2,346 research outputs found

    Black Holes and Naked Singularities in Low Energy Limit of String Gravity with Modulus Field

    Full text link
    We show that the black hole solutions of the effective string theory action, where one-loop effects that couple the moduli to gravity via a Gauss-Bonnet term are taken into account, admit primary scalar hair. The requirement of absence of naked singularities imposes an upper bound on the scalar charges.Comment: more details are added and some misprint are correcte

    Fluorine in animal nutrition

    Get PDF

    No-scalar hair conjecture in asymptotic de-Sitter spacetime

    Full text link
    We discuss the no-hair conjecture in the presence of a cosmological constant. For the firststep the real scalar field is considered as the matter field and the spacetime is assumed to be static spherically symmetric. If the scalar field is massless or has a convex potential such as a mass term, it is proved that there is no regular black hole solution. For a general positive potential, we search for black hole solutions which support the scalar field with a double well potential, and find them by numerical calculations. The existence of such solutions depends on the values of the vacuum expectation value and the self-coupling constant of the scalar field. When we take the zero horizon radius limit, the solution becomes a boson star like solution which we found before. However new solutions are found to be unstable against the linear perturbation. As a result we can conclude that the no-scalar hair conjecture holds in the case of scalar fields with a convex or double well potential.Comment: 9 pages, 2 Postscript figure

    Hairs on the cosmological horizon

    Full text link
    We investigate the possibility of having hairs on the cosmological horizon. The cosmological horizon shares similar properties of black hole horizons in the aspect of having hairs on the horizons. For those theories admitting haired black hole solutions, the nontrivial matter fields may reach and extend beyond the cosmological horizon. For Q-stars and boson stars, the matter fields cannot reach the cosmological horizon. The no short hair conjecture keeps valid, despite the asymptotic behavior (de Sitter or anti-de Sitter) of black hole solutions. We prove the no scalar hair theorem for anti-de Sitter black holes. Using the Bekenstein's identity method, we also prove the no scalar hair theorem for the de Sitter space and de Sitter black holes if the scalar potential is convex.Comment: Revtex, no figures, 16 page

    Understanding adhesion at as-deposited interfaces from ab initio thermodynamics of deposition growth: thin-film alumina on titanium carbide

    Full text link
    We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) [Rohrer J and Hyldgaard P 2010 Phys. Rev. B 82 045415]. A previous study of this system [Rohrer J, Ruberto C and Hyldgaard P 2010 J. Phys.: Condens. Matter 22 015004] found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite the industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extent the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.Comment: 8 pages, 6 figures, submitted to J. Phys.: Condens. Matte

    Nuclear Multifragmentation in the Non-extensive Statistics - Canonical Formulation

    Get PDF
    We apply the canonical quantum statistical model of nuclear multifragmentation generalized in the framework of recently proposed Tsallis non-extensive thermostatistics for the description of nuclear multifragmentation process. The test calculation in the system with A=197 nucleons show strong modification of the 'critical' behaviour associated with the nuclear liquid-gas phase transition for small deviations from the conventional Boltzmann-Gibbs statistical mechanics.Comment: 4 pages, 4 figure
    corecore