
STATUS OF THESIS

Title of thesis
Off-line Arabic Handwriting Recognition System Using Fast Wavelet

Transform

I MOHAMED E. GUMAH___

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti

Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

 Confidential

X Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for ___________ years.

Remarks on disclosure:

The content of this thesis should not be copied or published by anyone without the written

permission by the author.

 Endorsed by

________________________________ __________________________

Signature of Author Signature of Supervisor

Permanent address: Name of Supervisor

Ajdabiya city. Tripoli street Dr. Etienne Schneider

Ajdabiya - Libya

Alrjele2004@yahoo.com

Date : _____________________ Date : __________________

UNIVERSITI TEKNOLOGI PETRONAS

OFF-LINE ARABIC HANDWRITING RECOGNITION SYSTEM USING FAST WAVELET

TRANSFORM

by

MOHAMED E. GUMAH

The undersigned certify that they have read, and recommend to the Postgraduate Studies

Programme for acceptance this thesis for the fulfilment of the requirements for the degree

stated.

Signature: ______________________________________

Main Supervisor: Dr. Etienne Schneider

Signature: ______________________________________

Co-Supervisor: Dr. Abdurazzag Ali Aburas

Signature: ______________________________________

Head of Department: Dr. Mohd Fadzil Bin Hassan

Date: ______________________________________

OFF-LINE ARABIC HANDWRITING RECOGNITION SYSTEM USING FAST WAVELET

TRANSFORM

by

MOHAMED E. GUMAH

A Thesis

Submitted to the Postgraduate Studies Programme

as a Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER INFORMATION SCIENCE

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR,

PERAK

August 2010

iv

DECLARATION OF THESIS

Title of thesis

off-line Arabic handwriting recognition system using fast wavelet

transform

I MOHAMED E. GUMAH___

hereby declare that the thesis is based on my original work except for quotations and citations

which have been duly acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTP or other institutions.

 Witnessed by

________________________________ __________________________

Signature of Author Signature of Supervisor

Permanent address: Name of Supervisor

Ajdabiya city. Tripoli street Dr. Etienne Schneider

Ajdabiya - Libya

Alrjele2004@yahoo.com

Date : _____________________ Date : __________________

v

DEDICATION

In the name of Allah, Most Gracious, Most Merciful

All praise and thanks are due to Allah Almighty and peace and

blessings be upon His Messenger

The results of this effort are truly dedicated to my mother and the soul of my father whose

example as devoted professionals, as well as, parents taught

me to be perseverant, responsible and loyal

to my belief.

To my wife, brothers, and my sisters, for all their support, encouragement,

sacrifice, and especially for their love.

Thank you all and this work is for YOU.

vi

ACKNOWLEDGEMENTS

First and foremost, I thank God Almighty for giving me the strength to complete my

research. Many sincere thanks to my great supervisor Dr. Etienne Schneider for his

constant support and guidance for the accomplishment of this work. I am also thankful to

my co-supervisor Dr. Abdulrrazaq Ali Aburas for his valuable suggestions and support. I

would also like to take this opportunity to express my gratitude to all Computer

Information Science department members for their kind concern and support throughout

this period. I am grateful to Universiti Teknologi PETRONAS for supporting this

research.

Thanks to all of my colleagues and friends with whom I had the opportunity to learn,

share and enjoy. It has been a pleasure. Last but not least, special and infinite thanks to

the most important people in my life, my family members, for their love, prayers,

sacrifice and support.

 vii

ABSTRACT

In this research, off-line handwriting recognition system for Arabic alphabet is

introduced. The system contains three main stages: preprocessing, segmentation and

recognition stage. In the preprocessing stage, Radon transform was used in the design

of algorithms for page, line and word skew correction as well as for word slant

correction. In the segmentation stage, Hough transform approach was used for line

extraction. For line to words and word to characters segmentation, a statistical method

using mathematic representation of the lines and words binary image was used.

Unlike most of current handwriting recognition system, our system simulates the

human mechanism for image recognition, where images are encoded and saved in

memory as groups according to their similarity to each other. Characters are

decomposed into a coefficient vectors, using fast wavelet transform, then, vectors,

that represent a character in different possible shapes, are saved as groups with one

representative for each group. The recognition is achieved by comparing a vector of

the character to be recognized with group representatives.

Experiments showed that the proposed system is able to achieve the recognition task

with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a

single character in a text of 15 lines where each line has 10 words on average.

 viii

ABSTRAK

Dalam kajian ini, secara off-line untuk sistem pengenalan tulisan tangan huruf Arab

diperkenalkan. Sistem ini mengandungi tiga tahap utama: pra-pemprosesan,

segmentasi dan tahap pengiktirafan. Pada tahap pra-pemprosesan, Radon transform

digunakan untuk merancang algoritma untuk laman, baris dan pembetulan Perkataan

miring serta untuk pembetulan Perkataan SLANT. Pada tahap segmentasi,

transformasi Hough pendekatan yang digunakan untuk ekstraksi garis. Untuk lini

kata-kata dan kata untuk watak segmentasi, kaedah statistik menggunakan perwakilan

matematik baris dan kata-kata citra biner digunakan. Tidak seperti kebanyakan sistem

pengenalan tulisan tangan saat ini, sistem kami mensimulasikan mekanisma manusia

untuk pengenalan gambar, di mana gambar akan dikodekan dan disimpan di dalam

memori sebagai kumpulan sesuai dengan kesamaan mereka satu sama lain. Watak

yang didekomposisi menjadi vektor pekali, dengan menggunakan transformasi

wavelet cepat, kemudian, vektor, yang mewakili aksara dalam bentuk mungkin

berbeza, akan disimpan sebagai kumpulan dengan satu wakil untuk setiap kumpulan.

pengakuan ini dilakukan dengan membandingkan vektor dari karakter yang akan

diiktiraf dengan wakil-wakil kumpulan.

Experiment menunjukkan sistem ini mampu mencapai sehingga 90.26% ketepatan

dalam pengenalan dengan masa hanya 3.41 saat, sistem ini mampu mengenal pasti

setiap karakter yang berada di dalam petikan yg mengandungi 15 baris ayat dan 10

perkataan di setiap baris.

 ix

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the

university, the copyright of this thesis has been reassigned by the author to the legal

entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained

in, or derived from, this thesis.

 © Mohamed E. Gumah, 2010

Institute of Technology PETRONAS Sdn Bhd

All rights reserved.

 x

TABLE OF CONTENTS

DECLARATION OF THESIS .. iv

DEDICATION ... v

ACKNOWLEDGEMENTS ... vi

ABSTRACT ... vii

ABSTRAK ... viii

COPYRIGHT ... ix

TABLE OF CONTENTS ... x

LIST OF TABLES ... xvi

LIST OF FIGURES ... xviii

LIST OF ABBREVIATIONS .. xxii

LIST OF SYMBOLS ... xxiii

Chapter 1: INTRODUCTION

1.1 Chapter Overview .. 1

1.2 Problem Statement ... 1

1.3 Definition of Terms .. 3

1.4 Challenges in Handwriting Character Recognition 3

1.5 Objectives of the Theses .. 4

1.6 Main Contributions .. 5

1.7 Thesis Outlines ... 6

Chapter 2: LITERATURE REVIEW

2.1 Chapter Overview .. 9

2.2 Introduction .. 9

2.3 The Nature of Handwritten Characters .. 11

2.4 The Arabic Characters.. 12

 xi

2.4.1 The History of Arabic Characters .. 12

2.4.2 The Nature of Arabic Characters ... 13

2.4.3 Arabic Different Writing Style .. 16

 2.4.3.1 The Naskh script ... 16

 2.4.3.2 The Ruqq’a script .. 17

 2.4.3.3 The Kufic script .. 17

 2.4.3.4 The Thuluth script ... 18

 2.4.3.5 The Farisi script .. 18

 2.4.3.6 The Diwani script .. 18

2.5 Character Recognition Systems ... 19

2.5.1 Online Recognition systems .. 20

2.5.2 Offline Recognition Systems ... 22

 2.5.2.1 Scanning Stage .. 22

 2.5.2.2 Preprocessing Stage .. 23

 2.5.2.3 Segmentation Stage ... 28

 2.5.2.4 Feature Extraction Stage ... 33

 2.5.2.5 Classification Stage ... 35

 2.5.2.5 Post-processing Stage.. 36

2.6 Arabic Optical Text Recognition (AOTR) System 36

2.6.1 Competitions in AOTR .. 36

2.6.2 AOTR Softwares ... 38

2.6.3 AOTR Databases ... 38

2.6.4 Previous Work on AOTR .. 39

2.7 Discussion .. 43

2.8 Summary .. 45

Chapter 3: PREPROCESSING

3.1 Chapter Overview .. 47

3.2 Introduction .. 47

3.3 Data Acquisition... 48

3.4 Raw Data Collection .. 49

3.4.1 Data Analysis .. 51

 xii

 3.4.1.1 Level of Legibility... 51

 3.4.1.2 Direction and Degree of Skew 52

 3.4.1.3 Density Average .. 52

3.5 Binarization .. 53

3.6 Smoothing .. 56

3.7 Normalization ... 58

3.8 Base-line Detection .. 60

3.9 Skew Corrections ... 61

3.9.1 Radon Transform .. 61

3.9.2 Proposed method for text and words skew correction 61

 3.9.2.1 The structuring element ... 63

 3.9.2.2 The proposed algorithm .. 64

3.10 Slant Correction ... 66

3.10.1 Slant words in Arabic handwriting ... 67

3.10.2 Proposed technique for slant correction 67

3.11 Thinning ... 70

3.11.1 Morphological Operations .. 71

3.12 Summary ... 74

Chapter 4: SEGMENTATION

4.1 Chapter Overview .. 77

4.2 Introduction .. 77

4.3 Segmentation Rules for Arabic Handwritten Text 78

4.3.1 Characters Width Estimation .. 80

4.4 Proposed Segmentation Module .. 82

4.4.1 Text-to-text lines Stage ... 83

 4.4.1.1 Proposed Method for Text-to-lines Stage 83

 4.4.1.2 Hough-Based Algorithm for Text-to-Lines Segmentation 84

4.4.2 Text line-to-Words Segmentation Stage 89

 4.4.2.1 The Proposed Algorithm for Text line-to-Words Stage 91

4.4.3 Word-to-Characters Segmentation Stage 96

 4.4.3.1 Proposed Method for Word-to-Characters Segmentation ... 96

 xiii

 4.4.3.2 The Over-segmentation Problem .. 102

 4.4.3.3 The Overlapping Characters ... 104

 4.4.3.4 Segmentation Algorithm for Overlapping Characters .. 105

4.5 Chapter summary ... 111

Chapter 5: RECOGRITION

5.1 Chapter Overview .. 113

5.2 Introduction .. 113

5.3 Human Recognition Mechanism .. 114

5.4 Fourier and Wavelet Transform ... 117

5.5 Signal Decomposition .. 118

5.6 Signal Reconstruction .. 120

5.7 Discreet Wavelet Transform .. 120

5.8 Fast Wavelet Transform ... 120

5.9 Previous Work on Wavelet Transforms ... 124

5.10 Tool to Build the System ... 126

5.11 Proposed Recognition Model ... 127

5.11.1 Model Construction ... 127

 5.11.1.1 The train.m function ... 129

 5.11.1.2 The test.m function .. 130

 5.11.1.3 The wave.m function ... 131

 5.11.1.4 The filter.m function ... 131

5.12 Factors That Affect Recognition Stage .. 132

5.12.1 Filter Type ... 132

 5.12.1.1 Haar filter.. 134

 5.12.1.2 Db4filter .. 135

 5.12.1.3 Sym4 filter ... 136

 5.12.3.4 Bior6.8 filter .. 136

 5.12.3.5 Jpeg9.7 filter ... 136

5.12.2 Decomposition Level ... 137

5.12.3 Codebook Size .. 138

 5.12.3.1 Proposed Method to Increase Codebook Size 139

 xiv

5.12.4 DCV Size .. 140

 5.12.4.1 Proposed Method to Maximize DCV Size 140

 5.12.4.2 Rotation Degree Determination 142

5.13 Summary .. 142

Chapter 6: EXPERMENTAL RESULTS AND ANALYSIS

6.1 Chapter Overview .. 145

6.2 Introduction .. 145

6.3 Preprocessing Stage Experiments .. 146

6.3.1 Skew Page Correction Experiments .. 147

6.3.2 Skew Line/Word Correction Experiments 149

6.3.3 Slant Correction Experiments ... 155

6.3.4 Thinning Experiments ... 156

6.4 Segmentation Stage Experiments ... 157

6.4.1 Text-to-Lines Segmentation Experiments................................... 157

 6.4.1.1 Previous work in Arabic Text-to-lines Segmentation ... 158

6.4.2 Lines-to-words Segmentation Experiments 159

 6.4.2.1 Previous Work in Arabic Text line-to-Words Segmentation 161

6.4.3 Word-to-Characters Segmentation Experiments......................... 162

 6.4.3.1 Previous Work in Arabic Word-to-Characters Segmentation 165

6.5 Recognition Stage Experiments ... 166

6.5.1 Filter Type Experiments .. 166

6.5.2 Decomposition Level Experiments ... 168

6.5.3 DCV Size Experiments ... 170

6.5.4 DCV Codebook Experiments .. 174

6.6 Results Analyses .. 178

6.7 Time Consumption Estimation .. 185

6.8 System Speed Evaluation ... 187

6.9 Results and Discussion ... 189

6.10 Summary .. 194

 xv

Chapter 7: CONCLUSION AND FURTHER WORKS

7.1 Conclusion ... 197

7.2 Further Works .. 199

REFERENCES .. 200

APPENDIXES ... 217

 APPENDIXE A: Page skew detection algorithm 217

 APPENDIXE B: Page skew correction algorithm 219

 APPENDIXE C: Line skew detection and correction algorithm............... 221

 APPENDIXE D: Word skew detection and correction algorithm............. 225

 APPENDIXE E: Line extraction algorithm. ... 229

 APPENDIXE F: Word extraction algorithm. ... 231

 APPENDIXE G: Overlapping character segmentation algorithm. 233

 APPENDIXE H: test.m function. .. 235

 APPENDIXE J: train.m function. ... 237

 APPENDIXE I: List of Publications ... 242

 xvi

LIST OF TABLES

Table 2.1: Some examples of different languages alphabets 11

Table 2.2: Arabic alphabet .. 14

Table 2.3: Arabic diacritical marks ... 15

Table 2.4: Examples of word and sub-word ... 15

Table 2.5: A comparison review of previous work in AOTR 41

Table 2.6: Trade-off between the accuracy and the time consuming 45

Table 4.1: The different shapes of two Arabic characters .. 79

Table 5.1: Comparison between our proposed system and human visual system 117

Table 6.1: The detection and correction algorithms results 149

Table 6.2: The parameters for page, line and word skew correction algorithms 151

Table 6.3: Results of line skew correction algorithm test ... 152

Table 6.4: Results of word skew correction algorithm test 154

Table 6.5: Results of slant word correction test .. 155

Table 6.6: Results of text-to-line algorithm test ... 158

Table 6.7: Some text line extraction methods and their accuracy 159

Table 6.8: Results of line-to-words segmentation algorithm test 160

Table 6.9: Previous work in Arabic text line-to-words segmentation 161

Table 6.10: Results of word-to-characters segmentation algorithm test 163

Table 6.11: Results of overlapping character segmentation algorithm test 164

Table 6.12: Previous works in Arabic word-to-characters segmentation 165

Table 6.13: A comparison between different filters performance 167

Table 6.14: The system performance with different decomposition level 169

Table 6.15: A comparison between different cases of DCV contents 171

Table 6.16: Effect of using additional pictures with different degrees of rotation ... 173

Table 6.17: The influence of codebook size on accuracy level 175

Table 6.18: Recognition accuracy of characters at different positions 176

Table 6.19: Full recognition results .. 179

Table 6.20: The letters Lam and Kaaf in different positions 185

 xvii

Table 6.21: Consumed time estimation... 186

Table 6.22: A comparison between the proposed system and some latest works on

Arabic handwriting recognition ... 193

 xviii

LIST OF FIGURES

Figure 2.1: Arabic writing direction ... 13

Figure 2.2: Dots in different Arabic writing styles ... 16

Figure 2.3: A sample of Naskh script ... 17

Figure 2.4: A sample of Ruqq’a script .. 17

Figure 2.5: A sample of Kufic script .. 17

Figure 2.6: A sample of Thuluth script ... 18

Figure 2.7: A sample of Farisi script .. 18

Figure 2.8: A sample of Diwani script .. 19

Figure 2.9: An Example of on-line handwriting recognition tablet 20

Figure 2.10: A typical off-line character recognition system 23

Figure 2.11: Three Arabic letters as a color image, gray image and binary image .. 24

Figure 2.12: The base-line with Arabic text ... 27

Figure 3.1: Two examples of both data categories ... 50

Figure 3.2: An example of a letter written in two different shapes 51

Figure 3.3: Two different samples with low legibility and high legibility 52

Figure 3.4: A text with two skew directions ... 52

Figure 3.5: Two samples with different density ... 53

Figure 3.6: The true-color image and the gray image for a sample of our dataset ... 54

Figure 3.7: A binary image of a sample of dataset ... 55

Figure 3.8: The tested pixel with eight neighbours .. 56

Figure 3.9 A sample of a letter image before and after applying Median filtering .. 58

Figure 3.10: An example of same word written by different writers 58

Figure 3.11: The horizontal projection of an Arabic text ... 60

Figure 3.12: A single projection at a specified rotation angle 61

Figure 3.13: The geometry of the Radon transform ... 61

Figure 3.14: A structuring element of an Arabic word ... 63

Figure 3.15: Radon Transform applied on the structuring element 63

Figure 3.16: Gray scale image of a skewed line ... 64

Figure 3.17: The structuring element of the skewed line ... 64

 xix

Figure 3.18: The structuring element after been corrected 65

Figure 3.19: The reconstructed line image ... 65

Figure 3.20: The page image before and after skew correction 66

Figure 3.21: Two Arabic words: with left and right slant .. 67

Figure 3.22: The affine transformation on square image .. 69

Figure 3.23: A slant word before and after correction using our method 67

Figure 3.24: The eight neighbours of pixel ... 69

Figure 3.25: Two examples of both data categories ... 70

Figure 3.26: The checked pixels with neighbour pixels ... 73

Figure 3.27: Arabic text before and after thinning ... 74

Figure 4.1: Some horizontal connection strokes ... 79

Figure 4.2: The spaces between sub-words (pointed by lower arrows) and between

different words (pointed by upper arrows) .. 80

Figure 4.3: Overlapping characters ... 80

Figure 4.4: A misplaced dot under the letter Dal (ـد) which should be under the

character Baa (بـ) .. 80

Figure 4.5: The width of Arabic characters .. 81

Figure 4.6: A flow chart of our segmentation stage ... 82

Figure 4.7: The text image input ... 85

Figure 4.8: Edged image of the text image input .. 85

Figure 4.9: The detected lines using Hough Transform ... 86

Figure 4.10: The corresponding white pixels line of one text line 86

Figure 4.11: An example of an extracted line ... 87

Figure 4.12: Connected components of Arabic handwritten text line 89

Figure 4.13: Vertical overlapping characters .. 90

Figure 4.14: An example of spaces between words and between characters 91

Figure 4.15: A binary image of text line ... 91

Figure 4.16: The empty columns between words and characters 92

Figure 4.17: The proposed algorithm flow chart .. 92

Figure 4.18: An example of segmentation stage input ... 97

Figure 4.19: Binary thin image of connected word .. 97

Figure 4.20: The word image after exchanging between 1 and 0 values 98

Figure 4.21: The letter Saad between two strokes .. 98

 xx

Figure 4.22: The character Saad positioned between two strokes 100

Figure 4.23: An example of first case of segmented letter 101

Figure 4.24: An example of second case of segmented letter 101

Figure 4.25: An example of second case of segmented letter 101

Figure 4.26: An example of first case of over-segmentation 102

Figure 4.27: An example of second case of over-segmentation 103

Figure 4.28: An example of third case of over-segmentation 104

Figure 4.29: The overlapping character algorithm ... 105

Figure 4.30: An example of two overlapping characters .. 105

Figure 4.31: First case of non-connected overlapping characters 106

Figure 4.32: The first case of non-connected overlapping characters 106

Figure 4.33: The horizontal strokes between characters... 107

Figure 4.34: An example of overlapping characters ... 107

Figure 4.35: The two overlapping characters before and after segmentation 108

Figure 4.36: Detection the connection point ... 109

Figure 4.37: The two ways to write the Lamalif... 110

Figure 4.38: The dataset of the Lamalif .. 111

Figure 5.1: The human visual system ... 115

Figure 5.2: Similarity between the proposed system and human visual system....... 116

Figure 5.3: Fourier and wavelet analysis .. 116

Figure 5.4: Signal decomposition ... 119

Figure 5.5: Decomposition before and after adding down-sampling operation 119

Figure 5.6: Decomposition and reconstruction process .. 120

Figure 5.7: The 2-D FWT filter bank ... 122

Figure 5.8: The decomposition result of 2-D FWT .. 123

Figure 5.9: An example of decomposition result .. 123

Figure 5.10: The proposed model construction .. 129

Figure 5.11: The dataset of four sub-codebooks of the letter Ain 130

Figure 5.12: Multiple-level decomposition .. 138

Figure 5.13: The proposed validation algorithm .. 139

Figure 5.14: Proposed method to maximize the DCV size 141

Figure 5.15: Arabic character in four positions .. 142

Figure 6.1: The text image before and after skew correction 148

 xxi

Figure 6.2: Detection and correction algorithms places in the model 150

Figure 6.3: Anticlockwise skewed lines ... 153

Figure 6.4: Arabic text before and after thinning ... 156

Figure 6.5: A comparison between five filters performance 168

Figure 6.6: A comparison between 3 levels of decomposition 170

Figure 6.7: A comparison between 4 cases of DCV contents 172

Figure 6.8: A comparison of using one picture and using extra picture after rotation at

different degrees... 174

Figure 6.9: The increase of accuracy after applying the proposed methods............. 177

Figure 6.10: First case of recognition failure .. 183

Figure 6.11: The full data of letter Ra and letter Zay ... 173

Figure 6.12: An example of recognition failure ... 184

Figure 6.13: The correct shape of letters Lam (a) and Kaaf (b) 184

Figure 6.14: Our collected data for letter Lam (a) and Kaaf (b) 185

Figure 6.15: Share of operations in consumed time ... 187

 xxii

LIST OF ABBREVIATIONS

1 Optical Character Recognition OCR

2 Arabic Optical Character Recognition AOCR

3 Inductive Logic Programming ILP

4 Decomposition Coefficient Vector DCV

5 Hidden Markov Model HMM

6 Artificial Neural Networks ANN

7 Discrete Wavelet Transform DWT

8 Fast Wavelet Transform FWT

9 Hyper-complex Wavelet Transform HWT

10 Bit Map Picture BMP

11 Standard Hough Transform SHT

12 Finite Impulse Response (filter) FIR

13 Infinite Impulse Response (filter) IIR

14

15

Joint Photographic Experts Group

Red Green Blue (image)

JPEG

RGB

 xxiii

LIST OF SYMBOLS

1 σ Greek letter SIGMA

2 φ Greek letter PHI

3 ψ Greek letter PSI

4 θ Greek letter THETA

5 ζ Greek letter ZETA

6 ∞ Infinity

7 ∫ Integral

8 ° Degree sing

9 ∑ Sum

10 π Pi≈3.14

11 ⋁ logical conjunction OR

12 ∧ logical conjunction AND

13 < Less-than sing

14 > Greater-than sing

http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Logical_conjunction

CHAPTER 1

INTRODUCTION

1.1 Chapter Overview

This chapter presents the problem statement of this research. Then, the meaning of

term “recognition” is highlighted to avoid any confusion between the term

Recognition and the term Identification which is in a deferent research field. Then,

challenges in the handwriting recognition field are discussed. Research objectives and

the main contributions of this thesis are listed. Finally, this chapter is ended with the

thesis outline.

1.2 Problem Statement

Pattern recognition is a wide field of applications that aims to enable the computer to

have some human abilities such as vision and hearing by using artificial intelligence.

Nowadays many developments are achieved in the field of artificial intelligence even

if it is unlikely to build a system that can emulate all human abilities. The diversity of

human abilities creates more challenges and generates new sub-fields of research.

One of the research areas of pattern recognition is character recognition where the

challenge is to make the computer able to read documents. In the literature, the term

Optical Character Recognition (OCR) is used for numerous contexts ranging from

isolated character recognition to document reading systems.

2

Character recognition systems can be used in a large variety of banking, business

and data entry applications such as check verification and office automation. It is also

used in other practical applications such as license plate recognition.

Recognition of handwritten characters poses a greater challenge than typewritten

characters because the challenge is how to make the computer able to recognize

characters that were written by different writers. The variation in shape and size of the

character, orientation, fragmentation and fusions are the main problems in

handwriting recognition. The character recognition process and accuracy of result are

also affected by the own nature of the alphabet in different languages. For Arabic

characters, the recognition task is more difficult [1] since the characters are written

cursively and dots are used to differentiate between several characters which have the

same shape. That explains why only little research progress has been achieved

compared to Latin and Chinese even if Arabic characters are used in several other

languages such as Persian, Urdu, Jawi and Pishtu, involving more than a half of a

billion people.

