it 73 

progressively develops both plaques and tangles in AD relevant brain regions (mainly cortex, 74 

hippocampus and amygdala); it exhibits early deficits in synaptic plasticity, including long-75 



4 
 

term potentiation; it shows selective loss of α7 neuronal nicotinic acetylcholine receptors [9, 76 

12], severe deficits in glutamatergic neurotransmission and altered mitochondrial functions in 77 

hippocampus and cortex [13]. 78 

The aim of the present study was to evaluate whether brain CB1 expression is altered in 79 

3×Tg-AD mice in comparison with wild type littermates (Non-Tg). Moreover, to investigate 80 

whether the temporal and regional patterns of such possible alterations might overlap with 81 

those of Aβ and tau pathology in this AD model, brain CB1 expression was analysed at 82 

different ages [9]. As a consequence, by studying the temporal expression of CB1 in the wild 83 

type littermates, our study has also allowed us to analyse the impact of aging on CB1 levels. 84 

Our analyses were conducted on both CB1 mRNA and CB1 protein levels in 3×Tg-AD and 85 

wild-type mice at 2, 6 and 12 months of age, by in situ hybridization and 86 

immunohistochemistry/immunofluorescence, respectively, followed by the semi-quantitative 87 

analysis of the respective signals obtained in prefrontal cortex (PFC), prelimbic cortex (PrL), 88 

dorsal hippocampus (DH), basolateral amygdala complex (BLA) and ventral hippocampus 89 

(VH), all areas strongly affected by the neuropathology and characterized by high CB1 90 

densities. 91 

 92 

  93 



5 
 

Materials and Methods 94 

Animals 95 

Male 3×Tg-AD and Non-Tg mice aged 2-, 6-, and 12-months old were used in this study. The 96 

3×Tg-AD mice harboring PS1M146V, APPSwe, and TauP301L transgenes were genetically 97 

engineered by LaFerla and colleagues at the Department of Neurobiology and Behavior, 98 

University of California, Irvine [9]. Colonies of 3×Tg-AD mice and Non-Tg littermates were 99 

established at the vivarium of the Puglia and Basilicata Experimental Zooprophylactic 100 

Institute (Foggia, Italy). The 3×Tg-AD mice background strain is C57BL6/129SvJ hybrid and 101 

genotypes were confirmed from tail biopsy, according to the procedures described previously 102 

[9, 14]. The housing conditions were controlled (temperature 22°C, light from 07:00 –19:00, 103 

humidity 50%–60%), and fresh food and water were freely available. 104 

 105 

In situ hybridization 106 

In situ hybridization was performed on coronal sections of brains using a 35S-labeled RNA 107 

probe complementary to rat CB1 mRNA. Riboprobes in antisense and sense orientation were 108 

generated from linearized vector constructs (520 bp, a kind gift of Dr. Jin Fu, Xiamen 109 

University) by in vitro transcription using the appropriate RNA polymerases [15].  110 

Mice (n = 5 per group) were euthanized by decapitation; their brains were rapidly removed, 111 

snap frozen in 2-methylbutane (-50°C) and stored at -80°C. Brain sections (20 μm) were cut 112 

on a cryostat (-20°C) and thaw-mounted on RNAse-free positively charged slides to be 113 

hybridized at 60°C for 16 h in a buffer containing [35S]cRNA (45,000 dpm ml-1), 10% dextran 114 

sulfate, 50% formamide, 1× Denhardt’s solution, 100 µgml-1 denatured salmon sperm DNA, 115 

0.15 mg ml-1  tRNA and 40 mM dithiothreitol. After hybridization, the sections were exposed 116 

to Kodak Biomax film (Sigma-Aldrich) for 3 days. Autoradiography films were first scanned 117 

(Epson perfection 3200 PHOTO) at high resolution (900 dpi). Optical densities were 118 
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converted to radioactivity measurements (μCi) by densitometric analysis of 14C-microscale 119 

standards that were used to create a calibration curve.  120 

 121 

Immunohistochemistry and immunofluorescence 122 

Mice (n = 3 per group) were intra-cardioventricularly perfused with saline followed by 123 

fixation solution (4% paraformaldehyde in 0.1 M phosphate buffer, PB, pH 7.4) at a flow rate 124 

of 36 ml min-1. Then brains were fixed for 48 hours in 4% paraformaldehyde. Free-floating 125 

coronal sections of 50 µm thickness were obtained using a vibratome slicing system (microM, 126 

