7,592 research outputs found
Rate of Homogeneous Crystal Nucleation in molten NaCl
We report a numerical simulation of the rate of crystal nucleation of sodium
chloride from its melt at moderate supercooling. In this regime nucleation is
too slow to be studied with "brute-force" Molecular Dynamics simulations. The
melting temperature of ("Tosi-Fumi") NaCl is K. We studied crystal
nucleation at =800K and 825K. We observe that the critical nucleus formed
during the nucleation process has the crystal structure of bulk NaCl.
Interestingly, the critical nucleus is clearly faceted: the nuclei have a
cubical shape. We have computed the crystal-nucleation rate using two
completely different approaches, one based on an estimate of the rate of
diffusive crossing of the nucleation barrier, the other based on the Forward
Flux Sampling and Transition Interface Sampling (FFS-TIS) methods. We find that
the two methods yield the same result to within an order of magnitude. However,
when we compare the extrapolated simulation data with the only available
experimental results for NaCl nucleation, we observe a discrepancy of nearly 5
orders of magnitude. We discuss the possible causes for this discrepancy
Visually induced analgesia: seeing the body reduces pain
Given previous reports of strong interactions between vision and somatic senses, we investigated whether vision of the body modulates pain perception. Participants looked into a mirror aligned with their body midline at either the reflection of their own left hand (creating the illusion that they were looking directly at their own right hand) or the reflection of a neutral object. We induced pain using an infrared laser and recorded nociceptive laser-evoked potentials (LEPs). We also collected subjective ratings of pain intensity and unpleasantness. Vision of the body produced clear analgesic effects on both subjective ratings of pain and the N2/P2 complex of LEPs. Similar results were found during direct vision of the hand, without the mirror. Furthermore, these effects were specific to vision of one’s own hand and were absent when viewing another person’s hand. These results demonstrate a novel analgesic effect of non-informative vision of the body
Crystallization in Glassy Suspensions of Hard Ellipsoids
We have carried out computer simulations of overcompressed suspensions of
hard monodisperse ellipsoids and observed their crystallization dynamics. The
system was compressed very rapidly in order to reach the regime of slow,
glass-like dynamics. We find that, although particle dynamics become
sub-diffusive and the intermediate scattering function clearly develops a
shoulder, crystallization proceeds via the usual scenario: nucleation and
growth for small supersaturations, spinodal decomposition for large
supersaturations.
In particular, we compared the mobility of the particles in the regions where
crystallization set in with the mobility in the rest of the system. We did not
find any signature in the dynamics of the melt that pointed towards the
imminent crystallization events
Negative symptoms as key features of depression among cannabis users: a preliminary report.
OBJECTIVE:
Cannabis use is frequent among depressed patients and may lead to the so-called "amotivational syndrome", which combines symptoms of affective flattening and loss of emotional reactivity (i.e. the so-called "negative" symptomatology). The aim of this study was to investigate the negative symptomatology in depressed patients with concomitant cannabis use disorders (CUDs) in comparison with depressed patients without CUDs.
PATIENTS AND METHODS:
Fifty-one patients with a diagnosis of Major Depressive Disorder (MDD) and concomitant CUD and fifty-one MDD patients were enrolled in the study. The 21-Item Hamilton Depression Rating Scale (HDRS) and the negative symptoms subscales of the Positive and Negative Syndrome Scale (PANSS) were used to assess depressive and negative symptomatology.
RESULTS:
Patients with cannabis use disorders presented significantly more severe negative symptoms in comparison with patients without cannabis use (15.18 ± 2.25 vs 13.75 ± 2.44; t100 = 3.25 p = 0.002).
DISCUSSION:
A deeper knowledge of the "negative" psychopathological profile of MDD patients who use cannabis may lead to novel etiopathogenetic models of MDD and to more appropriate treatment approaches
From compact to fractal crystalline clusters in concentrated systems of monodisperse hard spheres
We address the crystallization of monodisperse hard spheres in terms of the
properties of finite- size crystalline clusters. By means of large scale
event-driven Molecular Dynamics simulations, we study systems at different
packing fractions {\phi} ranging from weakly supersaturated state points to
glassy ones, covering different nucleation regimes. We find that such regimes
also result in different properties of the crystalline clusters: compact
clusters are formed in the classical-nucleation-theory regime ({\phi} \leq
0.54), while a crossover to fractal, ramified clusters is encountered upon
increasing packing fraction ({\phi} \geq 0.56), where nucleation is more
spinodal-like. We draw an analogy between macroscopic crystallization of our
clusters and percolation of attractive systems to provide ideas on how the
packing fraction influences the final structure of the macroscopic crystals. In
our previous work (Phys. Rev. Lett., 106, 215701, 2011), we have demonstrated
how crystallization from a glass (at {\phi} > 0.58) happens via a gradual
(many-step) mechanism: in this paper we show how the mechanism of gradual
growth seems to hold also in super-saturated systems just above freezing
showing that static properties of clusters are not much affected by dynamics.Comment: Soft Matter, 201
Forward Flux Sampling for rare event simulations
Rare events are ubiquitous in many different fields, yet they are notoriously
difficult to simulate because few, if any, events are observed in a conventiona
l simulation run. Over the past several decades, specialised simulation methods
have been developed to overcome this problem. We review one recently-developed
class of such methods, known as Forward Flux Sampling. Forward Flux Sampling
uses a series of interfaces between the initial and final states to calculate
rate constants and generate transition paths, for rare events in equilibrium or
nonequilibrium systems with stochastic dynamics. This review draws together a
number of recent advances, summarizes several applications of the method and
highlights challenges that remain to be overcome.Comment: minor typos in the manuscript. J.Phys.:Condensed Matter (accepted for
publication
Elasticity-based polymer sorting in active fluids: A Brownian dynamics study
While the dynamics of polymer chains in equilibrium media is well understood
by now, the polymer dynamics in active non-equilibrium environments can be very
different. Here we study the dynamics of polymers in a viscous medium
containing self-propelled particles in two dimensions by using Brownian
dynamics simulations. We find that the polymer center of mass exhibits a
superdiffusive motion at short to intermediate times and the motion turns
normal at long times, but with a greatly enhanced diffusivity. Interestingly,
the long time diffusivity shows a non-monotonic behavior as a function of the
chain length and stiffness. We analyze how the polymer conformation and the
accumulation of the self-propelled particles, and therefore the directed motion
of the polymer, are correlated. At the point of maximal polymer diffusivity,
the polymer has preferentially bent conformations maintained by the balance
between the chain elasticity and the propelling force generated by the active
particles. We also consider the barrier crossing dynamics of actively-driven
polymers in a double-well potential. The barrier crossing times are
demonstrated to have a peculiar non-monotonic dependence, related to that of
the diffusivity. This effect can be potentially utilized for sorting of
polymers from solutions in \textit{in vitro} experiments.Comment: 11 pages, 7 figure
Clustering, conductor-insulator transition and phase separation of an ultrasoft model of electrolytes
We investigate the clustering and phase separation of a model of ultrasoft,
oppositely charged macroions by a combination of Monte Carlo and Molecular
Dynamics simulations. Static and dynamic diagnostics, including the dielectric
permittivity and the electric conductivity of the model, show that ion pairing
induces a sharp conductor-insulator transition at low temperatures and
densities, which impacts the separation into dilute and concentrated phases
below a critical temperature. Preliminary evidence is presented for a possible
tricritical nature of the phase diagram of the model.Comment: 5 pages, 5 figure
- …