Although researchers have been working on Arabic handwriting recognition for

more than three decades, the subject is still one of the most challenging in pattern

recognition. Most of the researchers used methods that extract features (skeleton or

list of contours) from the character’s image. Then it is used in classification stage to

recognize the image. Artificial Neural Networks (ANN) and Hidden Markov Models

(HMM) are the most popular classification methods. The weakness of ANN and

HMM is the trade-off between accuracy and time consumption. That means, in order

to get a high accuracy, many features that can provide enough information are needed.

In this case a complex system is needed to be used which will take more time. If a

simple system is used, the time will be reduced. But the accuracy will be reduced as

well.

The current offline handwriting recognition systems are still struggling to reach

the human ability of recognizing handwritten text. Thus, in order to develop a robust

handwriting recognition system, it is important to understand the human mechanisms

of objects and patterns recognition. Then, explore the possibility of designing a new

3

handwriting recognition system that emulates the human mechanisms of objects and

patterns recognition.

1.3 Definition of Terms

In order to present this research it is important to illustrate the meaning of the term

’’recognition’’ in addition to other terms used in patterns recognition field. When

dealing with handwriting, researchers refer to two different terms: Recognition, and

Identification. In this research, Recognition of handwritten text will be studied. The

Recognition of handwritten or typewritten text is the ability of a computer to receive

and interpret intelligible handwritten or typewritten input from sources such as paper

documents, photographs, touch-screens and other devices [2]. Identification is the task

of identifying the author of a fragment of handwriting such as a signature. It also can

be used in the field of forensic, where there may be a need to indentify a suspect using

handwritten text [3].

Optical Characters Recognition refers to the translation of scanned images of

handwritten, typewritten or printed text into machine-encoded text [4]. In this thesis,

the term” Off-line Handwriting Recognition” is used as it is more specific to the scope

of this study.

1.4 Challenges in Handwriting Character Recognition

Handwriting recognition systems face several challenges. The main challenge is that

each character in any language has specific shape, or number of specific shapes, but

when that character is handwritten, it may appear in many shapes. People usually do

not exactly follow the handwriting rules. Instead, each person has his own way to

write manually, which makes the handwritten characters appear with many variations.

For languages written cursively, where the characters in a word are connected,

making that word as a complex stroke, there are two options to recognize a

http://en.wikipedia.org/wiki/Image

4

handwritten text. The first option is to segment the text into words, then recognize the

word by itself. This option can be used when the word to be recognized belongs to a

limited group of words, such as town names in mail addresses. In general application,

using this option would require the availability of the whole lexicon of that language

in order to train the system which seems impossible. The second option is to segment

each word into characters, then, recognize each character separately. This option

needs a robust segmentation method as each failure in the segmentation will result in

recognition error.

Finally, handwritten text usually need some kind of preparation to be processed

known as preprocessing which aims to maximize shape information and reduce noise.

There are different kinds of preprocessing operations involved in order to achieve

several required tasks such as noise reduction, normalization and skew correction.

1.5 Objectives of this research

The research in characters recognition started in the second quarter of the 20th

century. Today, even though there are many commercial and accurate systems for

machine-printed characters, less success has been achieved with the handwritten

characters. Among the languages, the characters of Arabic language have not received

enough interests by the researchers and as a result little research progress has been

achieved in comparison to other languages such as Latin and Chinese.

The aim of this study is to propose an off-line handwriting recognition system,

that can emulates the capability of human brain to recognize objects and patterns by

recognizing handwritten characters without features extraction and classification

stages. Instead, the system will use Fast Wavelet Transform to produce coefficient

vectors of the characters images. This coefficient vector will be directly used to

recognize the handwritten characters. This study aims to add a new contribution to

Arabic handwriting recognition by:

5

i. Performing reliable preprocessing steps to prepare the handwritten script to be

ready for segmentation and recognition stages.

ii. Testing the available segmentation techniques that can deal with cursiveness-

overlapping problems, and subsequently to design a suitable segmentation method

that can be used with Arabic words.

iii. Designing a new recognition system that can accomplish the recognition task

within a short time but with high accuracy.

1.6 Main Contributions

This thesis presents a new segmentation-based system for off-line Arabic handwriting

recognition. The major contributions are listed below:

i. An accurate algorithm for line extraction.

The algorithm adopts Hough transform approach which is a global method for

finding straight lines in a binary image.

ii. A fast accurate algorithm for page, line and word skew detection and

correction.

The algorithm consists of three steps: conversion of word or line image into

structuring element, applying Radon transform on the structuring element, and

finally, reconstruction of the word or line image.

iii. An algorithm for line to word segmentation suitable for Arabic handwritten

text.

The algorithm makes use of mathematical representation of the text line binary

image, where spacing between words have zero value in the image array.

Using this algorithm, the width of the connected components and distance

between each of two adjacent components can be measured. The width of the

connected components and the distance between them are used to determine

whether that component is an isolated character, which can be sent to the

recognizer, or a word/sub-word, that needs more segmentation.

6

iv. An algorithm for word to character segmentation suitable for Arabic

handwritten words.

The algorithm makes use of the thinning operation that limits the width of the

word strokes into only one pixel. This is used to find possible segmentation

points.

v. An algorithm for overlapping-characters segmentation suitable for Arabic

handwritten words.

The algorithm uses the connection point between two overlapping characters

as a segmentation path.

vi. A reliable model for handwritten-character recognition.

In this model, the character image will be decomposed using wavelets

transform, then, the output of the decomposition operation, which will be

represented as a coefficient, will be used for character recognition.

1.7 Thesis Outline

This thesis is divided into seven chapters. In the first chapter, the problem

statement, the research objectives, and the main contributions are briefly presented.

The second chapter presents an overview of Arabic alphabet, history of its

development, the nature of Arabic characters, and the different Arabic handwriting

styles, has been presented followed by an overview of handwriting recognition field.

After defining the two main approaches in handwriting recognition, the online and

offline approaches, the main stages in handwriting recognition system was discussed

followed by a discussion on Arabic Optical Text Recognition (AOTR) systems. In

order to have a good view of AOTR systems, AOTR software, AOTR competitions,

and AOTR available databases were briefly discussed.

 The third chapter presents the main parts of preprocessing stage: data acquisition,

binarization, smoothing, normalization and thinning. For normalization, a fast

algorithm which uses Radon transform method for skew correction is proposed. The

7

new proposed algorithm can also be used for page skew correction as well as base line

correction. For slant correction, a three-step technique is proposed; detection of

vertical strokes using Hough Transform, measurement of angle using boundary

tracing routine, and slant correction using transform technique. For thinning, an

algorithm that utilizes the algorithm proposed by Zhang and Wang is proposed. For

skew detection and correction, the proposed algorithm consists of three steps:

conversion of word or line image into structuring element, applying Radon transform

on the structuring element, and finally, reconstruction of the word or line image.

The fourth chapter presents the proposed a full set of segmentation which includes

the segmentation of page into lines, sometimes known as line extraction, then, line to

words, and, finally, word to character. In order to design a segmentation algorithm

more suitable for Arabic handwriting segmentation, some Arabic handwriting

characteristics that make segmentation more difficult compared to other languages

have been highlighted. For the proposed segmentation model, several algorithms for

various parts of the segmentation are proposed.

The fifth chapter presents the proposed model for the recognition stage. The

proposed system is presented as a simulation of the human mechanism of objects and

patterns recognition. This chapter includes a review of previous works on using FWT

in different image processing applications, such as face recognition, edge detection,

character recognition, search in image database, and image compression. Then, we

discuss the construction of the model by presenting each of the four proposed

algorithms. The factors that affect the model accuracy are, and the methods to

increase the model accuracy have will be proposed.

 The sixth chapter presents experiments and results of all proposed methods, as

well as, for the recognition model. The seventh chapter presents some discussion, a

conclusion, and future works.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Chapter Overview

In this chapter, the field of Arabic handwriting recognition is reviewed. It starts with

an introduction to highlight the history of handwriting recognition as a sub-field of

image recognition, which is one of the image processing applications. The nature of

Arabic handwritten characters is discussed as they are the subject of this research.

Then, Arabic characters in terms of history and different styles are presented. This is

followed by a highlight on the difference between the two main approaches in

handwriting recognition, online and offline approaches. Next, the main stages in a

typical offline recognition system are presented. Finally, an overview of Arabic text

recognition systems is presented which covers Arabic text recognition competitions,

softwares, databases, and previously published works.

2.2 Introduction

Although image recognition has been an active research area since the early days of

computers, it is still one of the most challenging and exciting fields of research in

image processing field. Image processing, as one of the computer vision applications,

relies on the theory of artificial systems that extract information from images. The

image data comes in many forms like video sequences, camera pictures, or multi-

dimensional data from a medical scanner. In the early days of computing, it seemed

difficult to process large sets of image data. In the late 1970s, more studies started to

focus in the field.

 10

Computer vision covers a wide range of topics that are related to other disciplines.

Recently, there are numerous methods for solving various computer vision tasks,

which seldom can be generalized over a wide range of applications. Many of the

methods and applications are still in the stage of basic research, but more and more

methods have been converted into commercial products, where they often constitute a

part of a larger system which can solve complex tasks (e.g. in the area of medical

images, or quality control and measurements in industrial processes). In most

practical computer vision applications, the computers are programmed to achieve a

specific task, but methods based on learning become more common [5].

The problem of character recognition has changed over time. The task started to

be only recognizing printed numerals of constant font and size. Nowadays, the

challenge involves many levels including handwritten text. The challenge in

handwritten text is that while human can easily (read) recognize cursive handwritten

characters with 100% recognition rate when they are neatly written. There is no

optical recognition system that could reach this rate yet. Thus, character recognition,

particularly for handwritten characters, is still an active field of research.

The challenge of character recognition is how to understand the concept of a

character‟s shape and to create a mechanism that identifies any instantiation of this

concept for the handwritten characters. The nature of the character which varies from

one language to another, the variation in the character shape when it is written by

different writers (sometimes even by the same writer) and the noise such as stains,

dots, and gaps are the main difficulties faced in the recognition task. While it seems

impossible to change the nature of the character in any language to make it easier to

be recognized by the computer, the noise problem can be partly solved by designing

more effective preprocessing techniques.

Since 1929, when the first patent was obtained on OCR, many papers have been

published on character recognition. With the rapid progress in computer applications,

the research on character recognition has intensified, and more industrial applications

have emerged. The first commercial machine developed in 1950, was used for sorting

checks in banks by reading numbers in specific standardized font. The recognition

 11

logic for the early systems was based on hardware technique rather than software. In

early 1970s, researchers started utilizing software as the recognition logic [6]. Since

then, OCR system has been used in many applications such as mail storing, zip code

reading, helping the blind to read, automating office archiving and retrieving text, and

car plate recognition [7].

Since 1980, faster document readers have been developed. They are evaluated

according to the type of fonts that they can recognize, and also according to the time

needed for recognition. Recent commercial systems can recognize different writing

styles for Latin, Chinese, Korean, Japanese, Cyrillic, and Arabic languages [8].

2.3 The Nature of Handwritten Characters

The term alphabet refers to a writing system that has characters that represent both

consonant and vowel sounds. The history of the alphabet started in ancient Egypt. By

2700 BC Egyptian writing had a set of some 22 hieroglyphs to represent syllables that

begin with a single consonant of their language [9].

Presently, many alphabets are used worldwide such as Latin, Cyrillic Arabic,

Hebrew, Russian, Chinese, Japanese, and many more. Table 2.1 shows some

examples of alphabets belonging to different languages.

Table 2.1: Some alphabets of different languages

Language Example

Arabic اٸر٥ه٪ ٤ٹى اٸؽهچ٪ اٸٽٵرڇتح ٌكچٌا

Chinese 手写汉字识别

Japanese 文字認識手書き

Hebrew תו בכתב יד הכרה

Hindi चररत्र हस्तलऱखित मान्यता

Russian
распознавание
рукописного

Thai รู้จ ำตัวอักษร เขียนด้วยลำยมือ

 12

Obviously, there are clear differences between the shapes of the characters used in

different languages. In some languages, dots and punctuations are parts of the

characters. These dots and punctuations might be considered as noise and will be

removed in the smoothing process which will cause a recognition error. Furthermore,

some languages are written cursively which add more difficulties in word

segmentation. In addition to that, in some languages, such as Arabic, some characters

are written in more than one style which makes it more difficult to have one

abstracted form of the same character as these characters looks different depending on

different style.

2.4 The Arabic Characters

Arabic characters are the alphabet in more than 30 different languages and slangs,

such as Arabic, Persian, Urdu, Jawi, Pishtu, and Kurd (more than half a billion

people). In addition to that, most Muslims (almost ¼ of the people on Earth) can read

Arabic because it is the language of the Quran, the holy book of Muslims [10]. Arabic

is the most widely used alphabet around the world after the Latin alphabet [11].

2.4.1 The History of Arabic Characters

Arabic alphabet is a derivative of the Nabataean or the Syriac variation of the

Aramaic alphabet, which descended from the Phoenician alphabet, which among

others gave rise to the Hebrew alphabet and the Greek alphabet [12]. In the early

years of Islam, in the seventh century AD, the Arabic alphabet first emerged in its

classical form while being used to write the Quran. Subsequently, a system of dots

was added to the Arabic alphabet to distinguish the characters that have the same

shape.

In the early eighth century A.D, diacritical marks started to be used to ensure more

correct reading of Quran. For example, the Fatha which is a small diagonal line placed

above a character, represents a short „a‟ sound with the character sound, while the

Kasra is a small diagonal line placed below the character, and represents a short „i‟

sound.

 13

However, these diacritical marks are seldom used in handwriting. Beside the

teaching purposes, they are used exclusively in religious texts and literature [13].

When the Arabic alphabet spread to countries which used other languages such as

Persian and Urdu, extra characters were added to spell non-Arabic sounds.

2.4.2 The Nature of Arabic Characters

Arabic alphabet contains 28 characters. These characters are written cursively when

they are used to write words. The shape of these characters, when the character is

isolated, is different from its shape when it is connected with other characters. Their

shapes will also be different according to their position in the word (beginning,

middle or end of the word). This will increase the number of classes to be recognized

from 28 to 84. Table 2.2 shows the Arabic characters in 4 different positions.

There are some characteristics that make Arabic cursive writing unique compared

to Latin, Chinese and Japanese. These characteristics can be summarized as follow:

i. While some languages script are written from left to right, such as Latin, or

from top to bottom, such as Chinese, Arabic is written from right to left in

both printed and handwritten forms, as shown in Figure 2.1. No upper or lower

case exists in Arabic.

Figure 2.1: Arabic writing direction

ii. Arabic is always written cursively and words are separated by spaces. Most of

the Arabic characters can be joined from both right and left side. Specifically,

six characters can be connected from the right side only, these are: ق ,ل ,ن ,و ,چ,

 .as shown in Table 2.2 ا

 الحروف العربية
The direction of writing

 14

Table 2.2: Arabic alphabet in four different positions

No Name
Position

Isolated
End Middle Beginning

1 Alif ـا -ا ـا ا ا

2 Baa ب تـ ـثـ ـة

3 Taa ـح -ـد خ ذـ ـرـ

4 Thaa ز شـ ـصـ ـس

5 Jeem ض ظـ ـعـ ـط

6 Haa غ ؼـ ـؽـ ـػ

7 Khaa ؾ ــ ـفـ ـؿ

8 Daal ق ق ـك ـك

9 Thaa

l
 ل ل ـم ـم

01 Raa ن ن ـه ـه

11 Zay و و ـى ـى

12 Seen ًي ٌـ ـٍـ ـ

13 Shee

n
 َ ِـ ـّـ ـُ

14 Saad ٓٔـ ـٕـ ـ ْ

15 Shaa

d
 ٖ ٘ـ ـٙـ ـٗ

06 Ttaa ٜٛـ ـٝـ ـ ٚ

17 Dtha

a
 ٞ ٠ـ ـ١ـ ـٟ

18 Ain ٢ ٤ـ ـ٥ـ ـ٣

19 Ghee

n
 ٦ ٨ـ ـ٩ـ ـ٧

20 Faa ٬ـ ـ٭ـ ـ٫ ٪

21 Qaf ٮ ٰـ ـٱـ ـٯ

22 Kaf ٲ ٴـ ـٵـ ـٳ

23 Lam ٶ ٸـ ـٹـ ـٷ

24 Mee

m
 ٺ ټـ ـٽـ ـٻ

25 Noon پ ڀـ ـځـ ـٿ

26 Haa ڂ ڄـ ـڅـ ـڃ

27 Wow چ چ ـڇ ـڇ

28 Yaa ًي ٌـ ـٍـ ـ

 15

iii. Diacritical marks are used in limited cases to help the reader to pronounce the

words correctly. Without these diacritical marks, some words may have

several different meanings. Thus, diacritical marks are used to determine a

particular meaning. Table 2.3 shows a list of Arabic diacritical marks.

Table 2.3: Arabic diacritical marks

Diacritical marks Usage Example

Fatha
The character is pronounced with

an „a‟ sound َب

Damma
The character is pronounced with

an „o‟ sound ُب

Kasra
The character is pronounced with

an „i‟ sound ِب

Shadah Indicates gemination ّب

Sukun Indicates a consonant ْب

Madah only with Alif
Indicates a glottal stop followed by

long „a‟ sound آ

Tanween
Indicates that the vowel is followed

by the consonant „n‟ ٍبٌ تاً ب

iv. The presence of the following six characters (ا ,ق ,ل ,ن ,و ,چ) in a word, leads to

divide the word into two or more sub-words separated by spaces, usually

shorter than the space between words. Otherwise, the word will appear

connected. This must be considered to avoid segmenting a word into multiple

words. Table 2.4 shows some examples of words and sub-words

Table 2.4: Examples of word and sub-word

Connected

word
2 sub-words 3 sub-words 4 sub-words

 ټؽٽك
 ٴاٸڇٔاٌا ټاٸٍىٌا ٌاٸٻ

 ٴا ٸڇ ٔا ٌا ټا ٸٍى ٌا ٌا ٸٻ

v. Fifteen characters have dots that distinguish characters that share the same

primary shape. Some characters are distinguished by adding one dot below the

character (only ب). Dot is added above the character in (٦ –ٞ –ٖ –و –ل –ؾ

 16

 Others have two dots .(ض only) or in the middle of the character (پ -٪ –

above, such as in (ٮ - خ Two characters are .(ي) or below, in only (ج -

distinguished by three dots above the character which are (َ -ز) According

to the writing style, the two dots can be written separately or connectively as

small parallelogram while the three dots can be written separately or

connectively as small angle, as shown in Figure 2.2. In other languages that

use the Arabic alphabet such as Persian, dots have been added to other

characters.

Figure 2.2: Dots in different Arabic writing styles

2.4.3 Different Arabic Writing Styles

Arabic text can be written in many different writing styles. Since the early ages of

Islam, Arabic calligraphy has changed over time into many nicely shaped styles. The

Arabic calligraphy which is widely used to write copies of the Quran and as

decoration arts has been influenced by the cultures and arts of different people who

converted to Islam such as Persians and Turks. In the present days, six writing styles

are widely used which are: Naskh, Ruqq‟a, Kufic, Thuluth, Farisi, and Diwani. The

Arabic characters do appear in quite different shapes when they are written in these

different styles [14].

2.4.3.1 The Naskh script

In the tenth century, this style became the generally used style for writing the Quran.

Because of its legibility, it was adapted as the preferred typesetting and printing style,

and became the most popular used script. In Naskh script, character shapes appear

 17

quite round and the characters are connected with thin lines. Figure 2.3 shows a

sample of Naskh script [15].

Figure 2.3: A sample of Naskh script

2.4.3.2 The Ruqq’a script

The Ruqq‟a is the simplest writing script in Arabic. That makes it very popular for

handwriting since it is usually written without using diacritical marks except in few

necessary cases. Figure 2.4 shows a sample of Ruqq‟a script [15].

Figure 2.4: A sample of Ruqq‟a script

2.4.3.3 The Kufic script

Kufic script grew with the beginning of Islam when it was used to write the Quran, It

is called by the name Kufic since it was first established in the land of Kufa in Iraq.

The Kufic script is characterized by two main features: the short vertical characters

and long horizontal characters. It is usually used to write titles and as decoration arts.

Figure 2.5 shows a sample of Kufic script [17].

Figure 2.5: A sample of Kufic script

 18

2.4.3.4 The Thuluth script

This large and elegant cursive script is widely used for mosques decorations. In this

script, the forms of characters are many and varied and the forms are not restricted to

any particular style. Thus, one sentence can be written in several shapes. Figure 2.6

shows a sample of Thuluth script [18].

Figure 2.6: A sample of Thuluth script

2.4.3.5 The Farisi script

The Farisi script was developed in Iran in the thirteenth century AD. It is a legible,

clear script where characters seem to have descended in one direction, and the

beauties of the characters are enhanced by soft and rounded lines. It is widely used for

Persian and Urdu scripts. Figure 2.7 shows a sample of Farisi script [19].

Figure 2.7: A sample of Farisi script

2.4.3.6 The Diwani script

The Diwani script is a cursive script of Arabic calligraphy. It was developed in the

sixteenth century AD by Turks calligraphers during the reign of the Ottoman Empire,

where it was used to write royal orders. It appears in beautiful and overlapping lines,

which cause some difficulties to distinguish some of the characters. Nowadays, it is

only used for decoration arts. Figure 2.8 shows a sample of Diwani script [17].

 19

Figure 2.8: A sample of Diwani script

Although, there are several styles of Arabic writing, but only two of them are

widely used by ordinary people in handwriting, these two styles are Naskh and

Ruqq‟a styles. The rest of the styles are used only by calligraphers in decorations and

calligraphy arts. Each Naskh and Ruqq‟a styles has its own rule, which distinguishes

the way each character should be written and how these characters should be

connected, however, only few writers know the rules. Consequently, the handwriting

of ordinary people is a mix of both styles [20].

2.5 Character Recognition Systems

Character recognition is one of the pattern recognition sub-fields, such as speech

recognition, facial recognition, iris recognition and finger-print recognition, where the

aim is to categorize patterns, based on statistical information extracted from the

patterns or a priori knowledge. The main task of researchers in character recognition

field is to develop systems that can convert written documents to machine-encoded

text. This task has been accomplished with a high accuracy level with printed

documents mostly, for all different languages, but it is still an open challenge in the

case of handwritten documents particularly with languages that use cursive

handwriting such as the Arabic language.

The main reason of low accuracy accomplishment in the case of handwriting is

the lacking of a priori knowledge of each handwritten character, unlike in the case of

printed characters, where a single form of each printed character (a priori knowledge)

is available. The recognition system should classify the tested characters based either

on statistical information extracted from the character or a priori knowledge. In case

of handwritten characters, there is no exact shape of the character. Although

 20

handwritten and printed characters are similar in general, handwritten characters can

have more shapes, depending on the multiplicity of writers, their different ways in

handwriting, and how far they apply the writing rules. Thus, in case of handwritten

characters, each character should have abstracted form. The accuracy of the system

will depend on how much the character, which is the object to be recognized, is close

to the abstracted form.

In terms of input type, handwritten recognition systems are classified into two

main approaches: On-line and off-line recognition systems.

2.5.1 Online Recognition systems

Online character recognition systems, known as real-time or dynamic systems, can

recognize the characters in real time. The user writes directly on a digital device

called tablet using a special stylus pen. When the user starts to write, the tablet will

record the strings of coordinates separated by signs, which indicate when the pen has

ceased to touch the tablet surface. In this case, the computer recognizes characters as

they are written [21]. Figure 2.9 shows a sample of the tablet used in on-line

handwriting recognition.

Figure 2.9: An example of on-line handwriting recognition tablets

The main advantage of on-line devices is that they capture the dynamic

information of the writing which consists of the number of strokes, the order of the

strokes, the direction of the writing for each stroke, and the speed of the writing

within each stroke. This information, which facilitates the process of character

recognition, is not available in off-line recognition systems [20].

 21

Another on-line handwriting recognition advantage is interactivity and adaptation.

In an editing application, the writing of a symbol can cause the display to change

appropriately. Recognition errors can also be corrected immediately. On the other

hand, when some of the written characters are not being accurately recognized, the

user can alter their drawing to improve recognition.

There are two main disadvantages of on-line handwriting recognition. First, the

writer is required to use special equipment which is not as comfortable and natural to

use as pen and paper. Second, the nature of real-time recognition systems limits their

use in some cases such as historical documents.

The tablet is the main equipment in on-line handwriting recognition systems.

Tablets can be used for a variety of graphical interaction tasks. Mainly, tablet is used

for real-time capture of line drawings, such as handwriting, signatures, and flowcharts

[22].

On-line handwriting recognition systems can be classified into two distinct

families of classification approach: formal structural and rule-based approach, and

statistical classification approaches. The formal structural and rule-based approach

proposes that characters shape can be described in abstract fashion regardless of the

shape variations that occur during execution. This approach requires robust and

reliable rules to be defined but does not require a large amount of training data.

