139 research outputs found

    Self-organized stable pacemakers near the onset of birhythmicity

    Full text link
    General amplitude equations for reaction-diffusion systems near to the soft onset of birhythmicity described by a supercritical pitchfork-Hopf bifurcation are derived. Using these equations and applying singular perturbation theory, we show that stable autonomous pacemakers represent a generic kind of spatiotemporal patterns in such systems. This is verified by numerical simulations, which also show the existence of breathing and swinging pacemaker solutions. The drift of self-organized pacemakers in media with spatial parameter gradients is analytically and numerically investigated.Comment: 4 pages, 4 figure

    A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network

    Get PDF
    Experimental observations performed in the p53-Mdm2 network, one of the key protein modules involved in the control of proliferation of abnormal cells in mammals, revealed the existence of two frequencies of oscillations of p53 and Mdm2 in irradiated cells depending on the irradiation dose. These observations raised the question of the existence of birhythmicity, i.e. the coexistence of two oscillatory regimes for the same external conditions, in the p53-Mdm2 network which would be at the origin of these two distinct frequencies. A theoretical answer has been recently suggested by Ouattara, Abou-Jaoudé and Kaufman who proposed a 3-dimensional differential model showing birhythmicity to reproduce the two frequencies experimentally observed. The aim of this work is to analyze the mechanisms at the origin of the birhythmic behavior through a theoretical analysis of this differential model. To do so, we reduced this model, in a first step, into a 3-dimensional piecewise linear differential model where the Hill functions have been approximated by step functions, and, in a second step, into a 2-dimensional piecewise linear differential model by setting one autonomous variable as a constant in each domain of the phase space. We find that two features related to the phase space structure of the system are at the origin of the birhythmic behavior: the existence of two embedded cycles in the transition graph of the reduced models; the presence of a bypass in the orbit of the large amplitude oscillatory regime of low frequency. Based on this analysis, an experimental strategy is proposed to test the existence of birhythmicity in the p53-Mdm2 network. From a methodological point of view, this approach greatly facilitates the computational analysis of complex oscillatory behavior and could represent a valuable tool to explore mathematical models of biological rhythms showing sufficiently steep nonlinearities

    Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability

    Get PDF
    Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.publishedVersionKembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos

    A. Binet, Le problème des enfants anormaux

    No full text
    Decroly O. A. Binet, Le problème des enfants anormaux. In: L'année psychologique. 1905 vol. 12. pp. 498-499

    Auer, État actuel de l'assistance aux faibles d'esprit en Suisse, notamment en ce qui concerne les deux dernières années

    No full text
    Decroly O. Auer, État actuel de l'assistance aux faibles d'esprit en Suisse, notamment en ce qui concerne les deux dernières années. In: L'année psychologique. 1905 vol. 12. pp. 502-503

    Guillaume, Dénombrement des enfants faibles d'esprit en âge d'école en Suisse

    No full text
    Decroly O. Guillaume, Dénombrement des enfants faibles d'esprit en âge d'école en Suisse. In: L'année psychologique. 1905 vol. 12. pp. 501-502

    Gutzman, La signification sociale des troubles de la parole

    No full text
    Decroly O. Gutzman, La signification sociale des troubles de la parole. In: L'année psychologique. 1905 vol. 12. p. 499
    • …
    corecore