Walldorf, Germany) and stored at 4°C in 0.02% sodium azide in phosphate buffered (PB). 127 

The endogenous peroxidase activity was quenched for 30 minutes in 0.3% H2O2. The brain 128 

sections were blocked with 10% normal goat serum/PBS with 0.3% Triton X-100 and then 129 

incubated with CB1 2825.3 antiserum  (C-terminus residues 461–473, generously provided by 130 

Dr. Maurice Elphick, Queen Mary College) (1:1500 dilution) for overnight at 4°C [16]. 131 

Evidence of the selectivity of this antiserum in revealing CB1 expression in the rat nervous 132 

system has been previously obtained by pre-absorption tests with the CB1 C-terminal peptide 133 

antigen and by Western blotting, which reveals a band in rat brain homogenates (~53 kDa) 134 

consistent with the expected molecular mass for CB1 [16, 17]. Furthermore, the selectivity of 135 

the antiserum for CB1 has been previously confirmed by analysis of brain tissue and dorsal 136 

root ganglia from CB1-knockout mice [17, 18]. After removing the primary antiserum in 137 

excess, sections were incubated with secondary antibody (Biotin-SP-conjugated fragment 138 

donkey anti rabbit IgG) for 1 h at room temperature. After washing excess of antibody, 139 

sections were treated with avidin–biotin–peroxidase complex (ABC, 1:200 dilution, Vector 140 

Laboratories) and then developed with diaminobenzidine (DAB) substrate using the avidin-141 

biotin horseradish peroxidase system (Vector Laboratories).  142 
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For immunofluorescence staining, free floating coronal brain sections of 30 µm thickness 143 

were obtained using a cryostat (Microm HM550, Thermo scientific) and stored at 4°C in 144 

0.02% sodium azide in PB. The brain sections were treated with 90% of formic acid for 7 min 145 

followed by PB washes. Then the brain sections were blocked in a solution containing 5% 146 

normal goat serum and 0.3% Triton X-100 in PB and then incubated with both CB1 2825.3 147 

antiserum (1:1500 dilution) and Aβ monoclonal antibody (6E10, Covance, 1:1500 dilution) 148 

for 16 h at 4°C. After removing primary antibodies, sections were incubated with both 149 

secondary antibodies Alexa Fluor 555 donkey anti-rabbit IgG (1:250 dilution) and Alexa 150 

Fluor 488 goat anti-mouse IgG (1:250 dilution) for 1 h and 30 min at room temperature. All 151 

washes after this step were carried out in dark. After washing excess of antibodies, sections 152 

were treated with Hoechst, Sigma (1:5000 dilution). After washing excess Hoechst with PB, 153 

brain slices were mounted on slides. Furthermore, to confirm the background staining level, 154 

an immunofluorescent staining for CB1 was also carried out without the primary antibody.  155 

All immunohistochemically-stained sections were viewed using a Nikon 80i Eclipse 156 

microscope equipped with a DS-U1 digital camera, and NIS-elements BR software (Nikon, 157 

Tokyo, Japan). Immunofluorescent slices were observed under the confocal microscope 158 

Olimpus FV-1000.  159 

Semiquantitative analyses of the autoradiographic signal of hybridized CB1 mRNA and of 160 

CB1 DAB-immunostaining or immunofluorescence were performed using freeware software 161 

from the National Institutes of Health (Scion Image software) and were expressed as optical 162 

densities.  163 

 164 

Statistical analysis 165 

The optical densities obtained by the semiquantitative analyses were analyzed by two way 166 

analysis of variance (ANOVA), with genotype and age as variables. Tukey’s honestly 167 
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significant difference test was used for multiple post hoc comparisons. The correlation 168 

analysis between Aβ and CB1 protein levels was performed on the respective optical densities 169 

measured on double immunofluorescent slices and expressed as percentage of those measured 170 

in Non-Tg mice, by using the Pearson correlation test. Statistical significance threshold was 171 

set at p<0.05.  172 

173 
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Results 174 

CB1 mRNA expression  175 

Representative images of CB1 mRNA distribution in the mouse brain is shown in Fig. 1A and 176 

quantitative analysis of CB1 mRNA expression in PFC, PrL, DH, VH and BLA is shown in 177 