However, this approach has been rejuvenated recently with the incorporation of fuzzy

rules and grammars that use statistical information on the frequency of occurrence of

particular features.

In the statistical approach, the shape is described by a fixed number of features

defining a multidimensional representation space in which different classes are

described with multidimensional probability distributions around a centred class.

There are three groups of methods that use statistical approach: explicit, that uses

discriminant, principal component and hierarchical analysis, implicit that use artificial

neural network, and Markov modelling methods [23].

 22

2.5.2 Offline Recognition Systems

In offline recognition system, the recognition process is performed after the text is

written. After the document is fed to the system as a gray-scale image, it will be

converted to a black and white image. In some methods, features can be directly

extracted from the gray-scale images. To obtain clean and clear image, more

preprocessing steps can also be applied such as noise reduction, interfering-lines

removal and smoothing. This cleaned image is then passed to a segmentation stage

that aims to split a large image into small regions of interest. For example, the first

algorithm segments the whole page of text into lines of text. Then, lines are

segmented into words, words into characters or sub-characters. Then, the algorithm

output will be isolated characters or words depending on the recognition strategy.

This output will go to the feature extraction stage.

At this stage, the information required to distinguish between classes is extracted.

In the final stage, the extracted features will be compared to those in the model set. A

typical off-line character recognition system represented as in a flowchart diagram is

shown in Figure 2.10.

Figure 2.10: A typical off-line character recognition system

Original text image

Scanned image

Preprocessing

Segmentation

Feature extraction

Classification and

recognition

Recognized text

 23

Offline recognition systems can be classified into two categories in terms of input

text: isolated characters input, where the input is one character, and connected

characters input where the input is one or more word. The main difference between

them is that in the isolated characters input, the system usually needs segmentation

stage, where the words should be segmented into isolated characters. The

segmentation stage needs time to process character segmentation. Therefore, in

general, the systems that use connected characters as input are more accurate and take

less time.

2.5.2.1 Scanning Stage

As shown in the flowchart diagram, the first step in off-line recognition systems is to

capture the written text and convert it into digitized form. To do so, optical scanner or

digital camera is generally used. A scanner with high resolution (600-1200 dots/inch)

is recommended [24]. Scanners with high resolution result images with less noise,

which is important to reduce the preprocessing stage. Compared with other devices,

such as digital cameras, scanners are more convenient to use in character recognition

systems.

2.5.2.2 Preprocessing Stage

After the scanning stage, a digitized raw image is obtained. Several operations are

needed to improve the features extraction by minimizing the noise, cleaning and

thinning the image.

The skew, which is the slant of the text line with respect to a real or imaginary

baseline, speckles, generally caused by ink spots, and blurring, mainly caused by low

quality scanners, are the most common optical distortions that affect recognition

accuracy level [10]. Generally, the accuracy of the system depends on the quality of

the input image of the text which depends on the efficiency of preprocessing

operations. A summary of most commonly used preprocessing operations is presented

herewith.

i. Binarization

This process is to convert a gray-scale image into binary image in order to make the

image clearer and sharper. Figure 2.11 shows samples of three Arabic characters as

 24

color image, gray image and binary image. Binarization can be considered as a

particular case of segmentation since it aims to make two regions, one made by

objects (information) and another one made by the background. The existing

binarization methods are generally classified into two categories: global and local

approaches. In global approaches, a threshold is calculated and applied to all the

pixels as single threshold. In local methods, a separate threshold for each pixel or a

group of pixels is computed based on local features of the pixel [25]. However, both

approaches can be combined for a more robust performance.

Figure 2.11: Three Arabic characters as a color image, gray image and binary image

Nikolaos and Dimitrios described algorithms that utilize spatial structure, which is

the image representation by its pixels value, global and local features or both for

digital image acquisition of historical documents. The estimated results for each class

of images and each method are further enhanced by an image refinement technique

and a formulation of a class proper method by adjusting the binarization method

according to the category of the image to increase readability of the texture [26].

ii. Filtering and smoothing:

This step is aimed at removing unwanted variation from the input image. The input

image could be filtered and smoothed using mathematical morphology which consist

two processes: closing process and opening process. The closing process eliminates

small holes and fills gaps, while the opening process breaks narrow isthmuses,

eliminates small islands and sharp peaks or caps [27].

iii. Thinning

Thinning is the process of minimizing the width of a line in the input image from

many pixels wide to just one pixel [28]. This process can be performed by algorithms

based on an edge erosion technique, where a window is moved over the image with a

set of rules applied to the contents of the window. These algorithms could be

 25

performed sequentially (one pixel at a time) or simultaneously (parallel algorithms).

The parallel algorithms are preferred due to its simplicity and hardware feasibility

[29].

Mahmoud et al. have used clustering based skeletonization algorithm for thinning

of Arabic characters [30]. Ahmed and Ward presented a rule-based system

implementation for thinning that can be used to thin symbols, characters, or characters

from different languages. Their system uses twenty rules that are applied in parallel

on every pixel, where the number of iterations is half the number of pixels in the

thickest part of the pattern [31].

Zhu and Zhang presented a method of shape-adaptive thinning algorithm which is

used for obtaining skeletons of binary images. Their algorithm is based on the

substitution of some pixels on the strokes or curves by using three groups of templates

designed according to the complexity of these stroke and curve connection. They

claimed that their algorithm has given good performance with Chinese characters,

Latin alphabets and numerals [32].

iv. Normalization

Normalization is the process of scaling characters to fix the size and to center the

position. This process is important for handwritten characters as handwritten

characters from different writers usually come in different sizes. The normalization

methods can be classified into three main categories: multirate-based normalization

methods, ratio-based methods and simple-scaling methods. The multi-rate-based

normalization methods involve image dimension changes, which imply resembling of

the image pixels by different factors in the orthogonal dimensions. In the ratio-based

methods, each pixel in the input image is treated as square and each pixel in the

output image as rectangular. Then, the value of each pixel in the output image is

calculated as a weighted average of the overlapping pixels in the input image. In

simple-scaling methods, a bound boxed binary image is taken and scaled

proportionally to a specified size [33].

 26

Wakahara et al. presented a category-dependent normalization technique for

Japanese character recognition system that normalizes an input pattern against each

reference pattern adaptively using global affine transformation. Their technique relies

on computational procedure, in which the shape of an input 2-D pattern is adapted to

yield the best match with each normalization criterion [34].

Maddour et al. presented a normalization method for Arabic handwritten

characters based on the Fourier Transform of Arabic character contours. It describes

the boundary of handwritten Arabic characters by Fourier coefficients. Then, it

applies geometric transformation to reduce handwritten variability within these

coefficients. They claimed that their method can enhance the performance of the

character recognition since it increases the distance between the distinct characters

and reduces the distance between the identical characters [35].

v. Slant correction

Since handwritten words are usually slanted or italicized due to the mechanism of

handwriting and the writer‟s personality, slants have to be corrected to simplify the

character segmentation task and to improve the accuracy of the recognition system.

The slant of a word is the angle between the longest stroke in a word and the vertical

direction [36]. It can be considered as an obvious measurable factor of different

handwriting styles.

Several methods for estimating word slant have been proposed such as length

based method, projection method and extreme analysis method. In the run-length

based method, the slant is estimated from the average direction of the remaining near

vertical strokes after removing the horizontal strokes. In the projection method, the

slant is estimated by the analysis of slanted vertical projections at various angles. The

average slant is the greatest positive derivative in all of these projections. In the

extreme analysis method, in order to estimate the word slant, valid correspondences

between the maximum and minimum points of the word contour are established [37].

Bertolami et al. investigated the use of a non-uniform slant correction technique

that lies in the problem that many handwriting styles exhibit a variety of different

 27

slant angles within a single line of text or even within individual words. To solve that

problem, they applied a dynamic programming based algorithm where the local slant

angles represent the variables to be optimized [38].

vi. Base line and skew detection

In cursive scripts such as Arabic, base line can be defined as the line on which all

characters lie. Base line provides the needed information about the connection points

between characters and the text orientation. Figure 2.12 shows the base line with

Arabic text.

Figure 2.12: The base-line with Arabic text

Base line can also be used to detect skew alignment of the text, for lines extraction

and for word segmentation [10]. Several methods can be used for base line detection

such as Hough Transform, Projection Histogram, Method of least Squares, and Word

Centroid Least Squares [39].

Li et al. used a state-of-the-art image segmentation technique that combines the

advantages of the bottom up and top-down approaches for text line detection in

several different languages, such as English, Chinese, and Korean. After converting a

gray scale image to a binary image, text lines are extracted by evolving an initial

estimate using the level set method. With the prior knowledge that a text line is a

horizontally elongated shape, the text line boundary is forced to grow faster in the

horizontal direction [40].

Lu and Tan presented detection and categorization technique of detecting the

orientation of document images and categorizing documents according to the

underlying languages. In their method, each document image is converted into a

document vector through the exploitation of the density and distribution of vertical

 التعرف على الحروف العربية

 28

component runs. First, a pair of vector templates is constructed through a training

process for each objected language. Then, orientation and category of the query image

are determined based on distance between the query document vector and the

constructed vector templates. They reported that their method is more suitable with

documents containing a large number of characters [41].

Al-Shatnawi and Omar presented a brief comparison between the methods of

Arabic base line detection and a list of clarified challenges facing base line detection

with Arabic text. The methods used for Arabic base line detection are based on

horizontal projection, word skeleton and principal component analysis, while the

cursive nature of Arabic words, diacritics, such as dots and zigzag, word slope and the

existence of sub words in Arabic text are the most affected issues in detection of base

line in Arabic text [42].

2.5.2.3 Segmentation Stage

Segmentation stage is a crucial step especially in Arabic handwriting recognition

system due to the cursive nature of the handwriting. Therefore, this stage consumes a

large portion of the recognition process time in most Arabic handwriting recognition

systems. After performing the preprocessing stage, the segmentation stage starts with

page segmentation which involves two processes, page decomposition, which aims to

separate different page elements such as text, graphs, background and text

segmentation where text will be progressively segmented into text lines, then into

words, and finally, in some systems, into characters [24]. Several techniques have

been used for page decomposition. These techniques can be classified into three

categories, top-down, bottom-up, and hybrid solutions. The horizontal projection

where minimum value (appears as a gap) represents a line-break in the text is the most

used technique in text segmentation. This technique is not suitable in cases of

overlapping characters such as Arabic handwritten text. Therefore, several techniques

have been developed for handwritten Arabic text. Some researchers used a method

that identifies the different sub-words by tracing their contours and then shifting them

a part by inserting a blank column between them [43] others chose to trace the word

skeleton [44].

 29

Segmentation methods can be classified into three classes: holistic methods,

image-based methods and recognition-based methods. In holistic methods, the system

is designed to recognize words as a whole, avoiding the need to segment into

characters. Since they do not deal directly with characters but only with words,

predefined lexicon is usually used with these methods. Thus, this method is more

suitable for those applications where the lexicon is statically defined such as check

recognition and name recognition of cities. Dynamic programming with optimization

criteria based either on distance measurements or on a probabilistic framework and

Markov or hidden Markov chains are the most used techniques with these

segmentation methods [45].

In Image-based methods, decomposition of the image into a sequence of sub-

images using general features is used. That decomposition can be achieved by two

ways:

a) Directly into characters using several techniques such as usage of white space

and pitch, usage of vertical histogram, usage of connected components.

b) With contextual post-processing, where the segmentation obtained by

decomposition is later subjected to evaluation based on linguistic context. This

can be achieved by Markov model or by spell-checker technique.

In recognition-based methods, image is divided systematically into many

overlapping pieces without regard to content. These methods could be performed by a

serial windowing optimization scheme where recognition is done iteratively in a left-

to-right scan of words, searching for the best recognition result, or by a parallel

optimization scheme that generates a lattice of all possible feature-to-character

combinations. The final decision is found by choosing an optimal path through the

lattice. The windowing process can operate directly on the image pixels, or it can be

applied in the form of weightings or groupings of positional feature measurements

made on the images [45]. The scan direction is determined according to technical

considerations regardless of alphabet writing direction. However, many researchers

have chosen to combine more than one method in order to get more accurate results of

segmentation stage.

 30

Wang et al. presented a multi-branch HMM modelling method and HMM based

two -pass modelling approach. First, three models are built for each character: one to

model the feature vector sequence created with the normal sliding window zone

coding method, and two auxiliary models to model the feature vector sequence

assuming a down-shift and up-shift of the two base lines and applying the same zone

dividing method Then, to enhance the segmentation ability in case of too large base

line fluctuation, an HMM based two-pass is used by using the set of HMMs for

vertical features trained in the first pass (V-HMMs) for segmentation. Then, another

set of HMMs for horizontal features (H-HMMs) is created for use in the second

recognition pass to verify the result of the first pass [46].

Marti and Bunke presented a system for recognizing unconstrained English

handwritten text based on a large vocabulary. In their system, text lines are segmented

into single words by measuring distances between connected components. Then,

using a threshold, the distances are divided into distances within a word and distances

between different words. A line of text is segmented at positions where the distances

are larger than the chosen threshold. The threshold that separates intra- and inter-word

distances from each other varies: if the threshold is small, many errors are caused by

over-segmenting, while for large thresholds under-segmentation errors occur [47].

Tay et al. presented off-line handwriting recognition system using a hybrid of

neural networks and Hidden Markov Models. In this system, the recognizer does not

make hard decision at the character segmentation process. Instead, it delays the

character segmentation to the recognition stage. In the segmentation process, all

possible ways for cutting a word image into characters are proposed. By using

character recognition results on each segmentation candidate character by the neural

networks, the Hidden Markov Models decide the best segmentation path based on the

word similarity computation [48].

Tripathy and Pal proposed a water reservoir concept based scheme for the

segmentation of unconstrained Oriya handwritten text into individual characters. At

first, the document is divided into vertical stripes. Then, the width of a stripe is

calculated by analyzing the heights of the water reservoirs obtained from different

 31

components of the document and computed stripe-wise horizontal histograms, and the

relationship of the peak-valley points of the histograms is used for line segment. Next,

text lines are segmented into words based on vertical projection profile and structural

features of Oriya characters. To segment words into character, isolated and connected

characters in a word are detected. Then, structural, topological and water-reservoir-

concept based features are used to segment connected characters [49].

Sas and Markowska-Kaczmar presented a semi-supervised word segmentation

approach that can be used when character sequence constituting a word presented on

the image is known, but the character boundaries are not given. Their approach is

suitable for analytic writer dependent handwriting recognition, where the training set

for personalized character classifier must be created for each writer from the text

corpus consisting of text samples of an individual writer. First, the word images are

over-segments into sequence of graphemes. The grapheme sequences subdivision

results in the hypothetical character images sets maximizing average similarity in

subsets corresponding to characters from the alphabet. Then, by using evolutionary

algorithm, the sample character images extracted in this way is used to train the

character classifiers [50].

Lee and Verma proposed an over-segmentation and validation strategy for off-line

cursive handwriting recognition that is performed based on pixel density between

base lines to find all possible character boundaries. Then, the incorrect segmentation

points from over-segmenting module are removed by validating process. First, hole

detection algorithm detects and deletes segmentation point with holes. Then second

algorithm scans through all over-segmentation points recursively to compare total

foreground pixel between two neighbouring segmentation points to a threshold value.

The third validation step is achieved by neural network classifier trained on pre-

segmented characters. Finally, the oversized segment validation process checks if

there is any missing segmentation point between neighbouring characters [51].

Later, Lee and Verma proposed a binary segmentation with neural validation

approach for off-line handwriting recognition that contains over-segmentation based

on suspicious segmentation point generator, binary segmentation and neural

 32

validation modules. For over-segmentation based on point generator, parameters of

stroke width and base lines are calculated from each word image. Then, over

segmentation between baselines is performed to produce over-segmentation points

which are passed through multiple validation modules to decide the final suspicious

segmentation points. Then, foreground pixel contour tracing algorithm is used to find

a segmentation path to be used for dividing the image into two parts which will be

tested under specific conditions to determine the segmentation points. Then, neural

validation is performed by a neural character classifier trained on pre-segmented

characters to resolve the three segments to determine if each segment (defined as left,

right and joined segment) is a legitimate character or not [52].

The segmentation step is more difficult in case of Arabic handwriting because of

the connectivity of the Arabic characters and the different styles of handwriting. The

segmentation process can be skipped using holistic word recognition where words are

not to be segmented into characters, but such approaches are limited to available

training words. The most general handwriting recognition techniques should handle

character segmentation ambiguity by means of over-segmentation and sophisticated

recognition algorithms [53]. Although some algorithms designed for Latin cursive

word segmentation might be used for Arabic word, they are not adequate for that task,

due to the different nature between Latin and Arabic alphabets [24].

Sari et al. presented Arabic character segmentation method, based on

morphological analysis of word contours. To extract morphological rules, topological

characteristics of Arabic text were exploited, and then these rules were used to

identify ideal segmentation points. In order to determine segmentation points based on

identified features, the outer contour of Arabic words is analyzed by filtering

primitive [54].

Lorigo and Govindaraju proposed an algorithm for the segmentation and pre-

recognition of off-line handwritten Arabic text. Their method over-segments each

word and removes extra breakpoints using knowledge of character shapes. After

obtaining an intuitive description of character shapes, which facilitates analysis and

prediction in new scenarios to get a strong understanding of character and ligature

 33

shapes, the proposed algorithm scans across the image for horizontal edges near the

base line that is related to the contour trace, but restricted to a smaller area and

required base line information. They claimed that this strategy works well for the

Arabic script in which most strokes are connected but visually distinct [55].

Natarajan et al. presented a framework for stochastic segment modelling as a part

of their HMM based recognition system. The stochastic segment modelling

framework starts with generating a set of recognition hypotheses using the HMM

system trained on short-span features. Then, for each hypothesis, stochastic segments

are extracted using the character segmentation provided by the HMM. For the

segmental classifier, structural features that represent shape characteristics of the

characters are extracted. Then, a score for each character in the hypothesis is

computed using a classifier trained on the stochastic segments from the training data.

Finally, score from HMM and segmental model are combined to generate the best

hypothesis [56].

Wshah, et al. proposed segmentation algorithm for off-line handwritten Arabic

words. The algorithm segments the connected characters into smaller segments, each

of which contains no more than three characters and each character is segmented into

five pieces at most. After preprocessing steps that include noise removal and

smoothing, a chain code generation converts the binary image input into a chain code

representation by coding the boundary contours of components in the image, while

preserving the positional and directional information of adjacent pixels. Then, a

skeleton algorithm will find one pixel thick representation, showing the center lines of

the text by compressing the data and retaining significant features of the pattern [57].

2.5.2.4 Feature Extraction Stage

After the segmentation stage, the feature extraction process will take place, where the

character or primitive being produced in the segmentation stage will be used to extract

features that will be passed for the classification stage. Features that can be extracted

from an image can be categorized into three classes: spectral features such as color,

tone, and ratio, geometric features such as edges, and lineaments, and textural features

such as pattern, homogeneity, and spatial frequency [58].

 34

To choose a suitable method for character recognition system, the requirement of

the classifier should be considered as well as the nature and output of the

preprocessing stage, since some methods can work only on gray level sub-images of

single characters while others work on solid binary image, skeletons or contours.

Some methods can work on more than one type of preprocessing output. According to

Trier, et al, the main feature extraction methods can be summarized as follows [39]:

i. Template matching:

In this method there is no real extraction of any features, instead, the character image

itself is used as a feature vector to be compared with the template by measuring the

similarities between them. The template that has the highest similarities with the

character image will be used to define it. This method suffers from many limitations

since one template is only capable of recognizing characters of the same rotation,

illumination, and size and it is very sensitive to noise and variations. Thus, it is not

suitable to be used with handwritten characters.

ii. Unitary Image Transforms

Instead of using all the pixels of the gray scale image as features, as the template

matching method, unitary transform is used here to reduce the number of features.

Since the pixels in the transformed space are ordered by their variance, thus, only the

pixels with the highest variance are used as features. Several transforms can be

applied to train the set to obtain estimated space such as Haar, Fourier, Cosine, and

Slant transforms. The input image has to be exactly the same size and should be

rotated to standard orientation since the features extracted from unitary transforms are

not rotation-invariant.

iii. Zoning

In this method, the character image (or its skeleton) is divided into zones, then, the

average of gray level is computed for each zone, which is used as a feature. This

method is sensitive to variation of illumination.

iv. Geometric Moment Invariants

Moment invariants are used in this method as features since they are invariant to

shifts, to changes of scale and to rotations, or to shifts and to general linear

 35

transformations of the image. Features invariant to illumination can be developed for

these features to be more useful for gray level character images.

v. Projection histogram

In this method, features can be extracted by using a fixed number of bins on each axis

by merging neighbouring bins and dividing by the total number of print pixels in the

character image. This method is also sensitive to rotation and variability in writing

style.

vi. Contour profiles

In this method, each half of the contour is approximated by a discrete function of one

of the spatial variables; then, features are extracted from the discrete function. Both

vertical and horizontal profiles can be used and each of them can be either outer or

inner profile.

vii. Fourier descriptors

Fourier descriptors offer a shape description using its spatial frequency content such

as representing the boundary of the shape as a periodic function to obtain a set of

coefficients that capture shape information which can be used as features [59].

2.5.2.5 Classification Stage

This is the main stage in the character recognition systems where the features

extracted from previous stages are compared to those of the model set. Generally,

classification methods can be categorized in three types: structural methods, statistical

methods and using of mathematical formalisms. In statistical methods, template

matching is one of the most used techniques, where individual image pixel is used as

feature. Thus, classification is processed by comparing the input character image with

a set of templates from the class of each character. Each comparison shows a

similarity measure between the image character and the template. The amount of

similarity increases when the pixels in the image character match to the same pixels in

the template image. The character will be recognized as the most similar template.

 36

In structural methods, structural features such as character strokes, holes, or

concavities are used as well as decision rules to recognize the characters. Structural

methods are trainable, where having a good feature set and a good rule-base will

result in higher accuracy and less consumed time. The most mathematical formalisms

used are discriminant function, Bayesian classifiers, and Artificial Neural Networks

(ANNs). In Discriminant function, hyper-surfaces are used to distinguish the features

of characters from different semantic classes to reduce the mean-squared error.

 Bayesian methods aim to reduce the loss function with misclassification through

the use of probability theory. In ANNs, a back-propagation network is trained on the

character images. Then a full character set is run through the network. The output is

the identification information for all characters contained in the set [60].

2.5.2.6 Post-processing Stage

This stage is needed if the classification stage does not produce a unique solution but

a set of possible solutions, thus, specific roles are used at this stage to select the right

solution. For this purpose, word lexicons and Hidden Markov Models are mostly used

[31].

2.6 Arabic Optical Text Recognition (AOTR) System

Arabic Optical Text Recognition (AOTR) is a sub-field of the Optical Character

Recognition. In 1975, the first work on AOTR was developed. It was a system for

recognizing printed Arabic characters based on stroke extraction. The research in

AOTR did not start until the early 1980s, then, in the 1990s AOTR started receiving a

great amount of interest among researchers, but it is still considered as an open

problem [10]. AOTR systems include both online and offline systems, however, this

review focuses particularly on off-line system, in line with the scope of this research.

 37

2.6.1 Competitions in AOTR

The first international Arabic handwriting recognition competition was held in 2005

by the group at the Institute of Communications Technology (IFN) of the Technical

University of Braunschweig, Germany. Six systems: ICRA, SHOCRAN, TH-OCR,

UOB, ARAB-IFN, and REAM competed to win the competition using IFN/ENIT

database, developed by the Institute for Communications Technology (IFN) at

Technical University Braunschweig, Germany, and the Ecole Nationale d'Ingénieurs

de Tunis (ENIT), Tunisia, for training and testing. UOB system, developed at the

University of Balamand, Lebanon by Chafic Mokbel, which is a pure HMM system

scored the highest accuracy with 90.88% [61].

The second competition, organized by the same organizer, was held in 2007. 14

systems competed using the same IFN/ENIT database after adding more names. The

competition results showed remarkable progress in Arabic handwriting recognition

systems. Most of the participating systems showed a very high accuracy and some

even demonstrated a very high speed .The system HMR-A submitted by Alary et al.

from SIEMENS Industrial Solutions and Services, Konstanz, Germany, was the

winner with an accuracy of 94.58%. The script word recognizer (HMR-A) is the

result of experiments with the standard HMM based script, where a feature vector

sequence was created by a sliding window, followed by a HMM Viterbi decoding

[62].

The third competition was held in 2009 by the same organizer. Using the same

IFN/ENIT database, 17 systems competed this time. The competition results showed

that Arabic handwriting recognition systems, in this third competition had made

further progress. Again, most of the participating systems showed a very high

accuracy and some also with a very high speed. The winner in this competition was

MDLSTM submitted by Alex Graves from Technical University of Munich,

Germany, with 93.37% accuracy. This multilingual handwriting recognition system is

based on a hierarchy of multidimensional recurrent neural networks which can accept

either on-line or off-line handwriting data, and in both cases works directly on the raw

input without any preprocessing or feature extraction. It uses the multidimensional

 38

long short-term memory network architecture, an extension of long short-term

memory to data with more than one spatio temporal dimension [63].

