13 research outputs found

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    Optical Character Recognition of Printed Persian/Arabic Documents

    Get PDF
    Texts are an important representation of language. Due to the volume of texts generated and the historical value of some documents, it is imperative to use computers to read generated texts, and make them editable and searchable. This task, however, is not trivial. Recreating human perception capabilities in artificial systems like documents is one of the major goals of pattern recognition research. After decades of research and improvements in computing capabilities, humans\u27 ability to read typed or handwritten text is hardly matched by machine intelligence. Although, classical applications of Optical Character Recognition (OCR) like reading machine-printed addresses in a mail sorting machine is considered solved, more complex scripts or handwritten texts push the limits of the existing technology. Moreover, many of the existing OCR systems are language dependent. Therefore, improvements in OCR technologies have been uneven across different languages. Especially, for Persian, there has been limited research. Despite the need to process many Persian historical documents or use of OCR in variety of applications, few Persian OCR systems work with good recognition rate. Consequently, the task of automatically reading Persian typed documents with close-to-human performance is still an open problem and the main focus of this dissertation. In this dissertation, after a literature survey of the existing technology, we propose new techniques in the two important preprocessing steps in any OCR system: Skew detection and Page segmentation. Then, rather than the usual practice of character segmentation, we propose segmentation of Persian documents into sub-words. The choice of sub-word segmentation is to avoid the challenges of segmenting highly cursive Persian texts to isolated characters. For feature extraction, we will propose a hybrid scheme between three commonly used methods and finally use a nonparametric classification method. A large number of papers and patents advertise recognition rates near 100%. Such claims give the impression that automation problems seem to have been solved. Although OCR is widely used, its accuracy today is still far from a child\u27s reading skills. Failure of some real applications show that performance problems still exist on composite and degraded documents and that there is still room for progress

    ONLINE ARABIC TEXT RECOGNITION USING STATISTICAL TECHNIQUES

    Get PDF

    Large vocabulary off-line handwritten word recognition

    Get PDF
    Considerable progress has been made in handwriting recognition technology over the last few years. Thus far, handwriting recognition systems have been limited to small-scale and very constrained applications where the number on different words that a system can recognize is the key point for its performance. The capability of dealing with large vocabularies, however, opens up many more applications. In order to translate the gains made by research into large and very-large vocabulary handwriting recognition, it is necessary to further improve the computational efficiency and the accuracy of the current recognition strategies and algorithms. In this thesis we focus on efficient and accurate large vocabulary handwriting recognition. The main challenge is to speedup the recognition process and to improve the recognition accuracy. However. these two aspects are in mutual conftict. It is relatively easy to improve recognition speed while trading away some accuracy. But it is much harder to improve the recognition speed while preserving the accuracy. First, several strategies have been investigated for improving the performance of a baseline recognition system in terms of recognition speed to deal with large and very-large vocabularies. Next, we improve the performance in terms of recognition accuracy while preserving all the original characteristics of the baseline recognition system: omniwriter, unconstrained handwriting, and dynamic lexicons. The main contributions of this thesis are novel search strategies and a novel verification approach that allow us to achieve a 120 speedup and 10% accuracy improvement over a state-of-art baselinè recognition system for a very-large vocabulary recognition task (80,000 words). The improvements in speed are obtained by the following techniques: lexical tree search, standard and constrained lexicon-driven level building algorithms, fast two-level decoding algorithm, and a distributed recognition scheme. The recognition accuracy is improved by post-processing the list of the candidate N-best-scoring word hypotheses generated by the baseline recognition system. The list also contains the segmentation of such word hypotheses into characters . A verification module based on a neural network classifier is used to generate a score for each segmented character and in the end, the scores from the baseline recognition system and the verification module are combined to optimize performance. A rejection mechanism is introduced over the combination of the baseline recognition system with the verification module to improve significantly the word recognition rate to about 95% while rejecting 30% of the word hypotheses

    Arabic Manuscripts Analysis and Retrieval

    Get PDF

    Aportaciones al reconocimiento automático de texto manuscrito

    Full text link
    En esta tesis se estudia el problema de la robustez en los sistemas de reconocimiento automático de texto manuscrito off-line. Los sistemas de reconocimiento automático de texto manuscrito estarán maduros para su uso generalizado, cuando sean capaces de ofrecer a cualquier usuario, sin ningún tipo de preparación o adiestramiento para su utilización, una productividad razonable. Se hace necesario pues, construir sistemas flexibles y robustos en cuanto a la entrada, de tal manera que no se requiera del escritor ningún esfuerzo extra, que no haría si escribiese para ser leído por un humano. La intención del preproceso de la señal es hacer el sistema invariante a fuentes de variabilidad que no ayuden a la clasificación. En la actualidad no hay definida una solución general para conseguir invariabilidad al estilo de escritura, y cada sistema desarrolla la suya ad-hoc. En esta tesis se explorarán diferentes métodos de normalización de la señal de entrada off-line. Para ello se hace un amplio estudio de algoritmos de preproceso, tanto a nivel de toda la imagen: umbralización, reducción del ruido y corrección del desencuadre; como a nivel de texto: slope, slant y normalización del tamaño de los caracteres. Los sistemas dependientes del escritor obtienen mejores tasas de acierto que los independientes del escritor. Por otra parte, los sistemas independientes del escritor tienen más facilidad para reunir muestras de entrenamiento. En esta tesis seestudiará la adaptación de sistemas independientes del escritor para su utilizaciónpor un único escritor, con la intención de que a partir de una pocas muestras producidas por este escritor se mejore la productividad del sistema (para este escritor), o lo que es lo mismo, que éste pueda escribir de manera más relajada sin que el sistema pierda productividad. Los sistemas de reconocimiento de texto manuscrito no están exentos de errores. No sólo interesa saber el número de errores que produciráPastor Gadea, M. (2007). Aportaciones al reconocimiento automático de texto manuscrito [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1832Palanci
    corecore