Fig 1B-F. The results from ANOVA revealed an overall effect of genotype [F(genotype)1,122 = 178 

31.992, p < 0.001], age [F(age)2,122 = 16.177, p < 0.001] and genotype u age interaction [F(age x 179 

genotype)2,122 = 4.288, p < 0.05] on CB1 mRNA expression in PFC (Fig. 1B). Post hoc 180 

comparisons revealed that CB1 mRNA expression was significantly higher in 3×Tg-AD mice 181 

compared to Non-Tg mice at 6 months (+56%, p<0.05) and 12 months (+15%, p<0.05) of 182 

age. Different results were obtained for PrL, where a significant overall effect of age was 183 

observed [F(age)2,113 = 18.212, p < 0.001], with no significant overall effect of genotype 184 

[F(genotype)1,113 = 1.161, n.s.] and genotype by age interaction [F(age x genotype)2,113 = 0.871, n.s.] 185 

(Fig. 1C). ANOVA analysis of CB1 mRNA expression in DH and VH demonstrated a 186 

significant overall effect of age, genotype and age by genotype interaction [DH: F(age)2,151 = 187 

81.052, p < 0.001; F(age x genotype)2,151 = 3.166, p < 0.05; F(genotype)1,151 = 19.079, p < 0.001; VH: 188 

F(age)2,182 = 10.431, p < 0.001; F(age x genotype)2,182 = 6.987, p < 0.001; F(genotype)1,182 = 10.116, p < 189 

0.01]. Interestingly, post hoc comparisons revealed a clear dissociation between the dorsal 190 

and ventral hippocampus (Fig. 1D and E, respectively). In particular, the former showed a 191 

significantly higher expression of CB1 mRNA in the 3×Tg-AD mice compared to Non-Tg 192 

mice both at 6 months (+29%, p<0.05) and 12 months (+33%, p<0.05) of age, while in the 193 

latter there was a significant decrease in CB1 mRNA expression in the transgenic mice 194 

compared to the control group (-40% and -35%, respectively at 6 and 12 months of age; 195 

p<0.05). Statistical analysis of CB1 mRNA expression in the BLA revealed a significant 196 

overall effect of age [F(age)2,160 = 14.888, p < 0.001], genotype [F(genotype)1,160 = 31.774, p < 197 

0.001] and age by genotype interaction [F(age x genotype)2,160 = 8.916, p < 0.001] (Fig. 1F). Post 198 
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hoc comparisons revealed that CB1 mRNA expression was significantly higher in 3×Tg-AD 199 

mice compared to Non-Tg mice at 6 months (+78%, p<0.05) and 12 months (+49%, p<0.05) 200 

of age.  201 

 202 

CB1 protein expression  203 

Representative microphotographs of CB1 immunostaining are shown in Fig. 2A. Fig. 2B-F 204 

shows the semiquantitative analysis of CB1 protein expression in the PFC, PrL, DH, VH and 205 

BLA. The results from ANOVA revealed an overall effect of genotype [F(genotype)1,314 = 206 

12.687, p < 0.001] and age [F(age)2,314 = 59.579, p < 0.001] in DH, with no significant overall 207 

effect of genotype u age interaction [F(age x genotype)2,314 = 0.345, n.s.] on CB1 protein 208 

expression (Fig. 2D). Post hoc comparisons revealed that CB1 protein levels were 209 

significantly lower in 3×Tg-AD mice compared to Non-Tg mice at 12 months of age (-20%, 210 

p<0.05) and that, in within-genotype comparisons, both groups of mice at 12 months of age 211 

showed significantly lower CB1 protein levels compared to 2- and 6-month old mice. 212 

For the BLA, ANOVA showed an overall effect of age [F(age)2,67 = 6.735, p < 0.01], with no 213 

significant overall effect of genotype [F(genotype)1,67 = 2.736, n.s.] and significant genotype u 214 

age interaction [F(age x genotype)2,67 = 3.279, p < 0.05] on CB1 protein expression (Fig. 2F). 215 