2.6.2 AOTR Softwares

Currently, several software packages are commercially available for recognizing

Arabic script such as TextPert 3.7 Arabic produced by CTA, ICRA 4.0 produced by

Arab Scientific Software & Engineering Technologies, OmniPage produced by Caere

Corporation, Al-Qari‟ al-Ali 2.0 produced by the alAlamiah Software Company, and

IQRAA produced by Arab Scientific Software and Engineering Technology which

runs on IBM-P. All these packages are only used for recognizing typeset and

typewritten Arabic script [64].

However, commercial Arabic OCR systems are still not efficient enough to deal

with multi-typewritten and unconstrained handwritten fonts. One reason behind this is

that not all new proposed techniques are implemented into real working

environments. Researchers blame this on the absence of an Arabic text database,

which can be used for evaluation purposes [64].

2.6.3 AOTR Databases

Datasets of printed or handwritten words play a significant role in any recognition

system design. Although, research in Arabic recognition systems has started in 1980s,

only small, private datasets, are used, which make comparison of methods nearly

impossible. Only a few datasets have been published, such as Al-Isra, CENPARMI,

AHD, CEDARAB, and Arabic-Handwriting-1.0. Unfortunately, most of these

databases are not available anymore since they were used for a very specific research

purpose [65].

IFN/ENIT was presented at the CIFED Conference in 2002 by the Institute for

Communications Technology (IFN) at Technical University Braunschweig, Germany,

and IFN/ENIT is the most widely used database with more than 54 research teams in

more than 27 countries the Ecole Nationale d'Ingénieurs de Tunis (ENIT), Tunisia,

 39

with handwritten Tunisian town names on specially designed forms to make the

labelling procedure as simple as possible. The database in version 2.0 consisted of

32492 handwritten Arabic names by more than 1000 writers. 937 Tunisian town/

village names ware written. Each writer filled some forms with pre-selected

town/village names and the corresponding post code [63].

2.6.4 Previous Work on AOTR

During the past four decades, considerable development have been achieved in AOTR

systems that can be observed in the increasing number of related articles, papers and

technical reports that have appeared in leading conference proceedings and journals.

Competitions such as ICDAR 2005, 2007, and 2009 also show that AORT

systems have made a remarkable progress judging by the increasing number of

participating systems, from 5 systems in 2005 to 17 systems in 2009. This shows that

more researchers are working in this field.

Several researchers surveyed the work done on AOTR by classifying the methods

used in different classification ways, some of them surveyed the work on both online

and offline systems, others focused on either online or offline systems. In this section,

the previous work on AORT systems will be summarized.

There are several published reviews and evaluations of work that was achieved in

AOTR systems. Khorsheed classified the AOTR systems according to the recognition

steps [66]. In the segmentation stage, he classified them into two categories:

segmentation-base system and segmentation-free system. Then, in the feature

extraction stage, he categorized the AOTR systems into four categories according to

the extracted features, whether they are structural features, statistical features or

global transformation.

Finally, in the classification stage, he categorized the AOTR systems according to

the classification technique: minimum distance classifier, decision tree classifier,

statistical classifier and neural network classifier.

 40

Lorigo and Govindaraju classified AOTR systems, first, according to the

representation of the character image in the system, whether it is a skeleton, pixels or

list of contours; second according to the segmentation of words into characters,

strokes, or other units; third, according to the extracted features such as pixels, shape

data, or mathematical properties, and finally, according to the recognition engine,

ANN, HMM, or hybrid [67].

Assma compared the performance of holistic and segmentation-based approaches

in AOTR systems. He concluded that the best results were achieved with HMM based

systems and with Neural Network approaches [68].

Some researchers surveyed the methods used in a particular part of the AOTR

systems. Al-Shatnawi and Omar surveyed the methods used in Arabic base line

detection. They categorized these methods into four categories: based on horizontal

projection methods, based on word skeleton method, based on contour tracing

method, and based on principle component analysis method. Then, they highlighted

the difficulty in detecting Arabic base line such as overlapping, ligatures, word slope

and the existence of sub words [69].

We present an up to date review of the work done in AOTR systems by following

these rules:

a. With respect to this research work, only off-line systems will be presented.

b. Only complete systems that contain preprocessing, segmentation, feature

extraction and classification stages will be presented. Works on only

preprocessing or segmentation stages will not be considered in this review.

c. If the researcher(s) has more than one published work, the latest will be

presented.

d. If results are reported for more than one dataset, the average will be taken.

e. To show the progress in OCR systems, the systems will be arranged according

to publishing date.

A comparison review, consisting of a summary of used techniques in both feature

extraction and classification stages, and the accuracy achieved, is presented in Table

2.5.

 41

Table 2.5: Comparison review of previous work in AOTR

Author

name
 Year Technique Accuracy

Almuallim

and

Yamaguchi

 [70].

(1987(Used the skeleton representation and

structural features for word recognition.

After segmenting words into strokes, which

are combined into characters according to the

features, a set of classification rules are used

for recognition.

91 % of 400

words

written by

two writers.

Al-Yousefi

and Udpa

[71].

(1992(Used quadratic Bayesian classifier to classify

nine measurements of kurtosis, skew, and

relationships of moments.

98.79% of

10

handwritten

samples

Goraine et

al. [72].

(1992(Used estimated points from skeletons,

structural features and a rule-based

recognizer to identify each character. Then, a

dictionary was used to confirm or correct the

results.

90 % of 180

words

consisting

of about

600

characters.

Fahmy and

Al Ali [73].

(2001(Used features were detected from skeletons

and then, fed into a neural network classifier.

69.7 % of

600 words

written by

one writer.

Dehghan et

al.

[74].

(2001(Used an HMM-based system, which features

were histograms of Freeman chain code

directions in regions of vertical frames.

65% of

17,000

images of

198 words.

Snoussi et

al.

)[75].

(2002) Used a four-layer neural network on

primitives, characters, sub words, and words

images from bank checks. Then, global

features and local Fourier descriptors were

fed to the neural network.

97 % of

2,070

images with

a lexicon of

70 words.

Haraty and

Ghaddar

[76].

(2003) Used a skeleton representation and structural

and quantitative features such as the number

and density of black pixels, and the numbers

of endpoints, loops, corner points, and

branch points from previously segmented

characters to feed two neural networks

classifier.

73% of

2,132

characters.

Amin

[77].

(2001) Used Freeman code representation to detect

structural features including open curves in

several directions from the skeleton of each

character, then, determined the relationships

with Inductive Logic Programming (ILP)

86.65% of

10

characters

written by

different

writers.

 42

Table 2.5 Cont’d: Comparison review of previous work in AOTR

Author

name
 Year Technique Accuracy

Pechwitz

and

Maärgner

[78].

(2003) Used 160 semi-continuous HMMs

representing the characters or shapes, then, the

models were combined into a word model.

89 % using

IFN/ENIT

database.

Khorsheed

[79].

(2003) Used structural features with HMM

recognizer constructed from 32 individual

character HMMs, each with unrestricted jump

margin.

87 % of 405

character

samples of a

single font.

Alma‟adeed

et al

[80].

(2004) Used a combination of a rule-based recognizer

that used ascenders, descenders, and other

structural features to separate the data into

word groups (reduce the lexicon) with a set of

HMMs which have 55 possible states,

corresponding to the characters or sub-

characters in the data set.

60% of

4,700 words

written by

100 writers.

Souici-

Meslati and

Sellami

[81].

(2004) Used Freeman chain code representation of

the text contour, and structural features such

as loops, dots, connected components,

ascenders, and descenders with three

classifiers running in parallel: neural network,

k-nearest-neighbour, and fuzzy k-nearest-

neighbour.

96% of

3,600

words.

El-Hajj et

al.

[82].

(2005) Used features based on upper and lower

baselines, within the context of frame-based

features with an HMM recognizer.

86.40%

using

IFN/ENIT

database.

Mozaffari

et al. [83].

(2005) Used structural and statistical features such as

end points and intersection points detected on

a skeleton then, used primitive code to

partition it into primitives. Nearest-neighbour

was used for classification.

94.44% of

200 images

of 9 digits

written by

200 writers.

Safabakhsh

and Adibi

[84].

(2005) Used eight features, computed for each

pseudo-character with a continuous-density

variable-duration path-discriminant hidden

Markov model. The model included 25

character states, each of which was divided

into up to four sub-states to indicate position-

dependent shapes.

91 % of two

50-word

scripts from

two

different

writers.

El-Melegy

and

Abdelbaset

 [85].

(2007) Compared the performance of using structural

holistic features with four different classifiers

independently: k-nearest neighbour classifier,

Bayesian classifier, decision tree classifier and

neural network classifier. The highest

performance of the system was achieved with

neural network classifier.

86.5% of

4970 words

of 50 literal

amount

written by

100 writers.

 43

Table 2.5 Cont’d: Comparison review of previous work in AOTR

Author

name
Year Technique Accuracy

AbdulKader

 [86].

(2008) Used a two neural network based classifier,

the first classifier is used to recognize parts

of a word, the second is based on features

extracted from the directional codes of the

connected-components constituting parts of

the word. Then, Beam search algorithm is

used to find the best matching word to an

image, using the output of PAW recognizer

as a search heuristic.

89% of

6,735 words

from

IFN/ENIT

database.

R.

Mohamad

et al. [87].

(2009) Used features based on foreground pixel

densities and concavity features, and stroke

directions that were extracted within three

sliding windows of different orientations,

each orientation is associated to one of

three HMM-based classifiers. Each

classifier produces a list of word

candidates, which are fused at the decision

level.

92.78%

using

IFN/ENIT

database.

Al-Alaoui

et al. [88].

(2009) Used structural features such as loops, and

lines, with neighbouring pixel statistical

features, then neural network is used to

classify between several shapes including

loops and lines.

95% of 60

samples of

only one

character.

Mahmoud

and Awaida

[89].

(2009) Used structural features, to measure short

stroke and certain concavities that can span

across the image; statistical features to

measure the edge curvature in the

neighbourhood of a pixel with Support

Vector Machines classifier.

99.83% of

21120

samples of

Indian

numeral

digits.

2.7 Discussion:

To make fair informative comparison between different approaches used in Arabic

recognition systems, these different methods should be tested on identical datasets.

This seems to be not an easy task as different and usually non publicly available

datasets where used with these different methods. On the other hand, method

objective should be considered when the methods are evaluated. For example, holistic

based method, where the word is recognized as a whole and the segmentation stage is

not required, is a good choice when the goal is to develop a system for sorting mail

 44

codes in a particular country, even if the system has limitations for use in general text

recognition.

The time consumed during recognition process is a significant factor in evaluating

a system, especially if the system is designed for applications where speed of delivery

is an important factor, such as mail sorting. In this survey, it is noted that most of the

researchers did not include the time consumed in their test results.

In the three competitions ICDAR 2005, 2007 and 2009, the competing systems

were tested using one database (IFN/ENIT), which made the competition fair and

informative. Consumed time was considered in the final result in ICDAR 2007 and

2009 where the winning system, in the concept of accuracy, failed to be the faster

system. This highlighted the trade-off between accuracy and the time consumed

during the recognition process, where in order to increase the accuracy more

complicated models that consume more time are needed.

The general frame of the reviewed system contains three main stages:

preprocessing, features extraction and classification. The segmentation stage is used

only in segmentation-based systems, while the techniques used in preprocessing stage

are the same regardless of the language of the alphabet. The nature of Arabic

alphabet, especially, cursiveness, overlapping, ligatures, and word slope, are forcing

designers to develop systems with more complex feature extraction and classification

stages. The matching approach, where classification is achieved by a set of rules, was

used in the early AOTR systems [70 -72]. The HMM and ANN, which are the most

widely used classifiers, started to be used as pure, simple model [73-74], then, multi

layers or hybrid models emerged [75-81]. The HMM and ANN are still used in the

latest designed systems [85-87], even with the usage of other classifiers such as Beam

search algorithm [85] and Support Vector Machines classifier [89]. HMM and ANNs

suffer from the trade-off between accuracy and processing time. In order to obtain

high accuracy, many features that can provide enough information are needed. In this

case, a complex model that needs longer processing time should be used. In case of

using a simple model, the processing time will be reduced but the accuracy will be

reduced as well. Table 2.6 shows the trade-off between accuracy and processing time

of HMM and ANN models.

 45

Table 2.6: Trade-off between accuracy and processing time

Simple model “less

computations but low

intelligence”

Complex model “large

computations but high

intelligence”

Many features “provide

enough information, but

spend long time

Low speed

Low accuracy

Low speed

High accuracy

Few features “insufficient

information, but

accelerate process”

High speed

Low accuracy

Low speed

Low accuracy

In general, the current challenge in OCR system is achieving high accuracy level

within short time. Compared to other languages, the nature of Arabic handwriting

requires more complex models. This is an important stimulus for thinking about non-

traditional ways to achieve the recognition task with a high accuracy while consuming

less processing time. This will be discussed in chapter 5.

2.8 Summary

This chapter provided a comprehensive background about the field and the subject of

this research. As this research is about Arabic handwriting recognition, an overview

of Arabic alphabet, history of its development, the nature of Arabic characters, and

the different Arabic handwriting styles, has been presented followed by an overview

of handwriting recognition field. After defining the two main approaches in

handwriting recognition, the online and offline approaches, the main stages in

handwriting recognition system was discussed followed by a discussion on Arabic

Optical Text Recognition (AOTR) systems. In order to have a good view of AOTR

systems, AOTR software, AOTR competitions, and AOTR available databases were

briefly discussed. Finally, by applying some rules that reflect this research scope, an

up to date review was presented to show the development and the latest state of

AOTR systems.

Classifier

Extracted

features

 46

CHAPTER 3

PREPROCESSING

3.1 Chapter Overview

This chapter presents the first stage in the proposed system which is the preprocessing

stage. It starts with an introduction that explains what preprocessing is and the

importance of this stage for the system. This is followed with discussion about the

data that will be used in this research in terms of acquisition, collection, and analyses

which were presented. Then some of the necessary operations in preprocessing stage

such as binarization, smoothing and normalization are discussed. Finally, the

proposed methods for the main preprocessing operations which are skew correction,

slant correction, and thinning are presented.

3.2 Introduction

The preprocessing stage is a group of operation that aims to convert the raw image

into output skeleton ready for segmentation. The input to off-line recognition systems

is a document manually obtained either by optical scanners or by cameras. In many

cases, the non-proper position of the document in the scanner or non proper position

of the camera to the captured document causes page skew. On the other hand,

documents of bad quality papers, especially old and historical documents, or non

correct setting of scanner or camera can cause different levels and kinds of noises on

the documents. The preprocessing stage yields a clean document by increasing shape

information and reducing noise.

The preprocessing stage gain added significance in the case of handwriting

recognition. As the text is handwritten, it usually has a number of unwanted defects

 48

such as line skew, word skew, and word slant. These defects adversely affect the

segmentation stage, which in turn affects the accuracy of the system as a whole.

The preprocessing stage is more significant in the case of Arabic handwriting

recognition. In Arabic, dots play important rule to differentiate between characters.

Adding or removing a dot from some character bodies might change the shape from a

character to another. Thus, it is important, in Arabic handwriting recognition systems,

to have a reliable and efficient preprocessing operation that are capable to remove

only noise dots from the row image and avoid removing dots that are a part of the

characters.

The segmentation stage, as well as the whole system will be greatly influenced by

the preprocessing stage. The main parts of preprocessing stage are: data acquisition,

binarization, smoothing, normalization and thinning (skeletonization).

3.3 Data Acquisition

Data collection is the first stage in any pattern recognition system. In OCR systems,

the data collection starts with converting the document, which is handwritten text in

this case, into numerical representation written in basic units of storage made up of a

fixed number of consecutive bits. This process can be physically achieved either by a

camera or a scanner. By using either one, a binary or gray-scale image with varying

number of bits per pixel can be obtained. Unlike on-line system, no timing

information will be available for off-line systems.

Traditionally, the scanner is more preferable than the camera for capturing the text

image. With a camera, it is more difficult to control the imaging environment than it

with a scanner. Even though it is much easier to use, camera images often suffer from

several problems. Firstly, it is difficult to obtain a uniform brightness on camera

images because of uneven lighting or aberration of the camera lens. Secondly, the

gray level surface of the camera image is smoother than the one of the scanner image,

which means that the edge of the character is not as clear as that of the scanned image,

 49

and therefore, the difference in intensity between the foreground and the background

is obscure in many camera images [90].

Even though a scanner is able to produce clearer text image with the proper level

of brightness, and more clear character edges, but it is more suitable for office work.

In terms of size and mobility, cameras are fast, versatile, and mobile. Moreover, they

do not touch the photographed object, which is sometimes very convenient especially

for engraved text and applications such as car plate recognition [91]. However, the

massive and rapid development in the performance of digital camera narrows the gap

between the performance of the digital camera and the scanner, which leads to

development of mobile OCR systems. Currently, the application that enables mobile

phone users to take a picture of contact card and then saving the written information is

an example of mobile OCR systems.

Recently, pen-scanner, which works as a small mobile scanner, is the main

hardware part of some OCR systems. It is used the same way as a highlighter marker

used by taking the pen scanner across the text. Then, the pen scanner will scan, store

and send text to the computer.

For experimental work, data, which is handwritten text and isolated handwritten

characters, were collected by asking the writers to re-write a printed text in blank

papers and characters in four positions in table cells drawn on blank papers. Then, the

full written text and character tables were digitized by scanner and saved as BMP

files, known as Bitmap files. BMP format was selected because in this format each

pixel is usually independently available for any alteration or modification, and

repeated use does not normally degrade the image [92]. This is a significant feature in

the proposed system as some kind of modifications will be processed in most of the

system operations and images will be used repeatedly in the recognition stage. On the

other hand, Bitmap files can easily be created from existing pixel data stored in an

array in the memory. These files will be used in Matlab environment with a computer

at 1.86GHz and with 1 GB of memory.

 50

3.4 Raw Data Collection

The data, collected from writers of different ages and educational backgrounds, are

divided into two categories: full text images which will be used in preprocessing and

segmentation experiments, and isolated character images, which will be used to build

the system’s codebook. Figure 3.1 shows two samples of both categories.

Figure 3.1: Two examples of both data categories

For the full text image data, 61 different writers from different native Arabic

speaking countries, were asked to re-write a text which consist of more than 100

Arabic words which have been intellectually selected to cover all Arabic characters in

all their four positions (isolated characters and connected at the beginning, middle or

end of a word) as shown in Table 2.2, with ten Indian digits, used in Eastern part of

Arabic countries, commas, mathematical symbols, question mark, and brackets. The

selected text includes the two styles of Arabic written words, connected and with sub-

words as shown in Table 2.4. The writers were asked to re-write the printed text in A4

blank paper purposely to get the direction and degree of slant and skew, heights of

ascenders and descenders, spacing between lines, size of characters, and average

density of each handwritten text.

For the isolated characters data, each character was written by 48 different writers,

in 4 different positions, isolated, at the beginning, middle, and end. The size of each

character is 40x40 pixels, 8 colours per pixel.

 51

3.4.1 Data Analysis

The main problem in handwriting recognition task is the variation between

handwritten characters written by different writers. This variation is caused by basic

differences in the observance of the handwriting and diction rules by each writer.

Most of the time, people tend to write the way that they are accustomed to regardless

of whether it obeys the rules of dictation, or not. Sometimes, there will be variations

in handwritten text written by the same person as the handwriting will appear clearer

and more correct if it is written slowly. The collected data obviously show a wide

range of handwriting variation. It also confirms what has been previously mentioned

in chapter 2, that the handwriting of ordinary people is a mix of different styles, and

the rules of any styles are not followed by most of the writer, for instance, some

writers write the same character in different shapes, each shape belonging to different

styles. Figure 3.2 shows how the same character can be written in two different

shapes.

Figure 3.2: An example of a character (Seen) written in two different shapes

The collected data vary in terms of direction and degree of slant and skew, heights

of ascenders and descenders, spacing between lines, size of characters, and average

density. In this section, we will illustrate some extreme variations in the handwriting

of different writers

3.4.1.1 Level of Legibility

The legibility or quality of handwriting here refers, generally, to the level of

commitment to dictation rules, parity between the size of characters, spaces between

words and lines. Figure 3.3 show two samples of the handwritten text.

 52

Figure 3.3: Two different samples with low legibility (above) and high legibility

(below)

Unlike the low legibility sample (Fig 3.3 above), the words of the high legibility

sample (Fig 3.3 below) appears well spaced, horizontally and vertically. The average

character size is obviously different between the two samples. In the low legibility

sample, the character (ـه) appears without dots three times and with dots another three

times. The dots distinguish between the character (ت) and the character (ه) when both

are placed at the end of a word.

3.4.1.2 Direction and Degree of Skew

The good quality handwritten text should be with lesser degree of skew. One of the

problems in handwriting recognition is the skew of the text line. Much worse if there

is more than one direction of skew in the same text as shown in Figure 3.4.

Figure 3.4: A text with two skew directions

3.4.1.2 Density Average

The average text density varies due to different hardness of pencils and pen tips used

by the writers. To digitize all the forms in the database regardless of the contrast

between handwriting information and form background, static scanner was used.

Figure 3.5 shows two samples with different densities.

 53

Firure3.5: Two samples with different densities

3.5 Binarization

As mentioned previously, MATLAB environment will be used in the experiments,

thus, from now on, MATLAB identifications will be used. Generally, there are four

types of images that determine the way MATLAB interprets data matrix elements as

pixel intensity values: binary, indexed, gray scale, and true-colour. Following, is a

short definition for each of them:

i. Binary Image: In a binary image, each pixel is represented as one of only two

discrete values: 1 or 0. It is stored as a logical array.

ii. Indexed Image: It is also known as a pseudo-colour image which consists of

an array and a colour map matrix. The pixel values in the array are direct

indices into a colour-map. The colour-map matrix is an m-by-3 array of class

double containing floating-point values in the range [0, 1]. Each row of the

map specifies the red, green, and blue components of a single colour.

iii. Gray-scale Image: It is a data matrix which values represent intensities within

some range. If single or double arrays are used to represent the image, the

values range from 0, which represents black colour, to 1, which represents

white color.

iv. True-colour Image: It is an image in which each pixel is specified by three

values: one each for the red, blue, and green components of the pixel colour.

MATLAB stores true-colour images as data array that defines red, green, and

blue colour components for each individual pixel. The colour of each pixel is

 54

represented by a combination of the red, green, and blue intensities stored in

each colour plane at the pixel location [93].

During the binarization stage, important information is extracted from a gray-

scale image. In this case, the writing is in the foreground, while the background is

ignored. This can be achieved by marking the pixels that belong to foreground as on-

pixels and those who belong to background as off-pixels by using thresholding

methods. The thresholding methods can be classified into two types: global methods,

where only one thresholding value is chosen for the whole image, and local methods,

where a different thresholding value is chosen for a small block or even for every

pixel. Most of these methods only take into account the gray scale of the pixel [93].

In this research, after text forms are scanned, true-colour images will be obtained,

since a colour scanner is used. Each text image will be stored as a Bitmap image file

which is represented as 288x288x3 unit8 array occupying 248832 Bytes of memory.

The first step in binarization in the proposed system is to convert the true-colour

image into gray scale image. However, using MATLAB simplifies the process of

converting the true-colour image into gray scale image. In MATLAB, this step can be

achieved by rgb2gray function, which converts RGB images to gray scale by

eliminating the hue and saturation information while retaining the luminance [93]. So

this function will be used in the algorithm to get the gray-scale images. Figure 3.6

shows the true-colour image and the gray image for a sample of collected dataset.

Figure 3.6: The true-colour image (left) and the gray image (right) for a sample

of collected dataset

 55

The gray image will be represented in bitmap format as 288x288 array that

occupies 82944 bytes of the memory. After obtaining the gray image, the next step is

to convert it into binary image using im2bw function by thresholding process. The

function graythresh, which is global image threshold, automatically computes an

appropriate threshold for use to convert the gray-scale image to binary. The

graythresh function uses Otsu’s method, which chooses the threshold to minimize the

intra-class variance of the black and white pixels [93].

Otsu’s method is a very popular global automatic thresholding technique that can

be applied to many applications such as noise reduction in preprocessing stage where

the image to be thresholded contains two classes of pixels: foreground pixels and

background pixels. The method, then calculates the optimum threshold separating

those two classes so that their combined spread is minimal [95]. The threshold that

minimizes the intra-class variance, defined as a weighted sum of variances of the two

classes is expressed mathematically as follows:

)()()()()(2

22

2

11

2 ttqttqtw (3.1)

where,

q1 and q2 are the probabilities of two classes separated by a threshold t and

 variances of the two classes.

The binary image will be represented as (288x288) logical array that occupies

82944 bit of memory. Figure 3.7 shows a binary image of a sample dataset.

http://en.wikipedia.org/w/index.php?title=Foreground&action=edit&redlink=1
http://en.wikipedia.org/wiki/Background

 56

Figure 3.7: A binary image of a sample dataset

3.6 Smoothing

The Arabic text is more sensitive to speckle noise than Latin alphabet based

languages because some Arabic characters have the same body but are differentiated

by the dots. Thus, any speckle noise may be considered as dots and attributed to

characters, or conversely, dots may be mistakenly removed as a noise. In both cases,

the system will be adversely affected. For that reason, a smoothing step is essential for

accurate recognition of text image with moderate to high levels of noise.

