139 research outputs found
Self-organized stable pacemakers near the onset of birhythmicity
General amplitude equations for reaction-diffusion systems near to the soft
onset of birhythmicity described by a supercritical pitchfork-Hopf bifurcation
are derived. Using these equations and applying singular perturbation theory,
we show that stable autonomous pacemakers represent a generic kind of
spatiotemporal patterns in such systems. This is verified by numerical
simulations, which also show the existence of breathing and swinging pacemaker
solutions. The drift of self-organized pacemakers in media with spatial
parameter gradients is analytically and numerically investigated.Comment: 4 pages, 4 figure
Recommended from our members
Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA
A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network
Experimental observations performed in the p53-Mdm2 network, one of the key protein modules involved in the control of proliferation of abnormal cells in mammals, revealed the existence of two frequencies of oscillations of p53 and Mdm2 in irradiated cells depending on the irradiation dose. These observations raised the question of the existence of birhythmicity, i.e. the coexistence of two oscillatory regimes for the same external conditions, in the p53-Mdm2 network which would be at the origin of these two distinct frequencies. A theoretical answer has been recently suggested by Ouattara, Abou-Jaoudé and Kaufman who proposed a 3-dimensional differential model showing birhythmicity to reproduce the two frequencies experimentally observed. The aim of this work is to analyze the mechanisms at the origin of the birhythmic behavior through a theoretical analysis of this differential model. To do so, we reduced this model, in a first step, into a 3-dimensional piecewise linear differential model where the Hill functions have been approximated by step functions, and, in a second step, into a 2-dimensional piecewise linear differential model by setting one autonomous variable as a constant in each domain of the phase space. We find that two features related to the phase space structure of the system are at the origin of the birhythmic behavior: the existence of two embedded cycles in the transition graph of the reduced models; the presence of a bypass in the orbit of the large amplitude oscillatory regime of low frequency. Based on this analysis, an experimental strategy is proposed to test the existence of birhythmicity in the p53-Mdm2 network. From a methodological point of view, this approach greatly facilitates the computational analysis of complex oscillatory behavior and could represent a valuable tool to explore mathematical models of biological rhythms showing sufficiently steep nonlinearities
Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.publishedVersionKembro, Jackelyn Melissa. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos
A. Binet, Le problème des enfants anormaux
Decroly O. A. Binet, Le problème des enfants anormaux. In: L'année psychologique. 1905 vol. 12. pp. 498-499
Auer, État actuel de l'assistance aux faibles d'esprit en Suisse, notamment en ce qui concerne les deux dernières années
Decroly O. Auer, État actuel de l'assistance aux faibles d'esprit en Suisse, notamment en ce qui concerne les deux dernières années. In: L'année psychologique. 1905 vol. 12. pp. 502-503
Guillaume, Dénombrement des enfants faibles d'esprit en âge d'école en Suisse
Decroly O. Guillaume, Dénombrement des enfants faibles d'esprit en âge d'école en Suisse. In: L'année psychologique. 1905 vol. 12. pp. 501-502
Gutzman, La signification sociale des troubles de la parole
Decroly O. Gutzman, La signification sociale des troubles de la parole. In: L'année psychologique. 1905 vol. 12. p. 499
- …