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We have carried out computer simulations of overcompressed suspensions of hard monodisperse el-
lipsoids and observed their crystallization dynamics. The system was compressed very rapidly in
order to reach the regime of slow, glass-like dynamics. We find that, although particle dynamics
become sub-diffusive and the intermediate scattering function clearly develops a shoulder, crystal-
lization proceeds via the usual scenario: nucleation and growth for small supersaturations, spinodal
decomposition for large supersaturations. In particular, we compared the mobility of the particles in
the regions where crystallization set in with the mobility in the rest of the system. We did not find
any signature in the dynamics of the melt that pointed towards the imminent crystallization events.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821813]

I. INTRODUCTION

A liquid that is cooled or overcompressed beyond its
freezing point either crystallizes or forms a glass. If the de-
gree of undercooling (or overcompression, respectively) is
small, one usually observes crystallization via nucleation and
growth. If the system is quenched beyond its spinodal, it crys-
tallizes immediately. These crystallization mechanisms com-
pete with another possible process, the glass transition, which
occurs in many materials if they are quenched sufficiently
fast.1, 2 And between these extremes, mixed routes to crys-
tallization appear, which can, in general, not be described in
terms of a simple free energy landscape picture.

A supersaturated melt close to the glass transition resem-
bles a liquid in structure, but it differs from a liquid in its
dynamical behaviour. In particular, on approach to the glass
transition a melt displays “dynamic heterogeneity,” i.e., spa-
tial fluctuations in its local dynamical behaviour.3, 4

In this article we would like to address the question
whether dynamic heterogeneity and crystallization are linked.
One could, e.g., assume that regions of enhanced mobility
are more likely to crystallize than regions of reduced mobil-
ity (because the system samples its local phase space more
rapidly in regions of enhanced mobility), and hence attempt
to predict positions and times of future crystallization events
from the spatio-temporal structure of the melt.

As a model system we chose mono-disperse hard ellip-
soids of revolution (spheroids). This system has been shown
to exhibit a glass transition,5, 6 caused by the orientational
degree of freedom of the ellipsoids, which acts as a source
of disorder that is sufficiently strong to suppress the crystal-
lization process. On the other hand, the interaction potential
is very simple (only hard body exclusion) and the system is
mono-disperse, therefore a large part of the equilibrium phase
diagram has also been mapped out.7–13 Many of the model
systems used in other, similar studies either show a glass tran-
sition or have a simple equilibrium phase diagram, but they do
not fulfill both requirements at the same time (Refs. 14–16).
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The interplay between crystallization and the approach to
the glass transition in colloids has been addressed by several
groups recently, but no definite conclusion on the mechanism
has been drawn.17–22

II. SIMULATION TECHNIQUE AND DATA ANALYSIS

The equilibrium properties of a suspension of hard ellip-
soids of revolution (spheroids) are determined by the volume
fraction η and the ellipsoid aspect ratio. We will focus on a
moderate aspect ratio for which the system undergoes a first
order phase transition from the fluid phase to a rotator crystal
phase, i.e., to a phase with crystalline order in particle posi-
tions but without orientational order of the axes. In the limit
of vanishing asphericity, the coexistence densities converge
to the liquid-solid coexistence densities of hard spheres. A
slight elongation of the particles does not affect the symmetry
of the crystal, and, as we will show later, the nucleation pro-
cess also remains unchanged. However, the additional degree
of freedom acts as a sufficiently strong source of disorder to
introduce a glass transition.5, 6

We carried out Monte Carlo (MC) simulations of suspen-
sions of monodisperse hard ellipsoids at constant number of
particles N and constant external pressure P (the temperature
T is constant too, but as the system is athermal T only enters
the discussion as a trivial factor). Particles were propagated by
local translation and rotation moves. The maximum displace-
ment per MC step was set to 0.03 particle diameters, the maxi-
mum rotation of the particle axis to 1.8◦. For such small steps,
the “dynamics” of the system is similar to Brownian dynam-
ics and produces the same behaviour on long time-scales.23–25