In MATLAB, smoothing is one of filtering operation which is a neighbourhood

operation such as sharpening and edge enhancement where the value of any given

pixel in the output image is calculated by using an algorithm on the values of the

pixels in the neighbourhood of the corresponding input pixel. A pixel neighbourhood

is some set of pixels, defined by their locations relative to that pixel [93].

In smoothing algorithm, the image pixels can be treated as logical value, since the

system deals with a binary image where each pixel value should be 0 or 1. Using

averaging window, the tested pixel will have, mostly, eight neighbours as shown in

Figure 3.8.

 57

Figure 3.8: The tested pixel with eight neighbours

Logical smoothing of the pixel Pt is given as:

 (3.2)

where,

P(ones)=p1,p2,p3,p4,p5,p6,p7,p8 (3.3)

and,

 P(zeros)=p1+p2+p3+p4+p5+p6+p7+p8 (3.4)

The value of the tested pixel will change from 0 to 1 only if all its neighbours are

1. This operation will fill up any holes, or white pixels in the body of the character

which represented as black pixels. Similarly, the value of the tested pixel will change

from 1 to 0 only if all its neighbours are 0. This operation will remove any small dots,

or black pixels. In MATLAB, smoothing can be achieved using three types of filter:

Linear Filter, Median Filter or Adaptive Filter.

In Linear filter, convolution operation is used where each output pixel is the

weighted sum of neighbouring input pixels. The matrix of weights is called the

convolution kernel, or filter. A convolution kernel is a correlation kernel that has been

rotated 180 degrees. Linear filtering, such as averaging or Gaussian filters can be used

to remove certain types of noise like grain noise from a photograph where each pixel

is set to the average of the pixels in its neighbourhood.

In Median filters, nonlinear operation is used to reduce "salt and pepper" noise.

The median filters are more effective than convolution for reducing noise and

preserving edges simultaneously. Similar to averaging filters, in Median filters each

output pixel is set to an average of the pixel values in the neighbourhood of the

 58

corresponding input pixel. The value of an output pixel is determined by the median

of the neighbourhood pixels, rather than the mean. Median filtering has more ability

to remove the extreme values, which are known as outliers; without reducing the

sharpness of the image because it is much less sensitive than the mean to the extreme

values.

In adaptive filters, the function will be transferred according to an optimizing

algorithm. In case of large variance, little smoothing is performed, while in case of

small variance, more smoothing is performed. The adaptive filter is more selective

than a comparable linear filter, preserving edges and other high-frequency parts of an

image. The wiener2 function implements adaptive filtering [93]. Figure 3.9 shows a

sample of a character image before (left) and after (right) applying Median filter.

Figure 3.9: A sample of a character image before (left) and after (right) applying

Median filtering

In this example, median filtering is performed on the character binary image using

the medfilt2 function that can be expressed as:

B = medfilt2 (A, [m n]) (3.5)

This function performs median filtering of the matrix A in two dimensions (which

represents the binary image). Each output pixel contains the median value in the m-

by-n neighbourhood around the corresponding pixel in the input image. The m-by-n

neighbourhood should carefully be chosen to remove only noise not dots, thus, the

size of the dots should be assumed before the smoothing step is implemented. In the

previous example, the m-by-n neighbourhood was determined as 3-by-3.

http://en.wikipedia.org/wiki/Transfer_function

 59

3.7 Normalization

Arabic handwriting varies in many different aspects such as peculiarities of

writing in different situations, and the peculiarities of writer’s distinctiveness, thus,

some handwriting can be recognized more easily than others. For recognition task, all

those variations are crucial and may adversely affect the recognition level. These

variations are useful in other applications such as author verification or signature

recognition. Figure 3.10 shows the same word written by different writers.

Figure 3.10: An example of same word written by different writers

As a crucial step in the preprocessing stage, normalization aims to reduce the

variations of same handwritten words written by different writers. One method to

perform normalization is to observe specific parameters of handwriting that may

cause the different appearance of a word, then, each of these parameter values should

be estimated to remove the effects of variation from the word. The followings are, the

most frequently observed variations:

3.7.1 The width of characters

The variation in character width is mainly, because of using different pens.

Sometimes, different width can be observed among characters in the same text,

written by the same pen; this is caused by different degree of pressing while writing

or even caused by using bad quality pen with weak ink stream control. The character

width should be considered in word-to-character segmentation step.

3.7.2 The height of characters

The height of characters varies from one writer to another and, sometimes, from the

same which might be due to the available space for writing. Although there are rules

that determine the height of each Arabic character according to different styles, but

these rules are not usually adhered to strictly.

 60

3.7.3 The slant of words

The slant can be defined as the deviation of average near-vertical strokes from the

vertical direction [95]. Slant correction is an important normalization step in

processing handwritings where careful estimation and correction of the slant lead to

simplify the segmentation process and increases the recognition accuracy [96].

3.7.4 The slope of words

The slope of a word can be defined as the angle of base line of a word with respect to

0-angle horizontal line. Some writers fail to write horizontally even if a horizontal

guide line is given.

3.7.5 The skew of page

The page skew is a machine dependent variation caused by the oblique position of the

document while it was being scanned. Thus, it can be eliminated automatically by

using skew-correction algorithm or manually by correcting the document position in

the scanner. It is important to note that normalization aims to remove only the

variations which do not affect the identity of the word.

3.8 Base-line Detection

Skewed output page can be avoided by proper scanning of text document. The

horizontal projection is the most common method used to detect Arabic base line. In

this method, the 2D data is reduced to1D based on the pixels of the text image, and

the longest peak in the horizontal line will be the text baseline [69]. Figure 3.11 shows

the horizontal projection of an Arabic text.

Figure 3.11: The horizontal projection of an Arabic text

 61

3.9 Skew Corrections

Skew can be defined as the deviation of the text base line from the horizontal

direction. Mostly, skew is caused by inappropriate document position during scanning

[97]. For handwritten text, especially on a blank paper, line skew can be caused by the

writer himself. In this research, a fast algorithm that used Radon transform method for

skew correction is developed which can be used in document skew correction as well

as base-line correction.

3.9.1 Radon Transform

The Radon transform is the description of a function in terms of its integral

projections. When Radon transform is applied on an image, multiple, parallel-beam

projections of the image from different angles are taken by rotating the source around

the centre of the image [94]. Figure 3.12 shows a single projection at a specified

rotation angle.

Figure 3.12: A single projection at a specified rotation angle

Generally, the Radon transform of function f(x, y) is the line integral of f parallel

to y’-axis as following:

Rotation

angle Sensor

s

Sourc

e

X

Y

 62

 (3.6)

where,

 (3.7)

Figure 3.13 shows the geometry of the Radon transform.

Figure 3.13: The geometry of the Radon transform

The Radon transform has been used for skew correction. Kapoor et al. [98] used

two algorithms to detect and correct word skew. Their algorithm was designed for

Devanagari script where characters are connected with straight lines, thus, their

algorithm does not work with words with non-uniform Shiro-Rekha or characters

without Shiro-Rekha, and thus, their algorithm is not suitable for Arabic words.

Dong et al. also used two algorithms for skew and slant correction. For the skew

correction, a global measure which is defined by Radon transform of image and its

gradient is maximized to estimate the slope. For the slant correction, Radon transform

is used to estimate the long strokes and a word slant is measured by the average angle

of these long strokes [99].

Ganapathy and Lui used Radon transform as a part of their system for Malaysian

Vehicle License Plate Localization and Recognition. However, since the plate image

Y

Y’

θ

f(x, y) X’

Y’

Y X

 63

will have vertical lines as the plate edges, it will be easy to apply the Radon transform

[100].

3.9.2 Proposed method for text and words skew correction

The challenge is how to apply the Radon transform with handwritten text where no

clear vertical lines, such as Arabic handwritten text. Thus, a simple method for Arabic

handwritten text and words skew correction is proposed. The idea in this method is to

convert the word, line, or text image into a structuring element, then apply Radon

transform on this structuring element to correct its skew. Once the skew is corrected,

the word, line, or text image is reconstructed. The reason for creating the structuring

element is that the Radon transform can easily be applied on images, where the shape

will be represented as f(x, y) function, and the rotation angle is calculated according to

the central point of that shape. It is difficult to apply the Radon transform directly on a

word image that contains a group of curves and strokes and no central point can be

located. These curves and strokes can be converted into a shape by filling up the

empty space between them which can be done by creating the structuring element of

the word image.

3.9.2.1 The structuring element

The structuring element is a part of the dilation and erosion operations which are used

to probe the input image. A structuring element can be represented as a matrix

consisting of only zeroes and ones that can have any arbitrary shape and size. The

centre pixel of the structuring element, called the origin, identifies the pixel being

processed. The pixels in the structuring element containing ones define the

neighbourhood of the structuring element. These pixels are also considered in dilation

or erosion processing [93]. Figure 3.14 shows a structuring element of an Arabic

word.

Figure 3.14: A structuring element of an Arabic word

 64

As shown in Figure 3.13, converting the word into structuring element will create

a shape that can be easily represented as a function where it can be used with Radon

transform. Figure 3.15 shows Radon Transform applied on the structuring element of

an Arabic word.

Figure 3.15: Radon Transform applied on the structuring element

3.9.2.2 The proposed algorithm

The proposed algorithm consists of three steps: conversion of word or line image into

structuring element, applying Radon transform on the structuring element, and finally,

reconstruction of the word or line image.

i. Conversion of line image into structuring element

First, the line image is converted to a gray scale image. Figure 3.16 shows the gray

scale image of a skewed text line. Then, the gray scale image is used to create the

structuring element. Figure 3.17 shows the structuring element of the skewed line.

Figure 3.16: Gray scale image of a skewed line

 65

Figure 3.17: The structuring element of the skewed line

ii. Applying the Radon transform

The Radon transform projections will be applied along 180 degrees, so each column

of the Radon transform array shows the image profile along corresponding angle. The

negative angles correspond to clockwise directions, while positive angles correspond

to counter clockwise directions around the centre point, which is the center pixel of

the structuring element. Then, a Hough-like search is performed to find maximum

value of the Radon transform over all angles in the range of 50 to -50 degree. After

detecting the angle that indicates the slope of the upper bond of the image, Maximum

Radon transform value over all angles is calculated to indicate the corresponding

angle of that Radon, and then this angle is corrected according to the horizontal x-

axis. Figure 3.18 shows the structuring element after being corrected.

Figure 3.18: The structuring element after correction

iii. Image reconstruction

Using morphological reconstruction operation, the image is reconstructed by

repeating dilations of the image. Figure 3.19 shows the reconstructed line image.

Figure 3.19: The reconstructed line image

The proposed algorithm has shown good performance with skew page correction

included. Although the collected dataset do not have skewed pages, the proposed

 66

method was tested with skewed pages to see the robustness of the method. The result

was good as shown in Figure 3.20.

Figure 3.20: The page image before and after skew correction

3.10 Slant Correction

Slant correction is one of the significant operations in preprocessing stage. Slant

words may affect the performance of the segmentation stage, hence, slant correction is

mostly done before the segmentation stage. The most commonly method being used

for slant estimation is based on the calculation of average angle of vertical word

stroke. Vertical projection profile and chain code of the entire border pixels technique

has been used for slant correction [16]. Some methods such as the combination of

Wigner-Ville Distribution and the projection profile can be used in skew correction,

as well as in slant correction [101].

3.10.1 Slant words in Arabic handwriting

From the collected dataset, it was found that Arabic word might be slanted in both

directions. Thus, slant angle, which is the angle between the vertical stroke and the

baseline, might be bigger or smaller than 90°. Even though the Arabic handwriting

rules require vertical strokes in the word to be free of slant, some writers follow this

 67

rule and write non-slant word or at least with a small degree of slant angle, but there

are many who do not.

Unlike Latin, the left side slant, where the slant angle is more than 90°, is more

common in Arabic writing and more obvious as well, while the right side slant is less

common and less obvious. Figure 3.21 show two Arabic words: with left and right

slant.

Figure 3.21: Two Arabic words with left (left) and right (right) slant

3.10.2 Proposed technique for slant correction

Since the slant angle is varying, the first step in any slant correction method is to

estimate the slant angle. In order to estimate this angle, the vertical stroke should be

detected. This slant correction technique consist of three steps: vertical stroke

detection using Hough Transform, slant angle measuring using boundary tracing

routine and slant correction using transform technique. Each of the steps is discussed

in the followings:

1) Vertical stroke detection using Hough Transform

The Hough transform can be used to detect lines, using the parametric representation

of a line as following:

D=x*cos θ+ y*sin θ (3.8)

where,

D is the distance of the origin line along a vector perpendicular.

θ is the angle between the x-axis and this vector.

Matlab Toolbox function Hough was used to generate a parameter space matrix

which rows and columns correspond to these D and θ value respectively. In this step,

 68

two lines should be extracted, the vertical slant stroke, which is the object to be

corrected and the horizontal stroke which represent the base line.

2) Measurement of slant angle using boundary tracing routine

In order to maximize the accuracy of the angle measurement, Boundary tracing

routine can be used to trace the two lines, which have been extracted in the previous

step. In this technique, nonzero pixels are considered as object and zero pixels

constitute the background. The row and column coordinates of the point on the object

boundary, where the tracing begins is represented as a two-element vector. The initial

search direction for the next object pixel connected to the starting point should be

specified.

After the two lines have been traced, vector based on the line equation should be

created for each line.

 (3.9)

 (3.10)

 (3.11)

where,

ab1 and ab2 can be obtained by using polyfit function from Matlab Toolbox.

Then, the lengths of the two vectors can be obtained as:

 (3.12)

 (3.13)

Finally, the angle between the two lines can be obtained as:

 (3.14)

Experimentally, it was found that the value of slant angle θ usually fall in a range

between 80° to 100°. As mentioned earlier, a majority of the collected dataset have

slant angle bigger than 90°.

3) Correction of slant angle using spatial transformation

 69

A spatial transformation of an image can be defined as an alteration that changes the

image orientation in the spatial domain. Spatial transformations change the position of

intensity information but do not change the actual information content. It can be used

to move an image up or down, or left or right, relative to some reference point.

Alternatively, it might be rotated, changed in size, or distorted in some ways that

changes the shape of objects in the image [102].

For slant angle correction, affine transformation is used. The affine transformation

is a transformation for which parallel lines remain parallel and squares are changed

into parallelograms. In other words, only the vertical lines will be changed into skew

lines. A 3-by-3 matrix is used to specify the affine transformations.

 (3.15)

where,

shy: specifies the shear factor along the y axis.

shx: specifies the shear factor along the x axis.

In our case, shx represents the value which should be added to shear the image in

order to correct the slant angle. Figure 3.22 shows the affine transformation on a

square image.

Figure 3.22: The affine transformation on a square image

The shx value should be set according to the slant angle θ value. If θ is bigger than

90°, the word has left slant then shx should be detected from θ value in order to

correct the slant, if θ is smaller than 90° the word has right slant then shx should be

 70

added to θ value. Figure 3.23 shows a slant word before and after correction using the

proposed method.

Figure 3.23: A slant word before (left) and after (right) correction using the proposed

method

3.11 Thinning

Thinning, sometimes known as skeletonization, has an important role in OCR

systems, even though; few researchers have considered the thinning process for

Arabic OCR systems. Since handwritten words usually have different widths, thinning

aims to equalize the width of the text line. In order to equalize the line width, thinning

method removes layers or points from the outline until the line has a width of 1 pixel.

The result of word thinning is called the skeleton of the word. Generally, the thinning

process is achieved by skeletonization algorithms which can be categorized into two

approaches, the iterative approaches and non-iterative approaches. In iterative

approaches, the algorithm first checks the boundary pixels, then progressively delete

them, until one pixel width is obtained. In the non-iterative approaches, a medial line

of original word image is produced directly without checking all the pixels. Both

approaches can be achieved sequentially or in parallel. In sequential algorithms, result

from the previous iteration is used in the current iteration to process the current pixel.

In parallel algorithms, the result from the previous iteration affects the decision to

remove a point in the current iteration. For handwritten Arabic text, it is hard to find a

robust skeleton algorithm that retains the significant features of the pattern due to the

variety of writing styles of Arabic handwriting [103].

In this research, a morphological method is used for thinning that utilizes a

parallel algorithm proposed by Zhang and Wang [104], with some modifications in

order to be more suitable for Arabic text image.

 71

3.11.1 Morphological Operations

Morphology is an image processing operation that processes image based on its

shape. It applies a structuring element to an input image, creating an output image of

the same size. In a morphological operation, the value of each pixel in the output

image is based on a comparison of the corresponding pixel in the input image with its

neighbours.

The basic morphological operations are dilation and erosion. In dilation, pixels are

added to the boundaries of objects in an image, while in erosion, which is used for

thinning, pixels are removed from object boundaries. By applying different rules to

the corresponding pixel and its neighbours in the input image, morphological

operation is determined to be dilation or erosion. In erosion, the value of the output

pixel is the minimum value of all the pixels in the input pixel neighbourhood. In a

binary image, any 0 pixel in the input will be 0 pixel in the output [93].

One example of erosion applications is to make a text written with a pen that is

bleeding looks clearer. Erosion process will allow thicker lines to get skinny and to

detect the hole inside the character "o". As dilation is the opposite of erosion, it can be

used with figures that are very lightly drawn to get thicker.

Zhang and Wang [104] proposed a two sub-iteration parallel thinning algorithm

with template matching that preserves image connectivity, produces thinner results, in

short time, and generates one-pixel-wide skeletons. To achieve the thinning task, G1,

G2, G3 and G4 conditions are proposed [93].

Condition G1

 (3.16)

where,

 (3.17)

 (3.18)

 72

Otherwise (3.19)

X1, X2… X8 are the values of eight neighbours of p starting with the east neighbour

and numbered in counter-clockwise order as shown in Figure 3.24.

Figure 3.24: The eight neighbours of pixel

Condition G2

 (3.20)

where,

 (3.21)

 (3.22)

Condition G3

() ^ =0 (3.23)

The algorithm achieves the thinning task by checking the G1, G2, and G3

conditions as follow:

i. Divide the image into two distinct subfields in a checkerboard pattern.

ii. In the first sub-iteration, delete pixel p from the first subfield if and only if the

conditions G1, G2, and G3 are all satisfied.

iii. In the second sub-iteration, delete pixel p from the second subfield if and only

if the conditions G1, G2, and G3 are all satisfied [93].

However, Zhang and Wang algorithm was designed for general thinning purposes,

and images containing only straight lines were used in their experiments. In order to

 73

make it more suitable to achieve thinning task for cursive lines such as Arabic text,

the algorithm should be used with some additional steps and conditions as follow:

iv. Read the text image.

v. Convert the image into binary image.

vi. Consider white pixels as 0 and black pixels as 1.

vii. Identify the isolated pixels: these pixels will be considered as noise and will be

deleted. Two kinds of pixel will be considered as isolated pixel: 1 pixel

surrounded by eight 0 pixels or 1 pixel surrounded by five 0 pixels as shown

in Figure 3.25. The dots that are a part of the character body should not be

considered as noise as the size of those dots should be bigger than 1 pixel.

Figure 3.25: Two cases of 1 pixel considered as noise

viii. Check possible pixels which may be changed to 0: In this step, all pixels in the

image boundary should be considered to be deleted for image thinning.

Supposing Pc is a pixel being checked, P1, P2...P8 is eight neighbour pixels of

Pc as shown in Figure 3.26.

Figure3.26: The checked pixels with neighbouring pixels

Pc will be considered as a boundary pixel if:

 {(P6=1) & (P2=0) or,

 (P8=1) & (P4=0) or,

 (P6=0) & (P2=1) or,

 (P8=0) & (P4=1)}.

 74

That means, Pc will be considered as a boundary pixel and will be deleted if it

is connected to at least two other black pixels.

1) Check pixel locations in the original image.

2) If a pixel is adjacent to an isolated pixel, and it does not also have

another neighbour, apply Zhang and Wang algorithm.

The output of the supposed algorithm is the thinned text image. Figure 3.27

shows an example of Arabic text before and after thinning using our algorithm.

Figure 3.27: Arabic text before (left) and after (right) thinning

3.12 Summary

Preprocessing is a significant stage in any OCR system. The quality of the output

from this stage will affect the segmentation stage and the accuracy of the whole

system as well. In this chapter, the main parts of preprocessing stage: data acquisition,

binarization, smoothing, normalization and thinning are discussed. Since Matlab

environment is used for the experimental work, some Matlab Toolbox functions are

used for some preprocessing operations such as binarization, and smoothing.

For normalization, a fast algorithm which uses Radon transform method for skew

correction is proposed. The new proposed algorithm can also be used for page skew

correction as well as base line correction. For slant correction, a three-step technique

is proposed; detection of vertical strokes using Hough Transform, measurement of

angle using boundary tracing routine, and slant correction using transform technique.

For thinning, an algorithm that utilizes the algorithm proposed by Zhang and Wang is

 75

proposed. All of these operations are able to yield a clean document that can be used

for the segmentation stage which will be discussed in Chapter 4.

For skew detection and correction, the proposed algorithm consists of three steps:

conversion of word or line image into structuring element, applying Radon transform

on the structuring element, and finally, reconstruction of the word or line image. The

proposed algorithm has shown good performance for page, line and word skew

detection and correction.

 76

CHAPTER 4

 SEGMENTATION

4.1 Chapter Overview

This chapter presents the second stage of the proposed system, the segmentation

stage. First, some rules that reflect Arabic handwriting characteristics are presented.

Then, characters width estimation is discussed as it is needed in the proposed

segmentation method. The next stage of proposed segmentation model: text-to-lines,

line-to-words and word-to-characters and the proposed algorithm to achieve the

segmentation task at each stage are presented. In word-to-characters stage, an

additional algorithm for segmentation of overlapping characters is presented.

4.2 Introduction

Segmentation is a significant sensitive stage in OCR systems. If a system fails to

segment a handwritten word correctly, it will fail to recognize that word regardless

how robust the recognition method is. For that reason, a considerable amount of work

has been carried out in order to develop segmentation process for different languages.

The segmentation process of handwritten Arabic is a challenging task due to the

cursive nature of Arabic characters. In addition, the large number of Arabic characters

shapes and many different writing styles are other factors that make segmentation

stage more difficult, and could possibly cause character over-segmentation since the

majority of Arabic characters can be connected from both right and left sides.

Most of the segmentation methods start with page segmentation which involves

two processes: page decomposition and text segmentation. Page decomposition aims

 78

to separate different page elements such as text, graphs, background, pictures,

photographs, and drawing. In text segmentation, text will be progressively segmented

into text lines, then into words, then, in some systems, into characters [24].

As mentioned earlier (in Section 2.4.1.3), several methods have been proposed for

Arabic handwriting segmentation. Some algorithms designed for Latin cursive word

segmentation might be used for Arabic word after some modifications. Generally,

most segmentation methods for segmenting a handwritten text use similar technique.

The first step is to determine a number of cut paths through the text line image using

connected pixels method, where connected component is segmented as words, or

vertical histogram method, where the minimum value of the vertical histogram

indicates gaps between words. The output of this step should be a large number of

subsets of foreground pixels, supposed to be words or sub-words. In the second step,

the subsets of foreground pixels are segmented again into isolated characters, which

can be used in the recognition stage. The segmentation in both stages depends on

hypotheses. In the first step, where text line should be segmented into words, each

non-pixel zone through the hypothesis graph represents a possible segmentation of the

output. In the second step, character hypothesis, that represent all possible segmented

characters, are arranged into a hypotheses graph using the constraint that the

foreground pixels of different character hypothesis should not be overlapping [45].

4.3 Segmentation Rules for Arabic Handwritten Text

In order to perform an accurate segmentation for Arabic handwritten text, it is

important to highlight some characteristics of Arabic handwriting that make

segmentation more difficult. Some rules, those that reflect the nature of Arabic

characters and writing styles, which have been discussed before in Section 2.3.2 will

be considered before designing the segmentation method in the proposed OCR

system.

i. Arabic is written cursively from right to left, some writers use to connect

characters to each other by horizontal strokes, the length of those strokes varies

depending on the writer style, but this stroke is usually longer than the strokes of

 79

the character itself. These strokes are assumed to be segmentation points, thus,

they make segmentation task easier, but, unfortunately, are seldom used. Figure

4.1 shows some of these strokes.

Figure 4.1: Some horizontal connection strokes

ii. Arabic characters have 4 basic shapes, according to the character position in the

word, beginning, middle or end, as shown previously in Table 2.2. The shape of

some characters is totally different when it is located at the end of a word such

as (ه), while it is slightly different for other characters such as (ل). These features

can be useful for segmentation since the existence of these characters, in the end

shape, indicates the end of the current word and a new word is beginning. Table

4.1 shows an example of the different shapes of two Arabic characters.

Table 4.1: The different shapes of two Arabic characters

Character Shape

Beginning Middle End

 ـه ـهـ هـ ه

 ـــــل ــلـــ لـ ل

iii. Some Arabic characters ((ا -ذ –د –ر –ز –و are connected to others only from

the right side. The existence of these characters indicates the end of a word or

dividing the word into two or more sub-words.

iv. In the case of sub-word, the space between sub-words is smaller than the space

between different words. Figure 4.2 shows the spaces between sub-words (as

pointed by lower arrows) and between different words (as pointed by upper

arrows).

