82 research outputs found

    Acoustic Tweezing Cytometry Induces Rapid Initiation of Human Embryonic Stem Cell Differentiation.

    Get PDF
    Mechanical forces play critical roles in influencing human embryonic stem cell (hESC) fate. However, it remains largely uncharacterized how local mechanical forces influence hESC behavior in vitro. Here, we used an ultrasound (US) technique, acoustic tweezing cytometry (ATC), to apply targeted cyclic subcellular forces to hESCs via integrin-bound microbubbles (MBs). We found that ATC-mediated cyclic forces applied for 30 min to hESCs near the edge of a colony induced immediate global responses throughout the colony, suggesting the importance of cell-cell connection in the mechanoresponsiveness of hESCs to ATC-applied forces. ATC application generated increased contractile force, enhanced calcium activity, as well as decreased expression of pluripotency transcription factors Oct4 and Nanog, leading to rapid initiation of hESC differentiation and characteristic epithelial-mesenchymal transition (EMT) events that depend on focal adhesion kinase (FAK) activation and cytoskeleton (CSK) tension. These results reveal a unique, rapid mechanoresponsiveness and community behavior of hESCs to integrin-targeted cyclic forces

    Integrinâ Targeted Cyclic Forces Accelerate Neural Tubeâ Like Rosette Formation from Human Embryonic Stem Cells

    Full text link
    Mechanical forces play important roles in human embryonic stem cell (hESC) differentiation. To investigate the impact of dynamic mechanical forces on neural induction of hESCs, this study employs acoustic tweezing cytometry (ATC) to apply cyclic forces/strains to hESCs by actuating integrinâ bound microbubbles using ultrasound pulses. Accelerated neural induction of hESCs is demonstrated as the result of combined action of ATC and neural induction medium (NIM). Specifically, application of ATC for 30 min followed by culture in NIM upregulates neuroecdoderm markers Pax6 and Sox1 as early as 6 h after ATC, and induces neural tubeâ like rosette formation at 48 h after ATC. In contrast, no changes are observed in hESCs cultured in NIM without ATC treatment. In the absence of NIM, ATC application decreases Oct4, but does not increase Pax6 and Sox1 expression, nor does it induce neural rossette formation. The effects of ATC are abolished by inhibition of FAK, myosin activity, and RhoA/ROCK signaling. Taken together, the results reveal a synergistic action of ATC and NIM as an integrated mechanobiology mechanism that requires both integrinâ targeted cyclic forces and chemical factors for accelerated neural induction of hESCs.Acoustic tweezing cytometry (ATC) applies integrinâ targeted cyclic forces/strains to human embryonic stem cells (hESCs). Dependent on FAK, myosin activity, and RhoA/ROCK signaling, synergistic action of ATC for 30 min and neural induction medium greatly accelerates neural induction of hESCs, resulting in upregulated neuroecdoderm markers Pax6 and Sox1 by 6 h and neural tubeâ like rosette formation at 48 h.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151881/1/adbi201900064_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151881/2/adbi201900064.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151881/3/adbi201900064-sup-0001-SuppMat.pd

    The REVERE project:Experiments with the application of probabilistic NLP to systems engineering

    Get PDF
    Despite natural language’s well-documented shortcomings as a medium for precise technical description, its use in software-intensive systems engineering remains inescapable. This poses many problems for engineers who must derive problem understanding and synthesise precise solution descriptions from free text. This is true both for the largely unstructured textual descriptions from which system requirements are derived, and for more formal documents, such as standards, which impose requirements on system development processes. This paper describes experiments that we have carried out in the REVERE1 project to investigate the use of probabilistic natural language processing techniques to provide systems engineering support