Interestingly, at 12 months of age 3×Tg-AD mice showed (i) lower CB1 protein expression 216 

compared to age-matched Non-Tg mice (-42%), and (ii) significantly lower CB1 protein 217 

levels compared to 2-month-old (-48%, p<0.05) and 6-month-old (-47%, p<0.05) transgenic 218 

mice.Finally, no significant difference was found between genotypes at 2, 6 and 12 months of 219 

age in PFC, PrL and VH (Fig. 2B, C and E). 220 

Lowered CB1 protein expression in DH and BLA were further confirmed by 221 

immunofluorescent staining (Fig.3 A, B lower panel). At 12 months of age, 3×Tg-AD mice 222 

showed lower CB1 protein levels in DH (-22%, p<0.05) and BLA (-48 %, p<0.05) compared 223 
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to Non-Tg mice (Fig.3 C, D). Moreover, by performing a double immunofluorescence for 224 

CB1 and Aβ (Fig.3 E, F), we could semiquantitatively measure both protein levels and find an 225 

inverse correlation between the decline of CB1 receptor expression and the build up of Aβ 226 

pathology in both the DH (Fig.3 G, DH: ρ= -0.7599, p<0.0001) and the BLA (Fig.3 H, BLA: 227 

ρ= -0.5052, p<0.001, Pearson Correlation test).    228 
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Discussion 229 

In this study the general pattern of CB1 mRNA expression and of CB1 protein distribution 230 

throughout the mouse brain revealed similarity with previous reports [16, 19, 20]. 231 

Furthermore, this study has revealed for the first time that CB1 mRNA and CB1 protein 232 

expression in 3×Tg-AD mice is altered in brain areas particularly involved in learning and 233 

memory processes and where the impact of AD neuropathology is more prominent. More 234 

specifically, a significant increase of CB1 mRNA levels in PFC, DH, BLA and a reduction in 235 

VH were found in 3×Tg-AD mice compared to Non-Tg mice at 6 and 12 months of age. Such 236 

differences were found to be opposite for CB1 protein levels in the DH and BLA, where CB1 237 

protein levels were lower in 12-month-old 3×Tg-AD mice compared to their age-matched 238 

Non-Tg mice. No differences between genotypes were found in the brains of 2-month-old 239 

mice. 240 

Furthermore, the comparisons within mice from the same genotype at different ages revealed 241 

significant effects of aging on both CB1 mRNA and CB1 protein levels in several brain 242 

regions. In particular, we observed an age-dependent increase of CB1 mRNA levels in most 243 

areas for both genotypes (except BLA for Non-Tg mice and VH for 3×Tg-AD mice), while a 244 

decrease of CB1 protein expression was detected in two brain areas of aged mice (the DH for 245 

both genotypes and the BLA for 3×Tg-AD mice) as compared to 2- and 6-months-old mice of 246 

the respective genotype.  247 

In this study, the correlation between CB1 mRNA and protein levels observed was not direct. 248 

This observation is not surprising, as it was previously demonstrated that in general mRNA 249 

levels do not necessarily predict the respective protein levels [21]. Moreover, the discrepant 250 

results obtained here are complex to interpret considering also that CB1 receptors are 251 

expressed mostly on synaptic terminals whilst CB1 mRNA is synthesized mostly in the cell 252 

body. For example, CB1 receptors are abundantly expressed on GABAergic interneurons of 253 
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several brain areas that receive also the nerve terminals expressing CB1 protein from other 254 

structures. In this case the CB1 protein levels will result more abundant that the respective 255 

CB1 mRNA level. Conversely, other sites contain only CB1 expressing terminals with no cell 256 

body expressing CB1 mRNA. Therefore, in these areas not necessarily CB1 protein levels 257 

correspond to CB1 mRNA levels. However, the most obvious hypothesis arising from our 258 

results is that this discrepancy might be due to modifications at translational and/or post-259 

translational levels, occurring at the three different ages considered.  260 

Two months of age in our murine AD-model corresponds to a pre-pathologic phase 261 

characterized by the absence of any Aβ and tau pathological expression [9]. The lack of 262 

differences in CB1 expression between genotypes at this age suggests that 3×Tg-AD mice do 263 

not have inborn altered CB1 expression in the brain regions analysed. Therefore, we speculate 264 

that the altered pattern of CB1 expression found at older ages in their brains can be interpreted 265 

as age- and/or pathology-dependent. In accordance with this hypothesis, an extensive set of 266 

age-related and pathology-related alterations are described in our murine model (see table 1).  267 