 80

Figure 4.2: The spaces between sub-words (pointed by lower arrows) and

between different words (pointed by upper arrows)

v. In many cases, Arabic characters may overlap each other. Therefore,

segmentation cannot be successfully achieved using vertical histogram. Figure

4.3 shows a case of overlapping characters.

Figure 4.3: Overlapping characters

vi. Dots make the difference between some characters that have the same shape

such as (ش -س –ذ –د –ت – ب). Dots appear in three forms: single dot, two

dots, or three dots. Most writers draw the two dots as a horizontal stroke (-) the

three dots as a small triangle (^). The position of the dots should be right up or

below the character, but some writers draw them slightly far (to the right or left

side) from the right position. As shown in Figure 4.4.

Figure 4.4: A misplaced dot under the letter Dal (ـد) which should be under the

character Baa (بـ)

4.3.1 Character Width Estimation

It is important to estimate the character width in order to determine the candidate

points of segmentation. Word-to-characters segmentation depends on an accurate

estimation of character width. In handwritten words, both too long and too short

 81

characters will cause an error in determination of the segmentation point. If the

character is too wide in width, the segmentation might produce only parts of it, if it

too short, segmentation might produce character with parts of other adjacent

character. Like other alphabets, Arabic characters are different in terms of width as

shown in Figure 4.5. Character width estimation is not a simple task for handwritten

words in any languages.

Figure 4.5: The width of Arabic printed characters

Figure 4.5 shows a comparison of width of isolated Arabic printed characters at

font 12pt. However, in case of handwritten characters, character width might be

scaled up or down depending on the writer‟s style, but the character Alif is the

smallest and the characters Saad and Thad are the largest in terms of width.

There are three approaches for character width estimation: using the word width

with the average number of characters, using statistical measurement, and using a

character height as a reference. The first method is to use the width of the word with

the average number of characters in Arabic words. Since the number of character in

Arabic words varies, from 2 to 10 characters, the result of using this method might be

inaccurate in the case of words having far from the average number of characters. In

the second method, statistical measurement is performed on the Arabic text to get

approximate average width of the characters. This method requires using characters of

the same size in the dataset which limits its use for characters of different sizes. The

third method is to locally estimate the character width by considering the average

height of one character as a reference.

 82

4.4 Proposed Segmentation Module

Documents, especially printed, may contain text, images, graphs, table, etc; text

extraction is the first step in the segmentation stage. Since the scope of this research is

handwriting recognition, the handwritten document, which is the input to the

proposed OCR system, is assumed to contain text only.

In this thesis, the segmentation process contains three main stages: text to text

lines stage, text line-to-words stage, and word-to-characters stage. In text to text

lines stage, text lines should be extracted from the handwritten text. In text line-to-

words stage, words should be extracted from the lines. Finally, in word-to-characters

stage, words should be segmented into individual characters to be recognized. Figure

4.6 shows a flow chart of the segmentation process.

Figure 4.6: A flow chart of the segmentation stage

4.4.1 Text-to-text lines Segmentation Stage

Text line can be defined as an imaginary line that is used by people when they are

writing. For Arabic text, the text line contains the most vertical strokes of the words.

Text lines are separated from each other by white spaces. Thus, for line segmentation,

the boundaries of each text line are located by finding the horizontal gaps between

text lines. Text line extraction of handwritten text can be categorized into six

The Input:

Document page

Text to Lines Stage

 Line to Words Stage

Word to Characters
Stage

The Output:

Individual characters

 83

approaches: projection based, smearing, grouping, Hough-based, graph-based, and cut

text minimization approach [105].

In projection based approach, the pixel values along the horizontal axis for each y

value is summed to obtain the vertical projection profile used to determine the vertical

gaps between the text lines. In smearing approach, consecutive black pixels along the

horizontal direction are smeared to fill all distance between the white space that is

within a predefined threshold. The bounding boxes of the connected components in

the smeared image are considered as text lines. In grouping approach, alignments are

built by aggregating units in a bottom-up approach. Units such as pixels, connected

components, or blocks are joined together to form alignments used to construct the

text line [105].

In the Hough-based approach, Hough transform is used to locate straight lines in

text images. Some researchers [106] used a block-based Hough transform to detect

the text lines. The graph-based approach assumes that the distance between the words

in a text line is less than the distance between two adjacent text lines. In this approach,

a graph of the main strokes of the document image is built to obtain the shortest

spanning tree of this graph. The cut text minimization approach aims to find a path or

cut line between the text lines to be separated. The method attempts to track around

ascenders or descenders to avoid cutting them. If the deviation is too great, the

segmentation line aborts and continues its forward path [105].

4.4.1.1: Proposed Method for Text-to-lines Stage

In this research, Hough transform approach has been adopted for text to lines

segmentation stage. The Hough transform is a global method used to find straight

lines in a binary image, where each point in Hough space corresponds to a line at

angle and distance from the origin in the original data space. The point density along a

line in the data space is given by the value of a function in Hough space [107].

Beside text line extraction, Hough-based methods are widely used in pattern

detection such as, curve detection [108], hatched pattern detection [109], straight line

segment extraction in complex images [110], road detection [111] and lane boundary

detection [107].

 84

For text line extraction, Hough-based methods are used to solve some problems

including: line proximity, overlapping or even touching strokes, fluctuating close

lines, and shape fragmentation occurrences [112]. Shapiro et al. [113] used Hough

transform to search for the global orientation (skew angle) of a handwritten page.

Then, projections are achieved along this angle. The number of maxima of the profile

is used to obtain the number of lines. Likforman-Sulem et al. used the Hough domain

and the image domain in combination for detecting text lines in unconstrained

handwritten texts. The Hough transform is coupled with a validation procedure which

enables the rejection of alignments of components occurring in a context which

inhibits their perception [114].

Pu and Shi applied the Hough transform to minimum points (units) in a vertical

strip on the left of the image. By grouping cells in an exhaustive search in six

directions, due to the shape of each non-zero group, the alignments in the Hough

domain are searched starting from a main direction. Then, the remaining units are

assigned to alignments by moving window, associated with a clustering scheme in the

image domain [115].

Hough transform was chosen in this research due to two factors: first, the main

advantage of using the Hough transform is that the pixels lying on one line need not

all be contiguous. This can be very useful when trying to detect lines with short

breaks in them due to noise [116] as the case of cursive handwritten text lines.

Second, the Hough transform was already chosen as a method for slant correction in

the preprocessing stage. Using the same method for line extraction makes the system

easier to be implemented.

4.4.1.2: Hough-Based Algorithm for Text-to-Lines Segmentation

For text-to-line segmentation, an algorithm that receives the text image as an input

and produces a group of individual text line images as output has been developed.

Each extracted text line will be separately stored in a new file. The proposed

algorithm consists of the following steps:

a) The text image is converted into a binary image in order to find the edges of

the text. Canny, which is the most powerful edge-detection method has been

 85

used, since it uses two different thresholds (to detect strong and weak edges),

and includes the weak edges in the output only if they are connected to strong

edges. Therefore, Canny method is less likely to be fooled by noise than the

other edge detection methods and more likely to detect true weak edges [93].

These features are more important in this system case, where the input is a

cursive handwritten text. Using this method, a clear edged binary image of the

handwritten text can be obtained. Figure 4.7 shows the input text image and

Figure 4.8 shows its edged image.

Figure 4.7: The text image input

Figure 4.8: Edged image of the text image input

b) The Standard Hough Transform (SHT) is used to compute the Hough

transform of the edged image in order to detect the lines in the image using the

parametric representation of a line as appeared by eq (4.1):

 (4.1)

where rho is the distance of the origin along a vector perpendicular and θ is the angle

between the x-axis and the vector.

Figure 4.9 shows the detected lines using Hough Transform, some lines might be

cut into more than one part due to the low pixel density. This will not affect the text

line extraction as the text line position is detected by all the detected line parts.

 86

Figure 4.9: The detected lines using Hough Transform

c) In order to extract each line separately, peak values should be found in the

parameter space which represent potential lines in the input image. Then, peak

values are used to find the white pixels in the input image that correspond to a

particular Hough transform. After the corresponding white pixel line is found,

it will be stored in a new file called line-text-image. Figure 4.10 shows the

corresponding white pixel line. The bin in this case represents a text line, thus,

it is set according to text line number in the text image.

Figure 4.10: The corresponding white pixel line of one text line

d) Finally, the corresponding white pixel line is used to determine the location of

each text line in the original text image. The height of text line is determined

by calculating the mean of X axis of the corresponding white pixel line Xmean

as the following:

 (4.2)

where

 [x, y] is a vector that represents the corresponding white pixels and

Image2 is the new image that contains only the corresponding white

pixels.

 (4.3)

where

 X is the x axis of the corresponding white pixels line.

 87

e) Experimentally, it was found that all the text lines in the used dataset are

located within 100 pixels, above and below, the corresponding white pixels.

The top border of the extracted image, image2, is found by adding 45 pixels to

the mean of the corresponding white pixels, while the bottom border is found

by deducting 55 pixels from the mean of the corresponding white pixels. The

width of the text line is limited to the width of A4 form since A4 size is used

in the dataset. It was found that the range from 5 pixels to 2500 pixels can

cover the width of any text line in the dataset. Therefore, the location of the

text line can be determined as follows:

Xtop=Xmen+45 (4.4)

Xbottom=Xbottom-55 (4.5)

where,

Xtop: is the top border of the extracted text line in the file image2.

Xbottom: is the bottom border of the extracted text line in the file.

Image2=Image1 (Xbottom: Xtop, 5:2500) (4.6)

where,

Image1: The original text image.

Image2: The extracted line image.

5:2500: The width of the extracted line image.

As the width of the text line varies from one writer to another, an empty space

might be found at the beginning or the end of the extracted line image. This empty

space will not adversely affect the segmentation process. Figure 4.11 shows the

second extracted line.

Figure 4.11: An example of an extracted line

To ensure that this algorithm is capable to extract lines from any text page, the

width and height of extracted line image (Image2) can be calculated using the vertical

and horizontal projection of the binary original image (Image1).

 88

The width of the extracted line image (Image2) can be equal to the original full

text image (Image1). The height of the extracted line image (Image2) can be

determined by calculating the sum of the rows in the array that represents the binary

image of (Image1) after exchanging the one pixels with zero pixels.

In case of empty spaces between text lines, the empty space will be determined as

rows with a sum of zero, above and below the corresponding white pixels which will

be presented as the row with maximum value of sum.

In many cases, text lines are quite close to each other which make them vertically

overlapping. In such cases, there will not be any rows with sum of zero. Instead, rows

with minimum value of sum will represent the space between text lines. Thus, the

height of extracted lines can be determined by calculating the distance between the

row with maximum value of sum, which represents the corresponded white pixels,

and the first row with minimum value above and below the corresponding white

pixels as follows:

 (4.7)

where,

rowsum: a matrix that contains the sum of each row in the binary image array.

Image1_rows: a row number n in the array.

rowmax=max[rowsum] (4.8)

rowmin1=min [rowsum] (4.9)

rowmin2=min [rowsum] (4.10)

where,

rowmax: the row with maximum value.

rowmin1: the row with the minimum value above rowmax.

rowmin2: the row with the minimum value below rowmax.

Then the extracted image can be:

 (4.11)

 89

4.4.2: Text line-to-Words Segmentation Stage

Text line to words segmentation is a critical stage before the final segmentation stage,

where the isolated characters are obtained. In this stage, the segmented lines obtained

from the previous stage are segmented into words and sub-words. In general,

segmentation methods can be categorized into three categories: text line segmentation

methods, word segmentation methods and both text line and word segmentation

methods [117].

In most of text line-to-word segmentation methods, the words are defined as

connected components. Thus, the distances between adjacent connected components

are measured using a metric such as the Euclidean distance, the bounding box

distance or the convex hull metric [118-120]. To distinguish between words and sub-

words, a threshold is used to determine whether the calculated distance separates

words or characters.

For Arabic handwritten text line, connected components method can produce

good results only if there is enough distance between words. Wherever words are

close to each other, connected components will be overlapping. Figure 4.12 shows an

example of connected components.

Figure 4.12: Connected components of Arabic handwritten text line

In handwritten text lines, there are two main problems which should be overcome.

First, the overlapping words, which make text line to word segmentation a difficult

task. Second, the non-constant distances between different words and characters in the

same word with non-constant character width. Following, is a brief explanation about

both problems.

 90

i. Overlapping words

For languages written cursively, such as Arabic, characters, in many cases, might be

vertically overlapping, as a part of one character is located below or above other

adjacent characters. This will cause one of the overlapped characters to be cut off into

two parts if vertical segmentation algorithm is used. On the other hand, the

overlapping characters will cause the two sub-words to be considered as one

connected word. In the case of characters from different words, two different words

will be considered as one word. Figure 4.13 shows an example of overlapping

characters, from different words (a) and within the same word (b).

Figure 4.13: Vertical overlapping characters, from different words (a) and within the

same word (b)

ii. The non-constant distances with non-constant character width

As mentioned earlier in Section 3.2.1, the width of Arabic characters varies. In

addition, the same character might have different width when it is written by different

people. This makes it important to have character width estimation technique in order

to avoid the character from being cut, in case it is too long, or being segmented as a

part of an adjacent character, if it is too short. Furthermore, spaces between words,

and between different parts of sub-words, are important for accurate segmentation.

The spacing between words are supposed to be larger than those between characters.

However, in some cases there will be no difference between the spacing that separates

words than the spacing separating characters due to the lack of a standard definition

for spacing width. In Figure 4.14, the spacing „a‟, located between two different

words, should be larger than spacing „b‟, which separates characters in the same word.

 91

Figure 4.14: An example of spacing between words smaller than spacing between

characters.

4.4.2.1: Proposed Algorithm for Text line-to-Words Stage

The proposed algorithm uses statistical method for text line-to-words segmentation.

The idea behind it is that, after the text line image is converted into binary image, the

value of each pixel in the image will be either one, which appears as background in

white color, or zero, which appears as foreground in black colour. After switching the

pixels ones into zeros, the foreground will appear in white, and the background will

appear in black. This will make detection of empty spaces between words easier.

Figure 4.15 shows a binary image of text line after switching pixels ones into zeros.

Figure 4.15: A binary image of text line

As the whole binary image is a mathematical two-dimensional array each column

in this array represents a space between words or characters. The proposed algorithm

also uses empty columns to measure the space between words and characters, and to

measure the width of words and characters. This measurement is used to determine

whether the segmented component is a word or a character. Figure 4.16 shows empty

columns between words and characters.

 92

Figure 4.16: The empty columns between words and characters

Upon the completion of segmentation, the output will be segmented components,

which might be words, sub-words or characters. Figure 4.17 shows the diagram of

line-to-words segmentation algorithm. The entire line is segmented into isolated

connected components. Then, each component is tested to determine whether it is a

word or sub-word, before sending to the next segmentation algorithm, or if it is a

character, it will be sent directly to the recognizer.

Figure 4.17: Flowchart of the proposed segmentation algorithm

 93

As shown in Figure 4.17, the output will be tested according to two factors: first,

the connected component width, then the distance between this segmented component

and the two adjacent segmented components. The test is done according to the

following steps:

Step1: All segmented components width and the distances between each two adjacent

segmented components are measured, in pixels, and the mean will be calculated for

both. If the minimum width found is less than 4 pixels, that indicates that the

minimum width is referring to the character Alif ا) (which is the smallest character.

While the largest character in Arabic is Saad ص) (. As shown in Figure 4.5, for

printed characters width of Saad is eight times larger than the width of Alif. In this

proposed algorithm, the width of Saad is estimated to be ten times larger than the

width of Alif. Two pixels are added to the width of the character Saad considering

that handwritten Alif in some cases might be slanted. At this point, the first reference

for character width for this particular writer is made.

Step 2: If the segmented component width is smaller than the width of Saad and the

distance between this segmented component and its adjacent segmented components

is shorter than the mean distance, it will be considered as character. Characters will be

passed to the recognition stage.

Step 3: If the segmented component width is larger than the width of Saad, according

to the mean measured in step1, and the distance between this segmented component

and its adjacent segmented components is longer than the mean distance, this

segmented component is considered as a word. Words will be passed to the word-to-

characters segmentation algorithm.

Step 4: If the segmented component width is large according to the mean measured in

step1, and the distance between this segmented component and its adjacent segmented

components is short, this segmented component is a sub-word. Sub-words will be

considered as words and will be passed to the word-to-characters segmentation

algorithm.

 94

In some uncommon cases, the character Alif does not exist in the text line. This

can be detected when the minimum width is larger than 4 pixels. In such cases, the

width of the character Alif will be immediately estimated as 3 pixels. The

segmentation algorithm is accomplished according to the following steps:

a) The text line image will be received from the previous stage (line extraction) and

will be converted into a gray-scale image then to binary image.

b) Exchange between 1s and 0s in the binary image to represent the background of

the binary image as zero pixels and the words (foreground) as one pixels. The

binary image now is a two-dimensional array with specific number of rows as

height, and specific number of columns as width.

c) Search for the empty columns (wherever the sum of the 100 rows=zero).

Wherever an empty column (Ec) is found, a segmentation point is determined.

This will produce empty segmented images, when the segmentation is done

between two empty columns. Only the segmented components will be sent to the

next segmentation stage.

d) The number of empty columns indicates the distance between components

(words, sub-words or characters). The number of non-empty columns (NEc)

indicates the width of components. Both, distance between all components and

width of them will be measured.

 (4.12)

where,

D: the distance between two adjacent components.

n, m: the first and the last empty columns in the space between two adjacent

components.

Ec: the empty column.

After the distance D of all empty spaces are measured, the mean of D (meanD) is

calculated. The distances before and after the segmented component D1, D2 will be

considered as large if they are bigger than meanD

 (4.13)

 95

where,

W: the width of one component.

n, m: the first and the last non-empty columns before the next empty space.

NEc: the non-empty column.

If the minimum width of a component is less than 4, that minimum indicates the

character Alif (Walif); the larger character is estimated to be 10 times larger than the

width of Alif. Otherwise, the width of Alif is estimated as 3 pixels.

If min (W) <4

Walif = min (W) (4.14)

Wsaad=10*(Walif) (4.15)

Otherwise

Walif = 3 (4.16)

Wsaad=30 (4.17)

e) Testing the segmented components.

If (Ws < Wsaad)

The segmented component is a character.

If (Ws > Wsaad) and (Ds1 or Ds2 > meanD)

The segmented component is a word.

If (Ws > Wsaad) and (Ds1 or Ds2 < meanD)

The segmented component is a sub-word.

where,

Ws: the width of segmented component.

Ds1 and Ds2: the distance before and after that segmented component.

The main goal of testing the segmented component is to determine whether the

segmented component is a character or not. If it is a character, it should be sent

directly to the recognizer. In some rare cases, a word with only two characters might

have a width less than the width of Saad. In this case, the recognizer will send the

 96

segmented component back to the word segmentation algorithm after it failed to be

recognized. At this point it is not important to determine whether a segmented

component is a word or sub-word as both will be sent to the next segmentation stage.

The algorithm deals with overlapping characters as connected component. Since

no empty column will be found between them, they will be passed to the final

segmentation stage, where words will be segmented into individual characters. The

proposed solution for overlapping characters will be discussed in the next section.

4.4.3 Word-to-Characters Segmentation Stage

The word “Segmentation” in character recognition, usually, refers to the process of

segmenting a word into individual characters. As mentioned earlier, in Section

2.4.1.3, segmentation methods can be classified into three classes: holistic methods,

image-based methods and recognition-based methods [45]. In holistic methods, the

system is designed to recognize words as a whole, avoiding the need to segment into

characters.

In Image-based methods, decomposition of the word image into a sequence of

sub-images using general features is used. The word image can be decomposed,

directly, into characters. The decomposition can be achieved by contextual post-

processing, where the segmentation obtained by decomposition is later subjected to

evaluation based on linguistic context.

In recognition-based methods, word image is divided systematically into many

overlapping pieces without regard to content. These methods could be performed by a

serial windowing optimization scheme, where recognition is done iteratively in a left-

to-right scan of words, searching for the best recognition result, or by a parallel

optimization scheme that generates a lattice of all possible feature-to- character

combinations [45].

4.4.3.1: Proposed Method for Word-to-Characters Segmentation

In preprocessing stage Section 2.4.1.2, two operations that are related to the proposed

method for word segmentation have been presented. The first operation is

 97

binarization, where the coloured image obtained from scanning stage is converted into

a grayscale image, which is then converted into a binary image in order to make the

image clearer and sharper. When binarization has been completed, the word image is

segmented into two regions: one made by word (information), appearing as black

pixels, and another one made by the background, appearing as white pixels. The

second operation is thinning, which is the process of minimizing the width of a line in

the input image from many pixels wide to just one pixel.

The input of word for the segmentation stage will be the output of the previous

stage, which are connected components that might be connected word, sub-word, or

more than one sub-word that failed to be segmented into isolated sub-word due to

overlapping problem. The isolated characters will be directly sent to the recognition

stage. Figure 4.18 shows an example of segmentation stage input.

Figure 4.18: An example of segmentation stage input

Once the connected component image passed binarization and thinning operation,

binary thin image is obtained. Figure 4.19 show an example of binary thin image of a

connected word.

Figure 4.19: Binary thin image of a connected word

In order to detect the word strokes as column with sum equal to one, the value of

the white pixels, which is 1, is exchanged with the value of the black pixels, which is

0. Thus, each white pixel will become black and vice versa. Figure 4.20 shows the

word image after exchanging the pixel values.

 98

Figure 4.20: The word image after inversion pixels 1 and 0

At this point, each stroke between characters will be represented as a row of white

pixels. On the other hand, the whole image is mathematically represented as a logical

array. In order to detect the position of the strokes that separate characters, the sum of

each column of this array is calculated. Whenever the sum of a column is equal to 1

that indicates the position of a stroke. Figure 4.21 shows part of the previous image,

where the characters Saad is positioned between two strokes.

Figure4.21: The character Saad positioned between two strokes

In Figure 4.21, the sum of each column in the spaces S1 and S2 is equal to 1,

indicating that these two spaces are strokes. From the first column in the space L1 till

the last column in that space, the sum of each column is bigger than 1. That means

there is a character located in that space.

The proposed algorithm for word-to-characters segmentation can be summarized

as follows:

a) The input image is converted into a binary image, then thinned to obtain binary

thin image of the connected component that is mathematically represented as

logical array A with specific number of columns and rows.

 99

b) The values of the A elements are exchanged. The exchange is performed by the

logical NOT of input array A, the elements of the output array is set to 1 if A

contains a zero value element at that same array location. Otherwise, that element

is set to 0.

c) Search for empty columns (whenever the sum of the rows=zero) to find the

beginning and end of the word. Then, search for the columns where the sum=1.

Wherever those columns are found, the position of that column will be taken as

segmentation point.

 (4.18)

where,

Cs: the sum of a column elements value.

m, n : the first and the last row in the logic array.

R: the elements in that row.

d) Since some characters located within a word have two horizontal strokes, before

and after the character body, therefore some space before the character at the

beginning of a word, as well as space after the character at the end of a word is

needed. In such cases, the segmentation point will be one column before, and after

Sp.

If (Cs=0), then C+1 or C-1 position is segmentation point Sp (to obtain space).

If (Cs=1), then C+1 or C-1 position is segmentation point Sp (to obtain

strokes).

As an example, in Figure 4.22, the array A contains 26 columns C1, C2…C26 and

the sum of each of columns, C1, C2…C9 is equal to 1, as each column contains only

one white pixel. That indicates that the space from C1 to C9 is a stroke. Starting from

column C10 till column C17, the sum of each column is larger than 1, as each column

contains more than 1 white pixel. That indicates that there is a character located in the

space between C9 and C18. The space between C18 and C26 indicates a stroke. To

obtain horizontal strokes before and after the character, segmentation points will be at

 100

columns C8 and C19. In case of characters at the end or at the beginning of a word,

instead of strokes, having some empty space is required in order to have clear shape

of the segmented character.

Figure 4.22: Graph of the array A

e) After segmenting according to the adaptive points, some segmented parts of the

word will have only part of a stroke. That will happen when two segmentation

points are adjacent. Thus, segmented-part size will be tested, if the size is small,

that part is a stroke, and it will not be saved. The size of stroke in segmented

image, experimentally is estimated to be 3 pixels, smaller than the size of Alif

which is the smallest character in terms of width.

W=Width(S) (4.19)

If W> 3,

 Save S.

else,

Do not save S.

where,

W: The width of the segmented part.

S: The segmented part.

There will be 3 cases of segmented characters, according to Cs value.

Case 1: Zero- more than one – one:

This indicates a character at the end of a word or sub-word. As shown in Figure 4.23,

the segmented character occupies the columns between column 5 and column 10

where Cs=0 and Cs=1, respectively. Thus segmentation will be at column 4, and

column 11 to obtain empty space and stroke respectively.

 101

Figure 4.23: An example of first case of segmented character

Case 2: One- more than one- one:

This indicates a character within a word. As shown in Figure 4.24, the segmented

character occupies the columns between column 5 and column 10 where Cs =1 in

both. Thus segmentation will be at column 4, and column 11 to obtain strokes in both

sides.

