2,499 research outputs found

    LpL^p improving bounds for averages along curves

    Full text link
    We establish local (Lp,Lq)(L^p,L^q) mapping properties for averages on curves. The exponents are sharp except for endpoints.Comment: 37 pages, simplified argument (no further need for algebraic complexity theory!), to appear, JAM

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

    A probabilistic approach to reducing the algebraic complexity of computing Delaunay triangulations

    Get PDF
    Computing Delaunay triangulations in Rd\mathbb{R}^d involves evaluating the so-called in\_sphere predicate that determines if a point xx lies inside, on or outside the sphere circumscribing d+1d+1 points p0,…,pdp_0,\ldots ,p_d. This predicate reduces to evaluating the sign of a multivariate polynomial of degree d+2d+2 in the coordinates of the points x, p0, …, pdx, \, p_0,\, \ldots,\, p_d. Despite much progress on exact geometric computing, the fact that the degree of the polynomial increases with dd makes the evaluation of the sign of such a polynomial problematic except in very low dimensions. In this paper, we propose a new approach that is based on the witness complex, a weak form of the Delaunay complex introduced by Carlsson and de Silva. The witness complex Wit(L,W)\mathrm{Wit} (L,W) is defined from two sets LL and WW in some metric space XX: a finite set of points LL on which the complex is built, and a set WW of witnesses that serves as an approximation of XX. A fundamental result of de Silva states that Wit(L,W)=Del(L)\mathrm{Wit}(L,W)=\mathrm{Del} (L) if W=X=RdW=X=\mathbb{R}^d. In this paper, we give conditions on LL that ensure that the witness complex and the Delaunay triangulation coincide when WW is a finite set, and we introduce a new perturbation scheme to compute a perturbed set L′L' close to LL such that Del(L′)=wit(L′,W)\mathrm{Del} (L')= \mathrm{wit} (L', W). Our perturbation algorithm is a geometric application of the Moser-Tardos constructive proof of the Lov\'asz local lemma. The only numerical operations we use are (squared) distance comparisons (i.e., predicates of degree 2). The time-complexity of the algorithm is sublinear in ∣W∣|W|. Interestingly, although the algorithm does not compute any measure of simplex quality, a lower bound on the thickness of the output simplices can be guaranteed.Comment: 24 page

    Independence in Algebraic Complexity Theory

    Get PDF
    This thesis examines the concepts of linear and algebraic independence in algebraic complexity theory. Arithmetic circuits, computing multivariate polynomials over a field, form the framework of our complexity considerations. We are concerned with polynomial identity testing (PIT), the problem of deciding whether a given arithmetic circuit computes the zero polynomial. There are efficient randomized algorithms known for this problem, but as yet deterministic polynomial-time algorithms could be found only for restricted circuit classes. We are especially interested in blackbox algorithms, which do not inspect the given circuit, but solely evaluate it at some points. Known approaches to the PIT problem are based on the notions of linear independence and rank of vector subspaces of the polynomial ring. We generalize those methods to algebraic independence and transcendence degree of subalgebras of the polynomial ring. Thereby, we obtain efficient blackbox PIT algorithms for new circuit classes. The Jacobian criterion constitutes an efficient characterization for algebraic independence of polynomials. However, this criterion is valid only in characteristic zero. We deduce a novel Jacobian-like criterion for algebraic independence of polynomials over finite fields. We apply it to obtain another blackbox PIT algorithm and to improve the complexity of testing the algebraic independence of arithmetic circuits over finite fields.Die vorliegende Arbeit untersucht die Konzepte der linearen und algebraischen Unabhängigkeit innerhalb der algebraischen Komplexitätstheorie. Arithmetische Schaltkreise, die multivariate Polynome über einem Körper berechnen, bilden die Grundlage unserer Komplexitätsbetrachtungen. Wir befassen uns mit dem polynomial identity testing (PIT) Problem, bei dem entschieden werden soll ob ein gegebener Schaltkreis das Nullpolynom berechnet. Für dieses Problem sind effiziente randomisierte Algorithmen bekannt, aber deterministische Polynomialzeitalgorithmen konnten bisher nur für eingeschränkte Klassen von Schaltkreisen angegeben werden. Besonders von Interesse sind Blackbox-Algorithmen, welche den gegebenen Schaltkreis nicht inspizieren, sondern lediglich an Punkten auswerten. Bekannte Ansätze für das PIT Problem basieren auf den Begriffen der linearen Unabhängigkeit und des Rangs von Untervektorräumen des Polynomrings. Wir übertragen diese Methoden auf algebraische Unabhängigkeit und den Transzendenzgrad von Unteralgebren des Polynomrings. Dadurch erhalten wir effiziente Blackbox-PIT-Algorithmen für neue Klassen von Schaltkreisen. Eine effiziente Charakterisierung der algebraischen Unabhängigkeit von Polynomen ist durch das Jacobi-Kriterium gegeben. Dieses Kriterium ist jedoch nur in Charakteristik Null gültig. Wir leiten ein neues Jacobi-artiges Kriterium für die algebraische Unabhängigkeit von Polynomen über endlichen Körpern her. Dieses liefert einen weiteren Blackbox-PIT-Algorithmus und verbessert die Komplexität des Problems arithmetische Schaltkreise über endlichen Körpern auf algebraische Unabhängigkeit zu testen

    Computing the Kalman form

    Get PDF
    We present two algorithms for the computation of the Kalman form of a linear control system. The first one is based on the technique developed by Keller-Gehrig for the computation of the characteristic polynomial. The cost is a logarithmic number of matrix multiplications. To our knowledge, this improves the best previously known algebraic complexity by an order of magnitude. Then we also present a cubic algorithm proven to more efficient in practice.Comment: 10 page

    Variety Membership Testing in Algebraic Complexity Theory

    Get PDF
    In this thesis, we study some of the central problems in algebraic complexity theory through the lens of the variety membership testing problem. In the first part, we investigate whether separations between algebraic complexity classes can be phrased as instances of the variety membership testing problem. For this, we compare some complexity classes with their closures. We show that monotone commutative single-(source, sink) ABPs are closed. Further, we prove that multi-(source, sink) ABPs are not closed in both the monotone commutative and the noncommutative settings. However, the corresponding complexity classes are closed in all these settings. Next, we observe a separation between the complexity class VQP and the closure of VNP. In the second part, we cover the blackbox polynomial identity testing (PIT) problem, and the rank computation problem of symbolic matrices, both phrasable as instances of the variety membership testing problem. For the blackbox PIT, we give a randomized polynomial time algorithm that uses the number of random bits that matches the information-theoretic lower bound, differing from it only in the lower order terms. For the rank computation problem, we give a deterministic polynomial time approximation scheme (PTAS) when the degrees of the entries of the matrices are bounded by a constant. Finally, we show NP-hardness of two problems on 3-tensors, both of which are instances of the variety membership testing problem. The first problem is the orbit closure containment problem for the action of GLk x GLm x GLn on 3-tensors, while the second problem is to decide whether the slice rank of a given 3-tensor is at most r
    • …
    corecore