The system consisted of N = 10 386 prolate hard ellipsoids
with an aspect ratio of a/b = 1.25, where a is the length of the
axis of symmetry and b is the length of any axis in the per-
pendicular plane. To simplify notation, we introduce the di-
mensionless pressure P ∗ = P 8ab2

kBT
(where kB is Boltzmann’s

constant). The coexistence pressure is P* = 14.34, the coex-
istence volume fraction of the fluid is ηcoex

f = 0.515, and the
coexistence volume fraction of the crystal is ηcoex

c = 0.544.7
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FIG. 1. (a) Equation of state for prolate ellipsoids, aspect ratio a/b = 1.25.
(b) Chemical potential difference �μ between the overcompressed melt and
the stable crystal. The diamonds indicate the overcompressions for which we
studied the crystallization process.

We studied suspensions at constant external pressures P∗

= 27. . . 30, P∗ = 40, and P∗ = 50. The corresponding chemi-
cal potential differences between the stable crystal phase and
the metastable fluid phase �μ(P∗) have been obtained by
integrating along the metastable fluid branch and the stable
crystal branch of the equation of state from P ∗

coex to P∗. The
values range from |�μ| = 0.57 kBT

particle to |�μ| = 1.08 kBT
particle .

In Fig. 1, we illustrate the state points studied here (diamonds)
within data, which we obtained in MC simulations for (a) the
equation of state for our system and (b) the chemical potential
difference between the overcompressed melt and the stable
crystal.

During the simulation we monitored the volume fraction
η and the local q6q6-bond orientational order parameter.26, 27

For an ellipsoid i with n(i) neighbours, the relative local bond
orientation is characterized by

q̄lm(i) := 1

n(i)

n(i)∑
j=1

Ylm(�rij ),

where Ylm(�rij ) are the spherical harmonics and �rij is the po-
sition vector between ellipsoid i and its neighbor j. In or-
der to identify local fcc-, hcp-, or rcp-structures, l is set to
6. A vector �q6(i) is assigned to each ellipsoid, the elements
m = −l. . . l of which are defined as

qlm(i) := q̄lm(i)(∑l
m=−l |q̄lm(i)|

)1/2 . (1)

We call an ellipsoid i “crystalline,” if it has more than
eight neighbours nb with rij < 1.5 b and �q6(i) · �q6

∗(j ) > 0.7.
We computed the distributions of �q6(i) · �q6

∗(j ) in the bulk liq-
uid, the bulk crystal, and for crystallites embedded in a liquid
to verify that this criterion, albeit isotropic, works in a solution
of anisotropic particles. As the aspect ratio is moderate and as
we quench into the rotator phase, the q6q6-method suffices to
detect the crystallites.
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FIG. 2. Induction times versus pressure.

For each value of the pressure, we examined 25 simu-
lation trajectories that started out from independent starting
configurations.

The ensemble of starting configurations has been pre-
pared in the following way: All preparation runs were ini-
tialized with the same liquid configuration at η = 0.567.
This configuration was subjected to an instantaneous increase
in pressure and then observed. After 106 MC sweeps, all
preparation trajectories had reached a plateau in density, and
preparation was finished. Although they had started out from
the same low density configuration, they had been decorre-
lated during the 106 MC sweeps of the compression runs.
The ensemble of compressed configurations was then used
as the starting ensemble for the crystallization study. The fact
that the compressed configurations were decorrelated can be
seen, e.g., from the scatter plot of crystal nucleation times in
Fig. 2 (details of this graph will be discussed further below).
We also inspected the system configurations visually. The
crystallites always appeared in different places and they had
different morphologies.