Figure 4.24: An example of second case of segmented character

Case 3: One- more than one- zero:

This indicates a character at the beginning of a word. As shown in Figure 4.25, the

segmented character occupies the columns between column 5 and column 10, where

Cs=1 and Cs=0, respectively. Thus, segmentation will be at column 4, and column 11

to obtain stroke and empty space respectively.

Figure 4.25: An example of third case of segmented character

 102

4.4.3.2 The over-segmentation problem

There are two types of possible errors that might occur in the segmentation process:

over-segmentation and under-segmentation. Over-segmentation occurs when one

character is segmented into two or more pieces, while the under-segmentation occurs

when the segmentation algorithm produces two or more characters as one segmented

character. In the algorithm, as strokes between characters are used to determine

segmentation points, there is no possibility of under-segmentation, unless if the two

characters are overlapping. The proposed algorithm, in some cases, suffers from over-

segmentation problem. In this section, the cases of over-segmentation and proposed

solutions to overcome them are discussed.

First case: The small tip at the end of a word

Some Arabic characters such as (ب – ت – ف) have a small tip at the end of the

character shape. When one of these characters is located at the end of a word, this

word will have a small tip at the end of it such as (كيف). As the proposed algorithm

will scan the binary image of the word from left to right in search of a column with

the sum of more than one, this tip might be considered as a character as shown in

Figure 4.26.

Figure 4.26: An example of first case of over-segmentation

In Figure 4.26, the correct segmentation should be achieved between C3 and C12

where the entire character shape is located. Since C4 also has a sum of more than one,

the character will be over-segmented into two pieces: from C3 to C5 and from C8 to

C12.

Solution: This case happens only when the character is located at the end of a

word which we call: Zero- more than one - one. To overcome this case of over-

segmentation, additional condition has been added to the proposed algorithm, where

 103

the column having a sum of more than one will be considered as a character only in

(one- more than one- one) and (one- more than one- zero) cases. This condition will

enable the algorithm to segment character with shape of small tip in the middle and

beginning of a word such as (بيت (.

Second case: The dots above or under the horizontal stroke

In some cases, the dots of some characters such as (are not located (ـقـ - ـفـ - ـتـ - بــ

exactly above the character body. Instead, those dots are located before or after the

character body. This might cause an over-segmentation as shown in Figure 4.27.

Figure 4.27: An example of second case of over-segmentation

In Figure 4.27, over-segmentation might happen as the sum of C5 is more than

one even though no character is present there. The case of misplacement of character

dots was discussed earlier in Section 4.2.

Solution: To avoid this case of over-segmentation, the segmented characters will

be tested. If the segmented character has a column with a sum of only two pixels, this

segmented character will be considered only if these two pixels are connected. This

will make the algorithm able to segment characters such as (ـتـ - بــ (even with a short

tip. When non-connected two pixels are found, it will be added into the closes

segmented character. Testing of pixels connectivity is done by labelling technique.

Third case: The stroke at the end of some characters

Some characters end with horizontal or curved strokes such as (The .(و – ر – ذ – د

existence of these stokes might cause an over-segmentation as shown in Figure 4.28.

 104

Figure 4.28: An example of third case of over-segmentation

In Figure 4.28, the correct segmentation should be from C4 to C10 (zero- more

than one – one) where the whole body of the character (ر) is located. Instead, the

segmentation is from C8 to C10 as one- more than one- one segmentation case, even

when this character is located at the end of a word (or sub-word).

Solution: To avoid this case of over-segmentation, the proposed algorithm, in the

case of one- more than one- one segmentation will check all columns before the

segmented character until the column with a sum of 1 is found. If the sum of each

column is one, this indicates a stroke belonging to that character. Therefore, the

segmentation will be from the column with zero sum until the first column with sum

of one located immediately after the column with sum of more than one. Two

columns will be added before C4 and after C10 to obtain the space and the small

stroke on both sides of the character.

4.4.3.3 The overlapping characters

Overlapping characters is one of the main difficulties in handwritten Arabic words

segmentation as characters can be vertically overlapping in both printed and

handwritten Arabic words. The vertical overlapping characters are those that cannot

be separated be a vertical line. Unfortunately, according to some of the previous

reviewed work, there is no reliable way to detect the overlapping characters. Thus, the

recognizer itself is used as overlapping characters detector. In other words, characters

that fail to be recognized in the recognition stage will be fed to the overlapping

character algorithm. This part of the proposed system is shown in Figure 4.29.

 105

Figure 4.29: The overlapping character algorithm

4.4.3.4 Segmentation algorithm for overlapping characters

Experimentally, it was found that overlapping characters in Arabic can be classified

into three classes: non-connected overlapping characters, connected overlapping

characters, and the special case of Lamalif. Different solutions for each class is

proposed.

a) Non-connected overlapping characters

In this type of overlap, two characters will be vertically overlapping but still not

connected. This happens when one or both of the two adjacent characters are non-

connected characters such as (د -أ -و – ر). The difference between connected and non-

connected has been discussed in Section 2.3.2. Figure 4.30 shows an example of two

overlapping characters.

Figure 4.30: An example of two overlapping characters

 106

In segmentation, using the proposed algorithm, the non-connected overlapping

characters are segmented in two cases:

Case 1: Both overlapping characters are located in one segmented block. The body of

each character is complete or almost complete (the segmented part of the character

body is enough to be recognized) as shown in Figure 4.31.

Figure 4.31: The first case of non-connected overlapping characters

In this case, each character will be labelled then segmented, as the full shape of

each character appears at different connected component.

Case 2: The segmentation algorithm will cut small parts of one of the two overlapping

characters and locate each of them in different blocks; one block will contain the first

complete character with small part of the second character (Figure 4.31-a). The

second block will contain the second character after losing a small part of its body as

shown in Figure 4.32-b.

Figure 4.32: An example of the second case of non-connected overlapping

characters

 107

In this case, the small part in block (a) will be considered as noise, thus, it will be

removed. To avoid removing dots, which are needed to distinguish between

characters that share the same body shape, both blocks, first, will be sent to the

recognizer. If one or both of them failed to be recognized, the small part will be

removed.

b) Connected overlapping characters

In this kind of overlap, two characters will be vertically overlapping and connected. In

Arabic, the writing direction for both words in line and characters in the same word is

always from right to left. Thus, horizontal lines or strokes are used to connect between

characters as shown in Figure 4.33. These strokes are not used for some characters as

explained before in Section2.3.2.

Figure 4.33: The horizontal strokes between characters

In some writing styles, two characters might be connected to each other vertically.

In this case, the first character is located above the baseline while the adjacent second

character is located under the first character on the baseline. This usually happens

when character that appears as small vertical stroke such as (ت – ب - - ت) are

connected to (خ ج – ح). Figure 4.34 shows some examples.

Figure 4.34: An example of overlapping characters

 108

In the case of vertical overlap, the two overlapping characters will be connected

without strokes between them. As shown in Figure 4.29, the first character is located

above the baseline. This is the first feature that can be used for segmentation. Second,

due to the shape of both characters, the connection point will appear as an angle

between two sloping strokes. Figure 4.35 shows the two overlapping characters in the

input word (a) and the segmented output (b) using the proposed algorithm.

Figure 4.35: The two overlapping characters before (a) and after (b) segmentation

Since thinning is one of the steps in the proposed algorithm steps, the body width

of the overlapping characters will be 1 pixel. Figure 4.35 (b) shows the two sloping

strokes. The arrows show the direction of writing.

The connection point is located in the middle between the top of the two

overlapping characters and the baseline, as shown in Figure 4.35. The proposed

algorithm uses this point to segment the overlapping characters. In this case, as shown

in Figure 4.35, segmentation path will be taken horizontally after calculating the

height of the connection point. To calculate the height of the connection point, the

algorithm will scan the overlapping characters image from left to right, searching for

the first point where the sum of the column is more than 1 pixel. Figure 4.36

illustrates how the connection point is detected.

 109

Figure 4.36: Detection of connection point

In Figure 4.35, columns 1, 2, and 3 are empty and the sum of column 4 is 1. There

might be few columns which have the sum of 1 depending on how long the stroke is.

The first column that has the sum of more than 1 is column 5. By scanning the

elements of column 5 vertically, the connection point Cp should be the first white

pixel in that column, thus, the row where that pixel is located will be taken as a

horizontal segmentation path. Then, the bottom point Bp, where the lower stroke of

the lower character should be located, and the top point Tp where the upper part of the

upper character is located, can be detected. The white pixel in Cp will be considered

as a part of both segmented characters to avoid any cut from the body of each

character.

The proposed algorithm for overlapping characters is as follows,

i. The overlapping characters will fail to be recognized as output by the recognizer.

Thus, thin binary version will be obtained from the previous segmentation

algorithm.

ii. The image will be labelled. If more than one block is found, that means the

overlapping characters are non-connected; in that case both blocks size Bs1, Bs2

are measured, and then the small block will be deleted.

If Bn >1,

Calculate the Bs1 and Bs2.

Remove Bs2.

 110

Save the image.

where,

Bn: the number of blocks in the image.

Bs1: the labelled block with bigger size.

Bs2: the labelled block with smaller size.

Size calculation is done by (size) Matlab command.

iii. In case of one block is found, that means the overlapping characters are

connected. In this case, the sum of columns in the array A, that represents the

binary image of the overlapping characters, is calculated from left to right to find

a column with the sum of more than one.

 (4.20)

where,

Cs: the sum of a column elements value.

m, n : the first and last row in the A array.

E: the elements in that row.

If Cs>1,

Find the first pixel=1 in that column which represents the connection point Cp.

iv. Segment the overlapping characters horizontally according to Cp.

c) The special case of Lamalif

The Lamalif is a combination of two characters: Alif (ا) and Lam (ل). It is usually

written in this form: (لا). This makes the shape of these two characters as a special

case of overlapping. There are two ways to write the Lamalif as shown in Figure 4.37.

Figure 4.37: The two ways to write the Lamalif

 111

As the case of overlapping is found only with these two characters, thus, these two

characters are added to the system dataset. This solution is better than designing a

new algorithm for only this case as the aim is to achieve the segmentation task with

minimum number of algorithms in order to avoid complexity and to reduce processing

time. Figure 4.38 shows the dataset of the Lamalif that will be used for training and

testing the system.

Figure 4.38: The dataset of the Lamalif

4.5 Summary

In this chapter, an essential stage of most OCR systems has been discussed and a

proposed approach for the precise case of Arabic handwritten recognition has been

presented. Segmentation is a process of preparing the input (words/characters) for the

recognition stage. The segmentation, as a concept, starts early in the preprocessing

stage, practically in binarization where the image is segmented into background and

foreground. On the other hand, during the stage, a kind of pre-recognition starts when

the system starts to recognize some features of the characters, such as the difference

between isolated characters and words/sub-words according to the segmented block

size.

Some OCR systems skip the segmentation stage as the recognizer is dealing with

words as a whole. The input of the system in this case is only individual words which

simplifies the system, but limits the usage. Others have only one level of

segmentation, such as word segmentation. Although the input of the system is a

 112

handwritten text but the segmentation can only be performed up to word level as the

recognizer is dealing with only individual words, which limits the usage as well. The

full set of segmentation, as in the proposed system, should include the segmentation

of page into lines, sometimes known as line extraction, then, line to words, and,

finally, word to character. This makes the system able to receive any form of

handwriting input. In order to design a segmentation algorithm more suitable for

Arabic handwriting segmentation, some Arabic handwriting characteristics that make

segmentation more difficult compared to other languages have been highlighted. For

the proposed segmentation model, several algorithms for various parts of the

segmentation are proposed.

The proposed algorithm for text to line segmentation adopts Hough transform

approach which is a global method for finding straight lines in a binary image. In the

proposed algorithm for text-line-to-words segmentation, a mathematical

representation of the text line binary image is used, where spacing between words can

be seen as black pixels with zero value in the array. Using this method, the width of

the connected components and distance between each of two adjacent components

can be measured. The width of the connected components and the distance between

them are used to determine whether that component is an isolated character, which

can be sent to the recognizer, or a word/sub-word, that needs more segmentation.

For word-to-character segmentation, the algorithm makes use of the thinning

operation that limits the width of the word strokes into only one pixel. This is used to

find possible segmentation points. Finally, for overlapping character segmentation,

the connection point between two overlapping characters is used. In this part, some

solutions for the most common challenge in Arabic word segmentation are suggested.

CHAPTER 5

RECOGNITION

5.1 Chapter Overview

This chapter presents the final stage of the proposed system, which is the recognition

stage. First, a brief overview of the mechanism of natural object recognition is

presented to highlight the similarity between the proposed recognition model and the

mechanism of object recognition in human. Then, the proposed model theory and

construction are presented. Finally, the factors that affect recognition accuracy are

discussed as well as several proposed techniques to increase the accuracy according to

each factor.

5.2 Introduction

The recognition stage is the core of any OCR system. The main purpose of the

previous stages, preprocessing and segmentation, is to prepare the character image

(the word image in some cases) to be sent to this stage. The efficiency of the OCR

system depends significantly on this stage since it is the final stage in any OCR

system, where all previous stages are designed to serve this stage by preparing its

input. Usually, the recognition stage consists of two steps: feature extraction and

classification. Extracted features can be categorized into three categories: spectral,

geometric or textural features. Spectral features are features in frequency domain,

such as colour, tone, and ratio. Geometric features describe basic properties such as

size, edges, and lineaments. Textural features refers to a visual pattern that has

properties of homogeneity that do not result from the presence of only a single colour

or intensity such as pattern, homogeneity, and spatial frequency [121]. During the

classification stage, the extracted features are compared to those of the model set

 114

using three methods: structural method, statistical method or mathematical formalism

as explained earlier in section 2.4.1.4.

The main disadvantage of extracting and classifying features is that the system

will suffer from the trade-off between accuracy and processing time. In order to

obtain a high accuracy, many features that can provide enough information are

needed. In this case, a complex model that needs longer processing time, should be

used. In the case of using a simple model, not only the processing time will be

reduced, but the accuracy is affected as well.

In the proposed system, a new strategy for the recognition stage is adopted, where

features extraction and classification are not involved. Instead, the character image

will be decomposed using wavelets transform, then, the output of the decomposition

operation, which will be represented as a coefficient, will be used to recognize the

character. This strategy can be considered as a simulation of human recognition

mechanism of objects and patterns.

5.3 Human Recognition Mechanism

Although remarkable progress have been achieved in the image processing field, the

design of optical devices for processing and recognizing patterns, are yet to reach the

sophistication and flexibility of the human recognition system [122]. Thus, it would

be important to find out how human being recognizes patterns especially handwriting,

in order to develop a more robust and efficient recognition systems.

Until the 1960s, the research on human visual system was a part of

neurophysiology and psychophysics. A big achievement in this field was made by a

breakthrough of cognitive science in 1970s. Recently, knowledge about visual

information processing of human visual system has been found with a medical science

and engineering. Many researchers are trying to maximize the performance of current

developed computer vision through modelling. There is more than one research

focusing on creating artificial vision for blind people [123].

 115

Generally, there are three theories about how human recognizes words, regardless

of either handwritten or printed words. The first theory, which is the oldest in the

psychological literature, says that words are recognized as complete units. The

general idea is that we see words as a complete patterns rather than the sum of

character parts. The word patterns are recognizable to us as an image because we have

seen each of the patterns many times before. However, this cannot explain why we

can recognize new words easily [124].

The second theory of word recognition is that words are read character-by-

character serially from left to right, right to left or up to down depending on the

language nature. In essence, recognizing a word in the mental lexicon is analogous to

looking up a word in a dictionary starting off by finding the first character, then the

second, and so on until the word is recognized. Finally, the theory that most

psychologists currently accept as most accurate is the parallel character recognition

theory which says that the characters within a word are recognized simultaneously,

and the character information is used to recognize the words [124].

As the word recognition starts with the recognition of the characters within the

word or the whole word image, it is important to understand the way human vision

works, beginning from the sight of something up to its storage in the brain.

As shown in Figure 5.1, a light beam is converted into a shadow with a reversed

shape in the retina where the image shape is turned into a neural signal, and the

sampling image is transmitted to primary visual cortex of the brain through optic

nerve of the retina. After neural signals are transferred to the brain, they are stored in

a part of the brain called forebrain, which is the most evolved and largest portion of

the brain [123].

 116

Figure 5.1: The human visual system

Much is still unknown about how the brain processes information. To facilitate

the retrieval process, some researchers [125, 126] suggested that the images are saved

in human memory in different abstraction levels. The similar images are grouped

together to form a cluster. The image in cluster at a certain level should have its

similarity to the centre (representative) of the cluster higher than a threshold value for

that level. The levels structure is built based on similarity measures, not feature

measures. When a new image of an object is formed, it will be compared with all

images (full and abstraction versions) in the memory starting from the highest level. If

there is any stored image very similar to the new image then the image is recognized,

otherwise it is considered as a strange one and will be separately saved.

The proposed system emulates the human visual system and recognition

mechanisms, according to this theory. After the character image is scanned, within the

text image, it will be converted into a coefficient vector using Fast Wavelet

Transform. For each character, the system will store a group of coefficient vectors in

the training stage. Each group will have one representative, which is the mean of all

coefficient vectors in that group. The recognition process will be achieved by

measuring the similarity of the character to be recognized with all representatives of

the coefficient vectors groups using Euclidian Distance. The character will be

recognized as the representative that has the shortest Euclidian distance to the

character to be recognized. Table 5.1 and Figure 5.2 show a comparison between the

proposed system and human visual system, and recognition mechanism.

 117

Table 5.1: Comparison between proposed system and human visual system

 Image

capturing

Image encoding Store Recognition

Human

system

Using eyes Encode into

neural signal

using optic

nerve

Brain Compare

with groups

of similar

images

proposed

system

Using scanner Encode into

coefficient

vector using

wavelet

transform

Computer

memory

Compare

with

groups of

similar

images

Figure 5.2: Similarity between the proposed system, and human visual system and

recognition mechanism

5.4 Fourier and Wavelet Transform

The most well known signal analysis is the Fourier analysis. Fourier analysis breaks

down a signal into constituent sinusoids of different frequencies. It can be defined as a

mathematical technique for transforming the signal from time-based, where the signal

amplitude is analysed according to time, to frequency-based where signal amplitude is

analysed according to frequency [128].

 118

Figure 5.3: Fourier and wavelet analysis

The main weakness of Fourier analysis is that there is no time information. In

order to get time information, Wavelet analysis allows the use of long time intervals

where more precise low-frequency information is wanted and shorter regions where

high-frequency information is wanted [128]. Figure 5.3 shows a comparison between

Fourier and Wavelet analysis.

Wavelet analysis affords a different view of data so it can often compress or de-

noise a signal without appreciable degradation. This is an important feature in

handwriting recognition where data should be de-noised before being used. On the

other hand, wavelet analysis could reveal aspects of data like trends, breakdown

points, discontinuities in higher derivatives, and self-similarity [128].

5.5 Signal Decomposition

In wavelet analysis, when a signal, or image, is passed through two complementary

filters, it will be decomposed, or analyzed into two kinds of components: the high-

scale, low-frequency components of the signal, known as approximations and the

high-frequency components of the signal, known as details. The process of signal

decomposition is illustrated as in Figure 5.4.

 119

Figure 5.4: Signal decomposition

As the signal will be passed through two filters and will come out from each filter

with the same size (the amount of data), so the size will be duplicated. In order to

keep the signal in the same size, down-sampling operation, which obtains

representative coefficients, should be performed. Figure 5.5 shows decomposition

before and after adding down-sampling operation in case of having 100 samples as

signal size.

Figure 5.5: Decomposition before and after adding down-sampling operation

The decomposition process can be repeated. The approximations of each level can

be decomposed again, so that one signal is broken down into many lower resolution

components.

Signal

Low-pass

filter

High-

pass

filter

Approximations Details

 120

5.6 Signal Reconstruction

After the signal has been decomposed, two kinds of component are obtained,

approximations and details. These components contain all information about the

signal, thus, they can be used to build the original signal without any loss of

information. This process is known as reconstruction, or synthesis [93]. Figure 5.6

shows a diagram of decomposition and reconstruction process.

Figure 5.6: Decomposition and reconstruction process

As only decomposition process is needed to convert the character images into

coefficient vector, the reconstruction part is excluded from our work. The

decomposition process is achieved using Fast Wavelet Transform.

5.7 Discrete Wavelet Transform

One of wavelet transform implementations is discrete wavelet transform (DWT) that

uses a discrete set of the wavelet scales and translations following some defined rules.

This transform decomposes a signal into mutually orthogonal set of wavelets. [127].

5.8 Fast Wavelet Transform

In this research, Fast Wavelet Transform (FWT) is used as a tool to achieve the

decomposition process. FWT is a mathematical algorithm designed to turn a

waveform or signal in the time domain into a sequence of coefficients. The transform

http://klapetek.cz/wavelets.html

 121

can be easily extended to multidimensional signals, such as images, where the time

domain is replaced with space domain [128]. That could be done by generalizing the

complex wavelet transform to higher dimensions using a multidimensional transform

Then, using the resulting hyper-complex wavelet transform (HWT) as a building

block for generating new classes of nearly shift-invariant wavelet frames that are

oriented along lower-dimensional subspaces [129].

Considering an image for which a function f(x, y) of size M x N, which forward

discrete transform T (u, v…etc) can be expressed as:

 (5.1)

where,

x and y are spatial variables.

u, v are transform domain variables.

 is a forward kernel.

The kernels can be represented as 3 separable 2-D (horizontal, vertical, and

diagonal) wavelets:

 (5.2)

 (5.3)

 (5.4)

where,

 and are known as horizontal, vertical and diagonal

wavelets respectively.

Ψ(x) and φ(x) and can be expressed as linear combinations of double-resolution

copies of themselves:

 (5.5)

 (5.6)

where,

 122

 hφ and hψ are known as scaling and wavelet vectors. These vectors are the filter

coefficients of FWT. They can be considered as an iterative computational approach

to DWT as shown in Figure 5.7.

Figure 5.7: The 2-D FWT filter bank

In Figure 5.7, the outputs , , , and

 are the DWT coefficients at scale j. The is a low-pass

decomposition filter and is a high-pass decomposition filter.

Mathematically, the can be calculated as follows:

 (5.7)

where,

 is known as approximation coefficients as it is created using two low-pass

filters [93].

In Figure 5.7, each pass through the filter bank decomposes the input (the

character image in our case) into four lower scale components. coefficients are

called approximation coefficients as low-pass filters are used to create them. The

 are the horizontal, the vertical and the diagonal coefficients

respectively.

 123

The image for which a function f(x, y) is represented as is the

input for the first iteration. The decomposition result of 2-D FWT in Figure 5.7 can be

displayed as in Figure 5.8, where the green box indicates the horizontal coefficients,

the purple box indicates the vertical coefficients, and the blue box indicates the

diagonal coefficients.

Figure 5.8: The decomposition result of 2-D FWT

In Figure 5.8, (a) is the original image, (b) is the decomposition result of (a) using

one-scale FWT, (c) is the decomposition result of (a) using two-scale FWT. The result

of the decomposition process is not clear when it is visually displayed as in Figure

5.9.

Figure 5.9: An example of decomposition result

 124

Figure 5.9 shows the decomposition result of the Arabic character image (Saad).

The representation of the image by the diagonal coefficients (bottom right) is the most

unclear decomposition result compared with the representation of the image using

horizontal and vertical coefficients details.

5.9 Previous Work on Wavelet Transforms

The wavelet transform is widely used in many applications in image processing and

signal analyses. In medical applications, DWT is used for heart contractions

frequency analysis [130], mathematical modelling of blood flow in peripheral vessels

[131], encephalograms analysis [132], Medical image fusion [133] and segmentation

gene expression data [134]. In image processing, wavelet transform is used for face

recognition, edge detection, character recognition, search in image database, and

image compression.

Xiemei used wavelet transform to reduce the image dimension. They calculated

the gradient and tangent angle of the image pixels in order to extract the image edge.

Using wavelet function, the system could detect the circular object through improved

algorithm of improved Hough transform [136].

Ebrahimi and Kunt proposed a fast wavelet transform for image compression

applications. They used a set of biorthogonal filters with coefficients in powers-of-

two and a good localization in the spatial and frequency domain as filter bank

associated with the proposed wavelet. The relation between the low and high pass

filters allows a polyphase implementation of these filters. They claimed that this

transformation is very suitable for all applications which require more often or

exclusively the decoding [137].

Tian and Ha, presented a review of some applications in medical image with

wavelet transform. They reported that wavelet transform is currently used in

electrocardiogram signal processing as electrocardiogram contain plenty of

information of human heart, which level of recognition has great value in clinical

 125

diagnosis. They presented the usage of wavelet transform in electroencephalograph

signal processing, medical image compression, medical image reinforcing and edge

detection, and medical image register [138].

Je et al. developed an image recognition model based on retinal ganglion cell.

They had experimented upon recognition and compression processing of information

such as retinal ganglion cell by handwritten character database of National Institute of

Standards and Technology (MNIST), which contains handwritten digit 0-9. In their

model, wavelet transform was used in a compression process of the visual information

by calculating the low-frequency and high-frequency filter of wavelet. Neural

network was used for recognition [139].

