7,907 research outputs found

    Accretion Discs in Blazars

    Full text link
    The characteristic properties of blazars (rapid variability, strong polarization, high brightness) are widely attributed to a powerful relativistic jet oriented close to our line of sight. Despite the spectral energy distributions (SEDs) being strongly jet-dominated, a "big blue bump" has been recently detected in sources known as flat spectrum radio quasars (FSRQs). These new data provide a unique opportunity to observationally test coupled jet-disc accretion models in these extreme sources. In particular, as energy and angular momentum can be extracted by a jet magnetically coupled to the accretion disc, the thermal disc emission spectrum may be modified from that predicted by the standard model for disc accretion. We compare the theoretically predicted jet-modified accretion disc spectra against the new observations of the "big blue bump" in FSRQs. We find mass accretion rates that are higher, typically by a factor of two, than predicted by standard accretion disc theory. Furthermore, our results predict that the high redshift blazars PKS 0836+710, PKS 2149-307, B2 0743+25 and PKS 0537-286 may be predominantly powered by a low or moderate spin (a < 0.6) black hole with high mass accretion rates mdot_a ~ 50 - 200 msol/yr, while 3C 273 harbours a rapidly spinning black hole (a = 0.97) with mdot_a ~ 20 msol/yr. We also find that the black hole masses in these high redshift sources must be > 5 * 10^9 msol.Comment: Accepted for publication (17 August 2009) in MNRA

    Black hole accretion discs

    Full text link
    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flows onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.Comment: 41 pages, 11 figures, Chapter 1 in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library 440 (2016). Minor errors correcte

    Influence of Ohmic and ambipolar heating on thermal structure of accretion discs

    Full text link
    We investigate dynamics of accretion discs of young stars with fossil large-scale magnetic field. Our magneto-gas-dynamic (MHD) model of the accretion discs includes equations of Shakura and Sunyaev, induction equation, equations of thermal and collisional ionization. Induction equation takes into account Ohmic and magnetic ambipolar diffusion, magnetic buoyancy. We also consider the influence of Ohmic and ambipolar heating on thermal structure of the accretion discs. We analyse the influence of considered dissipative MHD effects on the temperature of the accretion discs around classical T Tauri star. The simulations show that Ohmic and ambipolar heating operate near the borders of the region with low ionization fraction (`dead' zone). Temperature grows by 1000\sim 1000 K near the inner boundary of the `dead' zone, r(0.51)r\approx (0.5-1) au, and by 100\sim 100 K near its outer boundary, r(3050)r\approx (30-50) au.Comment: 8 pages, 3 figures, The Third Russian Conference on Magnetohydrodynamics, accepted for publication in a Special Issue of the Magnetohydrodynamics Journa

    Dynamics of warped accretion discs

    Full text link
    Accretion discs are present around both stellar-mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei. A wide variety of circumstantial evidence implies that many of these discs are warped. The standard Bardeen--Petterson model attributes the shape of the warp to the competition between Lense--Thirring torque from the central black hole and viscous angular-momentum transport within the disc. We show that this description is incomplete, and that torques from the companion star (for X-ray binaries) or the self-gravity of the disc (for active galactic nuclei) can play a major role in determining the properties of the warped disc. Including these effects leads to a rich set of new phenomena. For example, (i) when a companion star is present and the warp arises from a misalignment between the companion's orbital axis and the black hole's spin axis, there is no steady-state solution of the Pringle--Ogilvie equations for a thin warped disc when the viscosity falls below a critical value; (ii) in AGN accretion discs, the warp can excite short-wavelength bending waves that propagate inward with growing amplitude until they are damped by the disc viscosity. We show that both phenomena can occur for plausible values of the black hole and disc parameters, and briefly discuss their observational implications.Comment: 28 pages, 11 figure

    Accretion Discs Trapped Near Corotation

    Full text link
    We show that discs accreting onto the magnetosphere of a rotating star can end up in a 'trapped' state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states over wide range of parameter space. We find two distinct regions of instability, one related to the buildup and release of mass in the disk outside corotation, the other to mass storage within the transition region near corotation. With a set of calculations over long time scales we show how trapped states evolve from both nonaccreting and fully accreting initial conditions, and also calculate the effects of cyclic accretion on the spin evolution of the star. Observations of cycles such as found here would provide important clues on the physics of magnetospheric accretion. Recent observations of cyclic and other unusual variability in T Tauri stars (EXors) and X-ray binaries are discussed in this context.Comment: 14 pages, 10 figures, accepted to MNRA

    X-ray irradiation in low mass binary systems

    Get PDF
    We calculate self-consistent models of X-ray irradiated accretion discs in close binary systems. We show that a point X-ray source powered by accretion and located in the disc plane cannot modify the disc structure, mainly because of the self-screening by the disc of its outer regions. Since observations show that the emission of the outer disc regions in low mass X-ray binaries is dominated by the reprocessed X-ray flux, accretion discs in these systems must be either warped or irradiated by a source above the disc plane, or both. We analyse the thermal-viscous stability of irradiated accretion discs and derive the stability criteria of such systems. We find that, contrary to the usual assumptions, the critical accretion rate below which a disc is unstable is rather uncertain since the correct formula describing irradiation is not well known.Comment: to be published in MNRAS, uses epsfig.st

    Viscous accretion discs around rotating black holes

    Get PDF
    The stationary hydrodynamic equations for transonic viscous accretion discs in Kerr geometry are derived. The consistent formulation is given for the viscous angular momentum transport and the boundary conditions on the horizon of a central black hole. An expression for the thickness of the disc is obtained from the vertical Euler equation for general accretion flows with vanishing vertical velocity. Different solution topologies are identified, characterized by a sonic transition close to or far from the marginally stable orbit. A numerical method is presented that allows to integrate the structure equations of transonic accretion flows. Global polytropic solutions for the disc structure are calculated, covering each topology and a wide range of physical conditions. These solutions generally possess a sub-Keplerian angular momentum distribution and have maximum temperatures in the range 1011101210^{11}-10^{12} K. Accretion discs around rotating black holes are hotter and deposit less angular momentum on the central object than accretion discs around Schwarzschild black holes.Comment: 15 pages LateX, requires mn.sty, accepted for publication in the MNRAS, figures available at http://www.lsw.uni-heidelberg.de/~jpeitz/PV

    Bending Instabilities in Magnetized Accretion Discs

    Get PDF
    We study the global bending modes of a thin annular disc subject to both an internally generated magnetic field and a magnetic field due to a dipole embedded in the central star with axis aligned with the disc rotation axis. When there is a significant inner region of the disc corotating with the star, we find spectra of unstable bending modes. These may lead to elevation of the disc above the original symmetry plane facilitating accretion along the magnetospheric field lines. The resulting non-axisymmetric disc configuration may result in the creation of hot spots on the stellar surface and the periodic photometric variations observed in many classical T Tauri stars (CTTS). Time-dependent behaviour may occur including the shadowing of the central source in magnetic accretors even when the dipole and rotation axes are aligned.Comment: Accepted by MNRAS. 18 pages, 11 figures. LaTeX2e in the MN style. PostScript and HTML files are also available from http://www-star.qmw.ac.uk/~va/ or by e-mail: [email protected]
    corecore