III. RESULTS

A. Dynamics of the supersaturated melt

Figure 3 (left panel) shows the average mean-squared dis-
placement of the particles in the melt,

〈�s2(t)〉 = 〈(�ri(t) − �ri(0))2〉,

where �ri(t) is the position of particle i at time t. The average
〈. . . 〉 is taken over all trajectories for a given pressure, and in
each trajectory only over particles that are “liquid-like,” i.e.,
not crystalline according to their q6q6-bond order. The results
are robust against our choice of crystallinity parameters, i.e.,
variations of the threshold values to identify crystalline par-
ticles do not affect the average mean squared displacement,
since the overall fraction of crystalline particles in the system
is small. (We have labelled the distance travelled as s rather
than r because we will later introduce another quantity that we
call �r.) We also computed the self part of the intermediate
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FIG. 3. (a) Mean-squared displacement 〈�s2〉 as a function of simulation
time for different values of pressure P*. In addition, a linear growth law and
a sub diffusive power law are plotted for comparison. (b) Dynamic structure
factor as a function of simulation time for different values of P*. qmax corre-
sponds to the first maximum of the static structure factor S(q). The averages
are taken over 25 independent simulation runs each. The dashed line marks
1/e to indicate the relaxation times.

scattering function of the liquid-like particles:

Fs(q, t) =
〈

1

N

N∑
i

exp[i�q(�ri(t) − �ri(0))]

〉
.

From the data shown in Fig. 3, we infer that the simula-
tion runs at the lower values of pressure, P∗ ≤ 30, are “equi-
librated” in the meta-stable liquid basin: The mean squared
displacement is linear as a function of simulation time, and
the local relaxation times are short in comparison to the in-
duction time for crystal growth (see Fig. 4, discussion follows
below). At P* ≥ 40, the system is far from equilibrium. The
mean-squared displacement is sub-diffusive and the dynamic
structure factor decays according to the stretched exponential
behaviour that is typical for glass forming systems. (For infor-
mation on even higher overcompression, we refer the reader
to Ref. 5.)
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FIG. 4. Time evolution of the total number of crystalline particles for dif-
ferent external pressures P*. The lines correspond to individual sample
trajectories.

FIG. 5. Two sequences of snapshots of the crystallization process. Upper
row: P* = 27 at times 1.67 × 107, 1.79 × 107, and 1.92 × 107 MC sweeps.
Lower row: P* = 40 at times 1.08 × 107, 1.24 × 107, and 1.90 × 107 MC
sweeps. The ratios of crystalline particles in the configurations are: 0.7%,
2.2%, 12% (upper row) and 3.2%, 5.7%, 16.5% (lower row). Liquid-like el-
lipsoids are shown as dots only.

B. Crystallization process

The time evolution of the total number of crystalline par-
ticles is presented in Fig. 4 for several typical simulation runs.
In the case of P* = 27, there is a long induction time after
which the total number of crystalline particles grows rapidly.
Particles diffuse over several times their diameter before crys-
tallization sets in. Here, we are clearly dealing with nucleation
and growth. In the case of P* = 40, particles diffuse only a
fraction of their diameter before crystallization sets in. And at
P* = 50, the free volume per particle is too small to allow for
successful rearrangements on the time scales of our simula-
tions. Here, in the majority of the simulation runs, we do not
observe the formation of a crystal.

The main question that we address in this study is
whether regions of enhanced mobility in the melt are cor-
related with future crystallization sites. However, before we
come to this point (in Subsection III C), we would like to
present some more information on the crystallization pro-
cesses that we observe.

Figure 5 shows typical sequences of snapshots. For
P∗ = 27, the crystallite has a compact structure and nucle-
ation is a localized and rare event, i.e., the induction time for
crystal nucleation is long in comparison to the time needed
by a particle to diffuse over its own diameter. This allows us
to define a nucleation rate density, see Fig. 6. For P* = 40,
the crystal phase immediately forms a percolating network.
Hence, despite the approach to glassy dynamics, we observe
the classical extremes of kinetics at a first order phase tran-
sition: nucleation and spinodal decomposition. (A similar ob-
servation has also been made for hard spheres.28)

For P* ≤ 30, where the system crystallizes via nucle-
ation, we have computed the nucleation rate density

I := 1

〈V 〉〈tc〉 ,

where 〈V 〉 is the mean volume of the system and 〈tc〉 is the
induction time averaged over 25 trajectories per value of pres-
sure. As can be seen in Fig. 4 (left), once a simulation run had
produced a crystalline cluster consisting of 80 particles, it did
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FIG. 6. Nucleation rate densities for hard spheres and ellipsoids as a func-
tion of the chemical potential difference |�μ| between the meta-stable melt
and the stable crystal phase. To allow for direct comparison with simula-
tions with other types of local dynamics, the rate densities are multiplied by
b5/D, where D is the long-time self-diffusion constant. Data are averaged over
25 independent simulation runs and errorbars are calculated as the standard
deviation.

not decay into the liquid state any more. Thus, we used this
value to identify an upper bound on the induction time.