    Mesh-based content routing using XML

    Get PDF

    The Effects of Mechanical Forces on Human Embryonic Stem Cell Behavior

    Full text link
    The development of an organism from a zygote into a fully functional 3D individual is a process in which a strong coupling of morphogens and mechanical forces is coordinated with embryo shape. During development, cells communicate with each other through cell-cell junctions and with their microenvironment via mechanical cues to regulate cell fate, re-organize the extracellular matrix, and guide developmental process. Most studies on human embryonic stem cells (hESCs) focused on how external soluble factors including growth factors and small inhibitors, gene and protein expression, and signaling pathways to maintain stemness or initiate differentiation of these cells. A various array of environmental factors including the effect of geometry and mechanical properties of extracellular matrix on stem cells contributes to altering stem cell fate. Recently, increasing evidence has revealed the importance of mechanical factors in affecting migration, proliferation and stem cell differentiation in vitro. In this dissertation, we focus on the development and application of novel bioengineering approaches to understand the effects of mechanical forces on hESC behaviors and the directed differentiation of hESCs. Specifically, by employing a microfluidic device to induce controlled and regulated forces that apply global mechanical forces to adherent hESCs, we find that uniaxial substrate stretching disrupts the pluripotency circuit and initiates the exit of transcription factors, Nanog and Oct4, from the nucleus into the cytoplasm via a nuclear export protein (CRM1) as early as 30 min after stretch application and for 2 hours on a flexible substrate coated with Matrigel, and is not reliant on exogenous soluble factors. In order to pinpoint to the receptors responsible for mechanical sensing, we employ a novel technique, acoustic tweezing cytometery (ATC), that utilizes ultrasound pulses to actuate functionalized microbubbles targeted to integrin in order to apply cyclic strain to hESCs. We find that ATC-mediated cyclic forces applied for 30 min induced immediate global responses in the colony, including increased contractile force, enhanced calcium activity, as well as decreased nuclear expression of pluripotency transcription factors Oct4 and Nanog, leading to rapid differentiation and characteristic epithelial-mesenchymal transition (EMT) events that depend on focal adhesion kinase activation and cytoskeleton tension. These results reveal a unique, rapid mechanoresponsiveness and community behavior of hESCs to integrintargeted cyclic forces. Furthermore, we demonstrate an integrative mechanotransduction that induced neural rosette formation of hESCs via the application of ATC and induction medium. We observe upregulation of Pax6 and Sox1 in as early as 6 hours, following by neural rosettes formation in 48 hours, which is much faster compared to the typical 10-15 days needed with conventional neural rosettes formation protocols. Together, this dissertation presents novel findings and insights regarding the effects of external mechanical forces on hESCs. Such information may help elucidate the mechanobiology of hESCs, and thus advance our knowledge of human embryogenesis, regenerative medicine, and tissue engineering.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147710/1/tugba_1.pd

    FORENSIC PHARMACY: ANALYSIS OF COMPLAINTS ABOUT THE PHARMACEUTICAL PROVISION FOR PRIVILEGED CATEGORIES OF PATIENTS IN UKRAINE (EXPERIMENTAL RESEARCH)

    Get PDF
    The article presents the results of the research from position of forensic pharmacy concerning analysis of complaints about the pharmaceutical provision for privileged categories of patients in Ukraine. Analyzed world experience of the reimbursement system (reference pricing) in pharmaceutical provision for privileged categories of citizens comparing to existing system in Ukraine. Studied complaints of privileged contingents of patients concerning pharmaceutical supply in various health care facilities. Based on results created a matrix of complaints of privileged contingents of patients regarding unsatisfactory pharmaceutical provision. Based on the matrix of complaints, three regional lists of drugs were developed with the further development of organizational and legal measures to increase the level of pharmaceutical provision of privileged contingents of patients.The article presents the results of the research from position of forensic pharmacy concerning analysis of complaints about the pharmaceutical provision for privileged categories of patients in Ukraine. Analyzed world experience of the reimbursement system (reference pricing) in pharmaceutical provision for privileged categories of citizens comparing to existing system in Ukraine. Studied complaints of privileged contingents of patients concerning pharmaceutical supply in various health care facilities. Based on results created a matrix of complaints of privileged contingents of patients regarding unsatisfactory pharmaceutical provision. Based on the matrix of complaints, three regional lists of drugs were developed with the further development of organizational and legal measures to increase the level of pharmaceutical provision of privileged contingents of patients

    ATCSpeech: a multilingual pilot-controller speech corpus from real Air Traffic Control environment

    Full text link
    Automatic Speech Recognition (ASR) is greatly developed in recent years, which expedites many applications on other fields. For the ASR research, speech corpus is always an essential foundation, especially for the vertical industry, such as Air Traffic Control (ATC). There are some speech corpora for common applications, public or paid. However, for the ATC, it is difficult to collect raw speeches from real systems due to safety issues. More importantly, for a supervised learning task like ASR, annotating the transcription is a more laborious work, which hugely restricts the prospect of ASR application. In this paper, a multilingual speech corpus (ATCSpeech) from real ATC systems, including accented Mandarin Chinese and English, is built and released to encourage the non-commercial ASR research in ATC domain. The corpus is detailly introduced from the perspective of data amount, speaker gender and role, speech quality and other attributions. In addition, the performance of our baseline ASR models is also reported. A community edition for our speech database can be applied and used under a special contrast. To our best knowledge, this is the first work that aims at building a real and multilingual ASR corpus for the air traffic related research

    Metro Passenger Flow Forecast with a Novel Markov-Grey Model

    Get PDF
    Accurate forecasts of passenger flow entering and leaving metro stations is an important work for Metro operation management, such as for the automatic adjustment of train operation diagrams or station passenger crowd regulation planning measures. In this study, Grey theory is introduced to develop a time series GM (1, 1) model for total passenger forecasting. Two modification factors determined by two minimum mean square error principles are proposed to decrease the discreteness of input data and thus improve the forecast accuracy. Moreover, the Markov chain approach is further used to optimize the residual error series. Passenger flow data entering and leaving the Xiaozhai station of Xi'an Metro Line 2 from September 1-30, 2015, were utilized to verify the effectiveness of the proposed method; the forecast results show that this novel Markov-Grey model performs well in terms of forecast accuracy with smaller SMSE and MAPE values. To this effect, the proposed method is especially well-suited to smooth passenger flow forecasting compared to other forecast techniques
    • …
    corecore