At 6 months of age, extracellular Aβ deposits first become apparent in the frontal cortex of 268 

3×Tg-AD mice, while intracellular Aβ immunoreactivity starts to build-up in hippocampus, 269 

cortex and amygdala [9, 22]. At 12 months of age extracellular Aβ deposits are readily 270 

evident in frontal cortex, amygdala, DH and VH; the immunoreactivity for 271 

hyperphosphorylated tau starts to be evident in CA1 neurons of hippocampus, particularly at 272 

the somatodendritic level of pyramidal neurons (progressing later to involve cortical 273 

structures) [9, 14]. 274 

From our results, alterations of CB1 mRNA but not protein levels appear at 6 months of age, 275 

when the AD neuropathology seems to impact on CB1 expression first at transcriptional 276 

levels. Alterations in CB1 expression become more evident at 12 months of age, when they 277 

involve also the protein levels in the BLA and DH, remaining unaltered in the other areas.  278 
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Interestingly, the temporal pattern of the changes of CB1 protein expression observed in our 279 

study seemed to correlate with the temporal pattern of the development of Aβ pathology, at 280 

least in the two brain areas analysed, namely the DH and the BLA. Previous studies 281 

corroborate our finding that CB1 receptors in cortex are unchanged [4, 8] and lowered in DH 282 

[5, 7] in AD. However, some reports showed that CB1 levels are altered in cortex [23, 24] and 283 

unaltered in DH of AD patients [4, 6, 8]. These discrepancies might be due to different 284 

disease models used in each study. Until now, much emphasis has been given to the role of 285 

the ECS in cortex and hippocampus in AD pathology, while leaving the BLA poorly 286 

investigated, in spite of its well-known role in learning, its involvement in AD 287 

neuropathology and its quite high expression of CB1 receptors.  288 

Age-related changes of CB1 mRNA expression in the rodent brain have been already reported 289 

in the literature, although data are still sparse and in some cases discrepant from our results. In 290 

particular, CB1 mRNA was observed to increase steadily throughout neuronal development of 291 

rats and mice until animals reach 2 months of age [25, 26]. Conversely, a decrease of CB1 292 

mRNA has been described in hippocampus and BLA, with no change in cortex, when rats are 293 

24-months-old [27]. These discrepancies with our results might be due to different species 294 

used in these studies.  295 

CB1 receptors play important roles in neuroprotection and the enhancement of 296 

endocannabinoid tone is now considered an attractive therapeutic approach to treat AD. It has 297 

been demonstrated, indeed, that the enhancement of brain endocannabinoid tone is able to 298 

reverse memory impairment and neurotoxic effects triggered by soluble Aβ in murine models 299 

of AD [28]. The neuroprotective function of cannabinoid system is thought to occur through 300 

variety of mechanisms. For example, through CB1 receptor activation anandamide was 301 

recently shown to positively regulate Notch-1 pathway, which plays a key role in 302 

neurogenesis, long term memory and neuronal development, and thus restore AD 303 
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neurodegeneration and memory impairments [29]. Moreover, ECS was also demonstrated to 304 

be involved in clearing Aβ from the blood brain barrier, as demonstrated in vitro by 305 

Bachmeier et through the incubation with cannabinoid receptor agonist or inhibitors of 306 

endocannabinoid-degrading enzymes [30]. Based on our results, we speculate that increasing 307 

the endocannabinoid tone or hyperactivating CB1 receptors might produce such ameliorating 308 

effects by counterbalancing the loss of CB1 receptors in selected brain areas, such as the BLA 309 

and the DH.  310 

In this latter area, we recently observed a dramatic deficit of glutamate neurotransmission in 311 

aged 3×Tg-AD mice. These lower levels of glutamate did not appear to be due to synaptic 312 

loss, as synaptophysin, a presynaptic vesicle marker of synaptic density, was not altered [13, 313 