In Fig. 6, we compare the nucleation rate densities for
ellipsoids to those for mono-disperse hard spheres (the hard
sphere data were taken from Refs. 29 and 30). At equal over-
compression, the nucleation rate densities for the two systems
coincide within the errorbars. We conclude that, at these mod-
erate aspect ratios, the orientational degree of freedom of the
ellipsoids does neither have a strong influence on the interfa-
cial tension nor on the crystallization process.

C. Dynamic heterogeneities and crystallization

In the rest of this paper, we focus on the dynamical struc-
ture of those regions in the melt that are about to crystallize.

From each trajectory, we picked the first cluster of ellipsoids
with nb > 5 that reached a size of 500 particles and studied
the properties of these 500 particles backwards in time. The
question we would like to address here is whether we can see
any unusual signature in the dynamics of these particles just
before crystallization sets in when comparing them to the rest
of the system. (We relaxed the criterion for crystallinity here
from nb > 8 to nb > 5 in order to take particles on the surface
of a cluster into account. This allows us to analyse our data
also with respect to the surface effect discussed in Refs. 20
and 21.)

We define the mobility of a particle i at a time t as the
distance

�ri(t) = |�ri(t) − �ri(t − �t)|, (2)

where �t = 5 × 104 MC sweeps. During this time interval, a
particle travels on average a distance of 0.1 b to 0.25 b (de-
pending on the pressure, see Fig. 3). The average surface to
surface distance between particles is slightly smaller than 0.1
b. Hence, the mobility defined in Eq. (2) captures information
on the lengthscale that is relevant for local rearrangements of
the fluid into the crystal. Figure 7 shows the probability distri-
bution of �ri(t). Data for the surrounding liquid, which is not
going to crystallize soon, are shown as circles (black). The
squares (red) present the distribution of mobilities of those
500 particles that are going to crystallize, taken just before the
crystallization event. We identify the moment crystallization
sets in by following the trajectories backwards in time from
the time when there is a cluster of 500 crystalline particles to
the time when only 5% of these particles are crystalline. We
use 5% as a threshold, because below this number the proba-
bility of finding a crystalline particle among these 500 is the
same as the probability of finding a crystalline particle in the
liquid.

There is no difference between the two distributions. The
particles that will crystallize soon cannot be distinguished
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FIG. 7. Mobility in the surrounding liquid (circles, black) in comparison to the mobility of particles that are going to crystallize (squares, red) and of the
particles at the surface of the crystal, once the crystallite has formed (crosses, green). The unit of length is b.
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from the rest of the system. The hypothesis that the most
mobile particles crystallize first, because they sample their
phase space most rapidly, is not supported by our data.

For hard spheres, it has been reported that the mobility
is enhanced at the surface of the crystalline cluster.20, 21 To
test for this effect, we computed the mobility of the surface
particles once the crystallite had formed, i.e., the mobility of
those 100 of the 500 selected particles that had nb ≤ 8 when
the other 400 already had reached nb > 8 (Fig. 7, crosses,
green). In contrast to Refs. 20, 21, for low pressures we find a
shift to lower mobilities, and at higher pressures no shift at all.

This observation is consistent with an analysis of the sin-
gle particle free volume via Voronoi decomposition. Figure 8

shows the distribution of the volumina of the Voronoi cells of
all particles in the surrounding liquid (circles, black) in com-
parison to those that are about to crystallize (squares, red) and
those that are at the surface of the crystal, once it has formed
(crosses, green). We observe no increase in the single parti-
cle free volume at the interface of the crystallite. There is no
evidence of the modified crystallization process described in
Ref. 20.

