6,073 research outputs found

    Scattering Polarization of Hydrogen Lines in Weakly Magnetized Stellar Atmospheres I. Formulation and Application to Isothermal Models

    Full text link
    Although the spectral lines of hydrogen contain valuable information on the physical properties of a variety of astrophysical plasmas, including the upper solar chromosphere, relatively little is known about their scattering polarization signals whose modification via the Hanle effect may be exploited for magnetic field diagnostics. Here we report on a basic theoretical investigation of the linear polarization produced by scattering processes and the Hanle effect in Ly-a, Ly-b and H-a taking into account multilevel radiative transfer effects in an isothermal stellar atmosphere model, the fine-structure of the hydrogen levels, as well as the impact of collisions with electrons and protons. The main aim of this first paper is to elucidate the physical mechanisms that control the linear polarization in the three lines, as well as its sensitivity to the perturbers density and to the strength and structure of micro-structured and deterministic magnetic fields. To this end, we apply an efficient radiative transfer code we have developed for performing numerical simulations of the Hanle effect in multilevel systems with overlapping line transitions. For low density plasmas such as that of the upper solar chromosphere collisional depolarization is caused mainly by collisional transitions between the fine-structure levels of n=3, so that it is virtually insignificant for Ly-a but important for Ly-b and H-a. We show the impact of the Hanle effect on the three lines taking into account the radiative transfer coupling between the different hydrogen line transitions. For example, we demonstrate that the linear polarization profile of the H-a line is sensitive to the presence of magnetic field gradients in the line core formation region and that in solar-like chromospheres selective absorption of polarization components does not play any significant role on the emergent scattering polarization.Comment: 24 pages, 16 figures, 2 tables, accepted for publication in Ap

    Advanced Forward Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and Zeeman Effects

    Full text link
    A big challenge in solar and stellar physics in the coming years will be to decipher the magnetism of the solar outer atmosphere (chromosphere and corona) along with its dynamic coupling with the magnetic fields of the underlying photosphere. To this end, it is important to develop rigorous diagnostic tools for the physical interpretation of spectropolarimetric observations in suitably chosen spectral lines. Here we present a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects in some spectral lines of diagnostic interest, such as those of the He I 10830 A and D_3 multiplets. It is based on the quantum theory of spectral line polarization, which takes into account all the relevant physical mechanisms and ingredients (optical pumping, atomic level polarization, Zeeman, Paschen-Back and Hanle effects). The influence of radiative transfer on the emergent spectral line radiation is taken into account through a suitable slab model. The user can either calculate the emergent intensity and polarization for any given magnetic field vector or infer the dynamical and magnetic properties from the observed Stokes profiles via an efficient inversion algorithm based on global optimization methods. The reliability of the forward modeling and inversion code presented here is demonstrated through several applications, which range from the inference of the magnetic field vector in solar active regions to determining whether or not it is canopy-like in quiet chromospheric regions. This user-friendly diagnostic tool called "HAZEL" (from HAnle and ZEeman Light) is offered to the astrophysical community, with the hope that it will facilitate new advances in solar and stellar physics.Comment: 62 pages, 19 figures, 3 tables. Accepted for publication in Ap

    Depolarizing collisions with hydrogen: neutral and singly ionized alkaline earths

    Get PDF
    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkaly-earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H. We compute ab initio potential curves of the atom-H system and solve the quantum mechanical dynamics. From the scattering amplitudes we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T <10000 K. A comparative analysis of our results and previous calculations in the literature is done. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali-earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.Comment: 18 pages, 3 figures. Summitted to ApJ (2014

    The scattering polarization of the Ly-alpha lines of H I and He II taking into account PRD and J-state interference effects

    Full text link
    Recent theoretical investigations have pointed out that the cores of the Ly-alpha lines of H I and He II should show measurable scattering polarization signals when observing the solar disk, and that the magnetic sensitivity, through the Hanle effect, of such linear polarization signals is suitable for exploring the magnetism of the solar transition region. Such investigations were carried out in the limit of complete frequency redistribution (CRD) and neglecting quantum interference between the two upper J-levels of each line. Here we relax both approximations and show that the joint action of partial frequency redistribution (PRD) and J-state interference produces much more complex fractional linear polarization (Q/I) profiles, with large amplitudes in their wings. Such wing polarization signals turn out to be very sensitive to the temperature structure of the atmospheric model, so that they can be exploited for constraining the thermal properties of the solar chromosphere. Finally, we show that the approximation of CRD without J-state interference is however suitable for estimating the amplitude of the linear polarization signals in the core of the lines, where the Hanle effect operates.Comment: Accepted for publication in The Astrophysical Journal Letter

    Tensorial depolarization of alkali atoms by isotropic collisions with neutral hydrogen

    Full text link
    Results. We consider the problem of isotropic collisions between an alkali atom and neutral hydrogen. We calculate the collisional tensorial components of general p and s-states, characterized by their effective principal quantum number n∗n^{*}. It is found that the behaviour of the tensorial components obey simple power laws allowing quick calculations of the depolarizing collisional rates. As application, our results should allow a rigorous treatment of the atomic polarization profiles of the D1 -D2 lines of alkali atoms. Conclusions. Close coupling treatments of atomic collisions are needed to decipher the information encoded in the polarized radiation from the Sun. Important problems remain unresolved like the role of collisions in the Paschen-Back conditions.Comment: Accepted for publication in A&

    Dichroic Masers due to Radiation Anisotropy and the Influence of the Hanle Effect on the Circumstellar SiO Polarization

    Full text link
    The theory of the generation and transfer of polarized radiation, mainly developed for interpreting solar spectropolarimetric observations, allows to reconsider, in a more rigorous and elegant way, a physical mechanism that has been suggested some years ago to interpret the high degree of polarization often observed in astronomical masers. This mechanism, for which the name of 'dichroic maser' is proposed, can operate when a low density molecular cloud is illuminated by an anisotropic source of radiation (like for instance a nearby star). Here we investigate completely unsaturated masers and show that selective stimulated emission processes are capable of producing highly polarized maser radiation in a non-magnetic environment. The polarization of the maser radiation is linear and is directed tangentially to a ring equidistant to the central star. We show that the Hanle effect due to the presence of a magnetic field can produce a rotation (from the tangential direction) of the polarization by more that 45 degrees for some selected combinations of the strength, inclination and azimuth of the magnetic field vector. However, these very same conditions produce a drastic inhibition of the maser effect. The rotations of about 90 degrees observed in SiO masers in the evolved stars TX Cam by Kemball & Diamond (1997) and IRC+10011 by Desmurs et al (2000) may then be explainedby a local modification of the anisotropy of the radiation field, being transformed from mainly radial to mainly tangential.Comment: Accepted for publication on Ap
    • …
    corecore