31-34]. Within the hippocampus, CB1 receptors are highly expressed by GABAergic 314 

interneurons [35], where they negatively control GABA release on excitatory glutamatergic 315 

neurons. Therefore, it can be hypothesized that the reduced glutamatergic neurotransmission 316 

in this area might result from the reduced CB1 expression on GABA terminals and the 317 

consequent excessive GABA-mediated inhibition of glutamatergic neurons.  318 

Recently, CB1 was found to be expressed in mitochondria, and a novel role for CB1 receptors 319 

in the regulation of energy metabolism in the brain was proposed [36]. Aged 3×Tg-AD mice 320 

show severe mitochondrial impairment, as was previously shown by our group and by others 321 

[13, 37], and the hippocampus is the most severely affected area. This previous observation is 322 

in line with the current findings of reduced CB1 levels in DH of aged mutant mice. 323 

Apart from genetic factors, stress has also been suggested as a risk factor in developing AD 324 

and severe cognitive decline in AD patients. HPA axis dysregulation and elevated cortisol 325 

levels have been described in a substantial proportion of patients with AD [38-40]. Moreover, 326 

animal studies, including some performed on 3×Tg-AD mice, suggest some sort of interaction 327 

between corticosterone, dysregulation of the HPA axis and Aβ/tau pathology in AD [41, 42], 328 
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although the mechanisms underlying this interaction remain unknown. In particular, when 329 

corticosterone levels in 3×Tg-AD mice were evaluated, Green and colleagues found that basal 330 

corticosterone levels were unchanged until 9 months of age compared to aged matched non 331 

transgenic mice. After 9 months of age, corticosterone levels were significantly elevated in 332 

3×Tg-AD mice compared to age-matched non transgenic mice [42].  Although corticosterone 333 

levels were normal at early age, these mice showed activated HPA axis in 3-4-month-old 334 

3×Tg-AD.  At this age increased mRNA levels of mineralocorticoid receptor and 335 

glucocorticoids receptor were also observed in the hippocampus and PVN with no change in 336 

the amygdala, while the mRNA of corticotropin releasing hormone decreased in the PVN and 337 

increased in both the central nucleus of the amygdala and the bed nucleus of the stria 338 

terminalis [43].  339 

There is evidence that the ECS regulates the HPA axis by negatively modulating its activation 340 

induced by the exposure to stress [44-46]. Among other areas, CB1 receptors expressed in DH 341 

and BLA seem to be involved in negative feedback of glucocorticoids in these brain regions 342 

[47]. As a consequence, CB1 receptor blockade with the antagonist, SR141716, results in 343 

activation of the HPA axis as measured by an increase in plasma corticosterone levels in 344 

rodents [44]. Apart from dysregulated HPA axis, increased emotionality and depressive like 345 

behavior are reported in these mice [48]. We have observed depressive like behavior in these 346 

mice when subjected to a forced swimming and tail suspension test (unpublished data). 347 

Moreover, these mice are reported to show symptoms of anxiety and fear associated with 348 

spatial memory deficits. Authors proposed a deleterious role of intraneuronal Aβ on 349 

amygdala-dependent emotional responses [49]. A similar behavioral phenotype was observed 350 

in CB1-knockout mice (CB1-/-), which show also increased circulating levels of 351 

adrenocorticotropic hormone [46], corticosterone [50, 51], anxiety like and fear responses 352 

[52-54] as well as depressive like behavior [55, 56]. Our result might suggest that the 353 
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decreased CB1 like immunoreactivity found in DH and BLA in 3×Tg-AD mice could play a 354 

role in the hippocampus-related memory deficits and amygdala-related behavioural 355 

alterations.  356 

Interestingly, a recent study by Stumm et al, showed that the lack of CB1 receptors in CB1-/- 357 

mice over-expressing APP23 can result in reduction of amyloid plaque load, reduced in situ 358 

inflammation and impaired learning and memory in aged mice [34]. We propose that lowered 359 

CB1 receptor expression might contribute to the cognitive impairments and dysregulated 360 

HPA axis found in 3×Tg-AD mice. 361 

 Overall our results show that 3×Tg-AD do not have inborn altered CB1 mRNA and protein 362 

expression, as they did not show any alteration at 2 months of age when their phenotype is 363 

still normal. The altered CB1 mRNA/protein levels appear, rather, to be age-and/or 364 

pathology-dependent, thus supporting the idea of a critical role of the ECS in AD and its 365 

possible impact as novel pharmacological target. How AD pathology exactly affects CB1 366 

receptors and whether CB1 receptors and AD pathology are directly or indirectly linked needs 367 

to be further explored. 368 

369 
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Table 1. Summary of age related molecular and behavioral changes in 3×Tg-AD mice 553 