One major difference between the simulations in Ref. 20
and our work is the choice of ensemble. To test whether the
mobility at the interface is enhanced in the NVT ensemble,
we repeated our analysis for 29 trajectories at fixed η = 0.59.
In Figs. 9 and 10, we show the mobility distributions and the
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FIG. 9. Comparison between simulation results for the NPT and the NVT ensembles: Mobilities at P* = 27 (left panel) and η = 0.59 (right panel).
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free volume distributions for NPT simulations at P* = 27 and
for NVT simulations at η = 0.59. There is no significant dif-
ference in any of the distributions. In particular, we do not see
any enhanced free volume or mobility of the surface parti-
cles. In the NVT ensemble, the liquid acts as a pressure reser-
voir on the particles that are going to crystallize. Hence, the

difference in observations regarding the free volume of parti-
cles at the cluster surface cannot be due to the choice of en-
semble. It must be due to the different choice of model system
(hard spheres in Ref. 20 and hard ellipsoids here).

As the absolute distance traveled by a particle is not
related to its likelihood to crystallize, we now ask whether
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FIG. 11. Alignment of motion of neighbouring particles in the surrounding liquid (circles, black) in comparison to particles that are going to crystallize (squares,
red) and particles at the surface of the crystal, after the crystallite has formed (crosses, green). See main text for definition of θ .
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regions of orientationally correlated motion tend to crystal-
lize faster than other regions. We define

cos(θ ) := ��ri(t) · ��rj (t)

|��ri(t)| · |��rj (t)|
for neighbouring particles i and j, where

� �ri(t) = �ri(t) − �ri(t − �t).

cos (θ ) is presented in Fig. 11 with the same definitions of the
symbols as before. Ellipsoids are considered to be neighbours
if �rij < 1.5 b. There is no difference between the three types
of particles for any of the pressures. We conclude that neither
regions of parallel motion nor regions where particles flow
towards each other are more likely to crystallize than other
regions.

Finally we analyze the structural properties of the emerg-
ing crystallites in terms of the absolute value of the bond-
orientation order-parameter |q6(i)| for each particle i, see
Eq. (1). Figure 12 shows the distribution of |q6| for particles in
the surrounding liquid (circles, black), particles that are going
to crystallize (squares, red), and of the particles at the surface
of the crystal, after the crystallite has formed (crosses, green).
Clearly the crystalline particles have a higher value of |q6(i)|,
but there is no difference between the particles that are going
to crystallize and the surrounding liquid.

IV. CONCLUSION

To summarize, we have studied crystallization in sus-
pensions of hard ellipsoids at a moderate aspect ratio,
a/b = 1.25. We chose this system because it is simple and
monodisperse, its phase diagram is well known, it shows a
glass transition, and it can be realized experimentally.31–37 We
pressure-quenched the system from the liquid state beyond
the freezing pressure and studied its dynamical and structural
properties during the subsequent crystallization process. For
moderate amplitudes of overcompression P* ≤ 30, the system

remained in a meta-stable melt state for long times and then
crystallized via nucleation and growth. We showed that the
nucleation rate densities for hard ellipsoids are consistent with
those of monodisperse hard spheres (within the error-bars).
For the sub-diffusive, glass-like regime at high overcompres-
sions, crystallization sets in on a time scale comparable to the
relaxation times of the dynamic structure factor and particles
diffuse less than their diameter. The crystalline regions form
a percolating clusters. Hence, despite the approach to glassy
dynamics, we observe the classical extreme cases of crystal-
lization: nucleation and spinodal decomposition.

In order to test for correlations between dynamic hetero-
geneities and crystallization events, we identified the regions
that crystallized first and followed their behaviour backwards
in time. We did not find any signature in the dynamic struc-
ture of the melt that would allow to predict which region was
about to crystallize.

We neither saw enhanced mobilities nor freeing up of
volume at the melt/crystal interface. For high overcompres-
sion, ellipsoids close to the melt/crystal interface are as mo-
bile as ellipsoids in the rest of the melt and for low overcom-
pression they even slow down. In addition, we tested for co-
operative motion and did not find any signal that would allow
to predict a crystallization site.

For our study, we conclude that we have not found any
signature in the spatio-temporal structure of the supersatu-
rated melt that would allow to predict imminent crystalliza-
tion events.
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