Age of 
3×Tg-AD 
mice 

CB1 receptor Molecular and behavioral 
observation Ref 

2 months 
mRNA and protein 
unchanged 

-no Aβ and tau pathology 
-cognitively unimpaired  

[9] 

4 months - 

-intraneuronal Aβ in hippocampus 
and amygdala 
-cognitively impaired 
-activated central HPA axis 
-normal corticosterone levels 
-altered mRNA levels of corticoid 
receptors and CRH 

[9, 42, 43, 57] 

6 months 

Increased mRNA in 
PFC, DH, BLA 
Decreased in mRNA 
in VH 
Protein unchanged 

-extracellular Aβ in neocortex  
-intraneuronal buildup in 
hippocampus, amygdala and cortex 
-impaired LTP 
-synaptic dysfunction 

[9, 14] 

9 months - -increased corticosterone levels [42] 

12 months 

Increased mRNA in 
PFC, PrL, DH, BLA 
Decreased mRNA in 
VH 
Decreased protein in 
DH and BLA 
Protein unchanged in 
PFC, PrL and VH 

extracellular Aβ deposits is evident 
in frontal cortex, amygdala, DH and 
VH 
-Tau pathology evident in 
hippocampus 

[9, 14] 

18 months - 

- deficits in glutamate 
neurotransmission and mitochondrial 
functions in prefrontal cortex and 
hippocampus 
- emotionality and depressive like 
behavior  

[13, 48] 

LTP, long-term potentiation; HPA, hypothalamic-pituitary-adrenal; CRH, corticotropin-554 
releasing hormone   555 
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Figure legends 556 

Fig.1. CB1 mRNA distribution pattern in Non-Tg and 3xTg-AD mice. (A) Representative 557 

micrographs of coronal sections from mouse brain showing distribution of CB1 mRNA 558 

scanned from autoradiographic film exposed for 3 days. The dashed lines indicate the brain 559 

regions where the optical density was measured. (B-F) CB1 mRNA expression levels in Non-560 

Tg (open bars) and 3xTg-AD mice (black bars) at 2, 6 and 12 months (2M, 6M, 12M, 561 

respectively) of age in PFC (B), PrL (C), DH (D), VH (E) and BLA (F). The data are 562 

expressed as means ± SEM * p < 0.05 vs Non-Tg and °p < 0.05 (n = 5 per group). 563 

 564 

Fig.2. CB1 protein distribution pattern in Non-Tg and 3xTg-AD mice. (A) Representative 565 

microphotographs of brain coronal sections showing CB1 immunostaining in the selected 566 

brain areas. The dashed lines indicate the brain regions where the optical density was 567 

measured. (B-F) CB1 protein expression levels in Non-Tg (open bars) and 3xTg-AD mice 568 

(black bars) at 2, 6 and 12 months (2M, 6M, 12M, respectively) in PFC (B), PrL (C), DH (D), 569 

VH (E) and BLA (F). The data are expressed as means ± SEM * p< 0.05 vs Non-Tg and 570 

°p<0.05 (n = 3 per group). 571 

 572 

Fig.3. CB1 protein expression by immunofluorescence staining in 12 months old 3xTg-AD 573 

mice. (A, B) Representative microphotographs of brain coronal sections showing nuclear 574 

staining with Hoechst (blue) and CB1 immunofluorescence staining (red) in the DH (A) and 575 

BLA (B) without or with CB1 antiserum incubation step. (C, D) CB1 protein expression 576 

levels measured in the DH (C) and in the BLA (D) of 12 month-old Non-Tg (open bars) and 577 

3xTg-AD mice (black bars). (E, F) Representative photographs for CB1 protein (red), Aβ 578 

protein (green) and nuclear staining with Hoechst (blue) in DH (E) and BLA (F). (G, H) 579 

Scatterplot of Aβ protein levels vs CB1 protein levels showing an inverse correlationship 580 



25 
 

(Pearson test) in both the DH (G, ρ= -0.7599, p<0.0001) and the BLA (H, ρ= -0.5052, 581 

p<0.001) The data are expressed as means ± SEM * p < 0.05 vs Non-Tg (n = 3 per group). 582 
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