Sun and Bow developed generalized algorithm of fast wavelet transform for the

compression of monochrome and colour images. They used Haar wavelet transform to

pact the image energy to a few transform domain samples. Using their algorithm, no

significant distortions are noticed in the reconstructed images [140].

Dimov used Complex Fourier Transform to design a fast method to access images

in a conventional database. The method uses two dimensional wavelet transform of

images preliminarily normalized by size, orientation and intensity. The image content

for search considers the normalized image graphics that should be well localizable

into the input query picture. The most essential image data are represented as a key of

fixed length, on which the fast access is performed using the index access methods of

a conventional database management system. The proposed method can be applied as

image search engine for instance in information and image retrieval systems for

marks, hallmarks, trademarks, postmarks, etc. [141].

For handwriting recognition, wavelet transform is still not widely used. Generally,

wavelet transform is used to extract features that need to be classified usually using

neural network.

Correia et al. used wavelet transform for handwritten numerals recognition. They

used biorthogonal spline wavelets as a feature extractor, and a multilayer cluster

 126

neural network as a classifier. Wavelet decomposition is applied on handwritten

numeral images and the resulting sub-images constitute the feature vector.

Classification is performed using a multilayer cluster neural network trained with the

back-propagation momentum algorithm [142].

Zhang used wavelet transform for handwritten digits recognition. He proposed a

two dimensional complex wavelet transformation and a two dimensional real wavelet

transformation for hybrid feature extractions. For classification, ensemble classifier

scheme, which consists of artificial neural networks and gating networks, was used

[143].

Aburas and Rehiel used wavelet compression for handwriting recognition. Their

proposed technique is based on the property that the wavelet compressed image is a

decomposition vector which can represent the input image to be correctly

reconstructed later at decompression stage. This property can be used to recognize the

character image [144].

5.10 Tool to Build the System

MATLAB environment was selected as the tool to build the recognition system.

Matlab is a numerical computing environment and fourth-generation programming

language. Developed by The MathWorks, MATLAB allows plotting of functions and

data, matrix manipulations, creation of user interfaces, implementation of algorithms,

and interfacing with programs of other languages such as C, C++, and Fortran[145].

The choice of MATLAB was based on several reasons:

1. Matlab is able to perform intensive tasks faster than other programming

languages such as C, C++, and FORTRAN.

2. In the preprocessing and segmentation stages in the proposed system, images

are represented as arrays. Since all variables in MATLAB are arrays, thus,

MATLAB is the preferable choice because it makes dealing with images, in

the form of arrays more easily.

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/The_MathWorks
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran

 127

3. MATLAB provides a collection of functions in Wavelet Toolbox software,

which provides tools for the analysis and synthesis of signals and images. It

also provides tools for statistical applications, using wavelets and wavelet

packets within the framework of MATLAB [93]. This is a very helpful feature

since wavelet transform is used in the recognition stage.

All experiments were accomplished using MATLAB 7.6.0 (R2008a) version.

5.11 Proposed Recognition Model

Using FWT, the input image f(x, y) will be decomposed into four lower resolution

(scale) components: approximations coefficients (created via low-pass filters) and

horizontal, vertical, and diagonal details (which is the highest resolution

representation of the image being transformed). These components contain all

information needed to reconstruct the decomposed image into the original image,

thus, these components are used to recognize the character image.

Gonzales et al. [146] developed Matlab functions (wavefast and wavefilter) that

could generate wavelet decomposition and reconstruction filters. These two functions

were modified for use in the proposed model to decompose the character image for

creating a coefficient vector that will be used to recognize the character. The

decomposition coefficient vector will be denoted from now on as DCV.

5.11.1 Model Construction

The proposed model will be a combination of four Matlab functions; wave.m, filter.m,

train.m, and test.m. Each function will be responsible to achieve a specific part of the

recognition stage while they are working together.

To create the system codebook, the train.m will read the images of the 48 different

characters, and then divide each character image into 38 sub-images. For each sub-

image, the train.m will call wave.m to create DCVs.

 128

The wave.m will call filter.m to choose the filter that will be used for FWT. Thus,

we call these two functions: DCV creator. Once the DCVs are created, the mean of

each character will be calculated and stored as representative of that character in the

sub-codebook.

To compare the DCVs with the codebook, the test.m will read 10 sub-images and

call wave.m, and filter.m to create DCVs for each of them. Then, each DCV will be

compared with all representatives using Euclidian distance. The character will be

recognized according to its shortest Euclidian distance to the representatives. The

character will be recognized as the representative that has the shortest Euclidian

distance to the character image.

Two MATLAB functions (tranin.m and test.m) are designed to work with two

modified function (wave.m and filter.m). To create the system codebook, tranin.m

function calls wave.m function to create DCV for each character image.

The wave.m function calls filter.m function for to determine the used filter. To

compare the DCVs with the codebook, test.m function is used instead of tranin.m

function. Each of the four MATLAB functions is briefly introduced in the subsequent

subsections.

The codebook is the memory location, which stores the representatives of all

characters. To facilitate the comparison process later, four sub-codebooks are created

for each codebook and they are customized for a particular case of characters. The

shape of Arabic characters, when connected with other characters, changes depending

on their position in the word (beginning, middle or end); all of which are different

from their shapes when isolated. Hence, in general, there are four different shapes for

each character. Thus, the codebook will contain four sub-codebooks. The first sub-

codebook is used to store the characters in isolated case. The second sub-codebook is

used to store the characters in the beginning of a word and so on. Figure 5.10 shows a

diagram of the model construction.

 129

Figure 5.10: The proposed model construction

5.11.1.1 The train.m function

The main job of this function is to prepare the character image to be converted to

DCV in decomposition operation. To facilitate the data collection, for isolated

characters, tables of 49 cells were used. Each writer was asked to write each character

one time in one of the table cells. The train.m function (in appendix H) divides the

table image into 48 character images. Then, it will call wave.m to be applied for 24

characters out of the 48 characters, as training dataset, in order to get the DCV of each

character. After applying wave.m, 28 groups of DCVs are obtained. Each group

contains 24 DCVs. Then, the mean of each group will be calculated in order to have

one representative for each character, which is then stored in the codebook. The

representatives of all characters will be stored in the codebook.

As mentioned earlier in Section 3.3, the dataset is divided into two categories: full

text images which will be used in preprocessing and segmentation experiments, and

isolated characters images, which will be used to build the system codebook. Each

character was written by 48 different writers, in four different shapes (isolated, at the

beginning, middle, and at the end). The size of each character is 40x40 pixels, 8-bit

Comparing DCV with the codebook

DCV Image
test.m function

DCV

Data store

train.m function

Codebook

R1, R2…

R28

Euclidian

distance

comparison

Creating the codebook

 wave.m function

filter.m function

DCV creator

Recognized

character

Image

 130

pixel. For training stage, 38 images of each character, in every shape will be used.

Figure 5.11 shows the data of four sub-codebooks of the character Ain.

Figure 5.11: The dataset of four sub-codebooks of the character Ain

5.11.1.2 The test.m function

To test the system, test.m function (in appendix H) will read another 24 characters

from the table image. Then wave.m will be called to create 24 DCVs which will be

sent to train.m, one by one, to be compared with the 24 representatives using

Euclidean distance. The minimum value of Euclidean distance indicates to which

representative this character belongs.

If r and v are two vectors

where,

 (5.8)

 (5.9)

The distance between r and v can be measured as:

 (5.10)

where

r, v are two vectors and E is the distance between r and v.

 131

5.11.1.3 The wave.m function

The wave.m function is a modification of wavefast.m proposed by Gonzalez [147],

used to perform multi-level 2-dimensional fast wavelet transform. It will call filter.m

to fetch filters LP and HP to be used in the decomposition operation. The output of

wave.m function is the matrix C, which represents the DCV of the input image.

 (5.11)

where,

a: approximation coefficient matrices.

h: horizontal coefficient matrices.

v: vertical coefficient matrices.

d: diagonal coefficient matrices.

n: number of wavelet decompositions.

5.11.1.4 The filter.m function

The filter.m function is a modification of wavefilter.m proposed by Gonzalez [146] to

create wavelet decomposition filters. For each type of filters, at each level of

decomposition, it will create two filters: high-pass filter and low-pass filter. When the

character image passes through the two filters, the high-pass filter extracts horizontal,

vertical, and diagonal details from the character image. On the other hand, the low-

pass filter extracts the approximation coefficients. The filter.m function provides five

different types of filter that will be examined and the filter with the highest

performance will be selected. The five filters are listed below:

1. Haar

2. 4th order Daubechies

3. 4th order Symlets

4. Cohen-Daubechies-Feauveau biorthogonal

5. Antonini-Barlaud-Mathieu-Daubechies

 132

5.12 Factors That Affect Recognition Stage

The recognition stage is the core of any OCR system. Although the accuracy level is

significantly dependent on preprocessing and segmentation steps, there are several

factors, in the recognition stage of the proposed model which clearly affect the

recognition efficiency. A study on these factors is important to be able to choose the

best setting of the recognition stage model in order to allow the system, as a whole, to

perform at maximum level of accuracy. The decomposition process is used to create

the DCV, which is used to recognize the character images. The accuracy of the

proposed model is depending on the filter type, the decomposition level, the codebook

size, and the size of the created DCV. Each of those factors is discussed in the

following subsection:

5.12.1 Filter Type

In image processing, filtering is a technique for modifying or enhancing an image.

Image filtering can be used to emphasize necessary features or remove unnecessary

features. Image filtering is used in many operations include smoothing, sharpening,

and edge enhancement. Filtering is known as a neighbourhood operation as the value

of pixels in the output image depend on the values of the pixels in the neighbourhood

of the corresponding input pixel after applying some algorithms. If the value of the

output pixel is a linear combination of the values of the pixels in the input pixel

neighbourhood, the filtering operation is known as linear filtering [93].

According to Fourier transforms theory, the linear convolution of two sequences

in the time domain is the same as the multiplication of two corresponding spectral

sequences in the frequency domain. Filtering is the multiplication of the signal

spectrum by the frequency domain impulse response of the filter [146].

Generally, there are two basic types of digital filters, Finite Impulse Response

(FIR) and Infinite Impulse Response (IIR) filters. The FIR filter has a linear phase

response when the filter coefficients are symmetric, as it is the case in most standard

filtering applications. The noise characteristics of FIR implementation are easy to

model, especially if no intermediate truncation is used [147].

 133

In image processing, filtering concept refers to two concepts: spatial filtering and

frequency domain filtering. However, the name filter comes from frequency domain

processing and it refers to accepting or rejecting certain frequency components. As

decomposition process is used in recognition stage, we are focusing on frequency

domain filtering. The words filter and filtering are referring to this concept from now

on.

Filters are involved in many applications such as speech recognition [148], signal

restoration [149] and many image processing applications including iris recognition

[150], image compression [151], and characters recognition.

For character recognition, different filtering techniques have been used in all the

OCR system stages. For preprocessing stage, filters are widely used for noise

reduction such as Morphological filters [152], low-pass Wiener filter based on local

statistics [153], spatial filters [154] and Kalman [155]. For segmentation stage,

filtering techniques have been used by computing stroke filter response of each pixel

in the source image [156]. For feature extraction stage, linear filters [157] and 2D

Gabor filters [158] have been used as feature extractor. Finally, filters have been used

in classification stage. Bayesian filter [159] and Gabor filter [160] have been used as

pattern classifier.

Filtering in frequency domain consists of modifying the Fourier transform of the

image and then computing the inverse transform to obtain the processed result [161].

The basic filtering equation of the image represented by a function f(x, y) with M x N

size can be expressed as:

 (5.12)

where,

 is the inverse discrete Fourier transform of the image f(x, y).

F (u, v) is the discrete Fourier transform of the image f(x, y).

H (u, v) is the filter function.

g(x, y) is the filtered output image.

 134

Functions F, H and g are arrays of M x N size which is the same as the input

image size. Array multiplication is used to form H (u, v) and F (u, v). The input image

is multiplied by prior to compute its transform in order to simplify the

specification of H (u, v).

According to Gonzalez [146], the filtering in frequency domain can be performed

as in the following steps:

1. The image for which a function f(x, y) of size M x N is padded, by adding

rows and columns of zeroes to the image array to ensure that the edge of the

image will not be out of the filtering.

2. The padded image is formed as fp(x,y) of size P x Q where Q=2N and P=2M.

3. The padded image fp(x,y) is multiplied by to center its transform.

4. The discrete Fourier transform F (u, v) of the image f(x, y) is computed.

5. The real symmetric filter function H (u, v) of size P x Q is generated.

6. Array multiplication is used to form the product G (u, v) = H (u, v) F (u, v)

to get:

G (i, k) = H (i, k) F (i, k) (5.13)

where i, k, u, and v are domain variables.

7. To ignore parasitic complex component resulting from computational

inaccuracies, the real part of the processed image gp(x, y) is selected. The

subscript p indicates that padded array is used.

 (5.14)

8. Extract the M x N region from top, left quadrant of gp(x, y) in order to

obtain the final processed result g (x, y).

In the proposed model, filters are playing a significant role as they are the main

tool of the decomposition process. Thus, five different types of filters will be

examined to compare their performance in the proposed system. At the end, the filter

with the highest performance will be selected. The filters are briefly described below.

5.12.1.1 Haar filter

Haar filter represents a special case of Daubechies filter family of order 1.Daubechies

wavelets are a family of orthogonal wavelets defining a discrete wavelet transform

 135

and characterized by a maximal number of vanishing moments for some given

support [163]. The decomposition in the Haar basis eliminates high frequency terms

when the input sequence is constant. That is why Haar function is often used for

images with high contrast of black and white [164].

5.12.1.2 Db4 filter

Db4 or D4 is a Daubechies filter with four wavelet and scaling function coefficients.

The scaling functions can be expressed as:

 (5.16)

 (5.17)

 (5.18)

 (5.15)

where,

h0, h1, h2, and h3 are scaling function coefficients.

Scaling function is applied to the data input at each step of the wavelet transform.

If the input data set has N values, the scaling function will be applied in the wavelet

transform step to calculate N/2 smoothed values.

In the ordered wavelet transform, the smoothed values are stored in the lower half

of the N element input vector [165]. The wavelet function coefficient values are:

g0=h3

g1=-h2

g2=h1

g3 = -h0

where,

g0,g1,g2, and g3 are the values of wavelet function coefficient.

 136

By taking the inner product of the coefficients and the four values of the input

dataset, the scaling and wavelet functions can be calculated. Thus, the Db4 scaling

function can be expressed as:

Si=h0Si+ h1Si+1+ h2Si+2+ h3Si+3 (5.19)

The Db4 wavelet function can be expressed as:

Si+1=g0Si+g1Si+1+g2Si+2+ g3Si+3 (5.19)

where

Si is the scaling wavelet functions.

Si+1 the wavelet functions.

The index i is incremented by two with each iteration

5.12.1.3 Sym4 filter

Sym4 is one of the symlet filter families. The symlets are nearly symmetrical wavelets

proposed as modifications to the Daubechies family. The properties of the two

wavelet families are similar [165].

5.12.1.4 Bior6.8 filter

Bior6.8 filter belongs to Cohen-Daubechies-Feauveau biorthogonal family, which is

the first family of biorthogonal wavelets. A biorthogonal wavelet is a wavelet, where

the associated wavelet transform is invertible but not necessarily orthogonal. The

design of biorthogonal wavelets provides higher degrees of freedom than orthogonal

wavelets. With biorthogonal wavelets, it is more possible to construct symmetric

wavelet functions [166].

5.12.1.5 Jpeg9.7 filter

JPEG (Joint Photographic Experts Group) is an organization responsible for

developing an international standard for compression of colour image data. While the

JPEG format uses the discrete cosine transform, the new JPEG 2000 standard is

entirely wavelet-based; it incorporates many of the recent advances that have been

made in the field.

http://en.wikipedia.org/wiki/Biorthogonal_wavelet
http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Invertible
http://en.wikipedia.org/wiki/Orthogonality
http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Biorthogonal_wavelet

 137

The jpeg9.7 filter is a result of the factorization of the same polynomial as

Daubechies filter family. The main difference is that the jpeg9.7 filters are symmetric.

On the other hand, unlike the biorthogonal splines of Cohen-Daubechies-Feauveau,

the non-regular part of the polynomial has been divided among both sides, and as

evenly as possible [167].

To select a suitable filter, several parameters should be considered such as the

type of function, the order of decomposition, order of filter, kind of multi-resolution

analysis, content of an image, [167].

These parameters are depending on each other. For example, the order of filter

depends on the type of function and order of decomposition. On the other hand, order

of decomposition depends on the order of filter and reversal [161].

5.12.2 Decomposition Level

As mentioned earlier in Section 5.1.3, the decomposition process can be repeated and

the approximations of each level can be decomposed again. Theoretically, the

decomposition process can be continued indefinitely. However, practically, the

decomposition can proceed until the individual detail consists of a single sample or

pixel [168]. Thus, it is important to select a suitable number of levels based on the

nature of the model input, which are binary images of handwritten characters.

The process of decomposition repeating is known as multiple-level decomposition

where cAn and cDn are the coefficients approximation and details at the

decomposition level n, as shown in Figure 5.12.

For the proposed model, the number of decomposition level will be determined

experimentally by comparing the performance of the system with different

decomposition levels. The decomposition level with the best performance will be

chosen.

 138

Figure 5.12: Multiple-level decomposition

5.12.3 Codebook Size

In the proposed model, the codebook is a folder, where the DCVs of the character

group representatives are saved to be compared with the DCV of the characters to be

recognized. The codebook is divided into 4 sub-folders. Each sub-folder is used to

store 28 characters at different positions: isolated, beginning of word, middle of word,

and end of word. Experimentally, it was found that the recognition accuracy is

affected by the size of training data which have been used to create the representative

of each character. In other words, the created representative will be more successful to

represent the character group if the group had included more samples of that

character, hence leading to increase the accuracy level.

As mentioned before, there are only 48 samples of each character. Instead to

dividing these samples into 24 samples for training and 24 samples for test, a simple

technique is proposed to use the whole 48 samples for training and test. In this

technique, the 48 samples will be used to test the system. When each specific sample

has been used, it will be deleted from the 48 samples that are used to build the

codebook. This is to avoid having the same sample in the training data set and test

data set at the same time. For example, when wave.m function is applied on sample 1,

it will be deleted from the codebook by train.m function which changes codebook

each time been used. Using this technique, 47 samples instead of 24 samples will be

S

cD1 cA1

cA3

cA2

cD3

cD2

 139

used to build the codebook. The influence of the number of samples used to create the

character group will be discussed in details in Chapter 6.

5.12.3.1 Proposed Method to Increase Codebook Size

The positive influence of increasing the codebook size prompted us to think of a way

to increase its size in order to increase the accuracy of the system. The proposed

method, in addition to increasing the codebook size, makes the system more

interactive and trainable. The proposed method includes an optional validation part.

After recognizing a character, the system will ask the user to validate the characters

that have been successfully recognized, and to correct the characters that failed to be

recognized. The validated characters and corrected characters will be stored in the

codebook which increases the codebook size each time the system is used. The user

should be able to stop the validation function when the system reaches the maximum

level of accuracy to avoid increasing the processing time. Figure 5.13 shows the

proposed validation algorithm.

Figure 5.13: The proposed validation algorithm

 140

5.12.4 DCV Size

In the decomposition process, the character image will be decomposed into a vector

coefficient as it passes though the set of filters. The main task of the wave.m function

is to produce the matrix C which represents the coefficient of decomposition vector as

expressed below:

C = [a (n) h (n) v (n) d (n) h (n-1) ... v (1) d (1)] 5.21

Where a, h, v, and d are column wise vectors containing approximation,

horizontal, vertical, and diagonal coefficient matrices. The size of C, basically,

depends on the size of the input image. After converting the gray image into a binary

image and dividing the table image into 48 sub-images, each image will be 37x37

with size of 1369 Bytes. With this input image size, C will be a vector of 2115

elements due to the size of the character image. The effect of DCV size was examined

by reducing the DCV size and observing the system performance. To reduce the DCV

size, the wave.m function has been modified several times to produce only horizontal,

vertical, or diagonal coefficient matrices each time. The accuracy of the system in

each case is compared with the case of having all coefficient matrices. Results showed

that, the accuracy decreased when the DCV size was decreased. The maximum level

of accuracy was achieved with the maximum size of DCV. This stimulates us to think

of a way to increase the DCV size.

5.12.4.1 Proposed Method to Increase DCV Size

Since the DCV can be used in the reconstruction process to build the same image

again. Thus, this vector is unique for each character as it contains a unique set of

approximation, horizontal, vertical, and diagonal coefficients. In order to use this

uniqueness of this vector for recognition purpose, it is important that this vector

should have as much approximation and details as possible. Due to the size of the

character image in the dataset for system training and testing, the DCV size is limited

to 2115 elements in the C matrix produced by wave.m function. To increase this

number of elements, two DCVs are proposed to be used for each character in both

training and testing stages. To ensure that the additional DCV will provide new

different approximation and details for the same character, we propose to rotate the

 141

character image, in order to provide an additional shape for the same character, before

applying the wave.m function.

The concept of this method is quite similar to the way used to build database of

human faces. To build human face database, especially for security purposes, two or

three pictures of each face are captured, one from the face and two others from the

profiles of the face. The reason is to store as many details as possible as some of the

face features will not appear clearly such as in the case of using only normal picture

of the face.

Forms of Arabic characters are very diverse. While some characters, in some

cases, are simply vertical line such as the character Alif (ا), others are a combination

of vertical and horizontal strokes in different rates. This makes the shape of each

character totally different when they are being rotated. Thus, two, or more, DCVs can

be obtained for each character with different degrees of rotation. The two DCVs will

be combined in one vector to be used in the recognition process. Figure 5.14 shows a

diagram of the proposed method to increase the DCV size.

Figure 5.14: Proposed method to increase the DCV size

 142

5.12.4.2 Rotation Degree Determination

As our aim is to maximize the uniqueness of each character which subsequently

contributes toward increasing the probability of recognizing the character, the best

degree of rotation is 90° regardless of the direction because all vertical strokes in the

character body shape will be converted into horizontal strokes and vice versa. This

makes the character shape totally different which provides a “new” and different DCV

for the same character. The rotation at 180° will produce a horizontally mirror image

of the character image. The strokes will be in the same vertical or horizontal position

which makes the DCV of the rotated image almost the same. The same thing will

happen with 270° which produces a vertically mirror image of the rotated character

image at 90°. Figure 5.15 shows an Arabic character in its original orientation and in

three different orientations after rotation.

In the next chapter, the performance of the system using two images for each

character will be compared with the system performance using only one image. The

influence of the rotation degree will be studied as well.

Figure 5.15: Arabic character in four different orientations

5.13 Summary

The recognition stage is the most crucial stage in OCR system. At this stage, the

system is trained to receive the input image, which is segmented character in some

approaches or words in other approaches, and apply the recognition method on this

received input. Usually, the recognition stage is divided into two stages: feature

extraction and classification. In this research, a system that deals with the character

 143

image as a whole using decomposition process is presented. The idea behind the

proposed system is that using FWT as a decomposition tool, an image can be

decomposed into high and low scale components known as approximations and

details as it is passes through a set of filters. All of these components can be combined

into one vector which can be used to rebuild the same image again, in the

reconstruction process. Since the vector can be used to reconstruct the image, this

vector must be unique for each image, and this uniqueness can be used to recognize

the image itself.

While other recognition systems, such as iris recognition systems, significantly,

exceed the human ability, the handwriting recognition systems are still struggling to

reach the human ability of recognizing handwritten text. Thus, this chapter started

with a brief discussion on human mechanism of objects and patterns recognition.

Next, the proposed recognition system is presented as a simulation of the human

mechanism of objects and patterns recognition. This is followed by discussions on

Fourier analysis as an introduction to decomposition process and the fast wavelet

transform as a tool to achieve the decomposition process. A review of previous works

on using FWT in different image processing applications, such as face recognition,

edge detection, character recognition, search in image database, and image

compression is included. It is noted that FWT is still not widely used for handwriting

recognition, however, wavelet transform is used as a feature extraction method. A

model for recognizing handwritten Arabic characters is then presented. The

construction of the model is explained by presenting each of its four algorithms. The

factors that affect the model accuracy are discussed, and the methods to increase the

model accuracy have been proposed. The performance of the model will be presented

in the next chapter.

 144

CHAPTER 6

EXPERMENTAL RESULTS AND ANALYSIS

6.1 Chapter Overview

This chapter presents test results of the proposed methods at every stage of the OCR

system. For the preprocessing stage, the results for skew correction (for pages, lines

and words), slant correction, and thinning are presented. The results for different

segmentation levels during the segmentation stage and the influence of different

factors on the recognition accuracy at the recognition stage are presented next. An

analysis of the results and discussion conclude this chapter.

6.2 Introduction

The first goal of our experiments is to improve the theory behind the proposed

recognition model that the character image can be represented, by decomposition

process, as a vector. This vector is unique for each different character image, thus, it

can be used to recognize the character image. As the proposed model is significantly

similar to the human mechanism for object recognition, as discussed earlier in (5.1.1),

we believe that this model should be able to perform the recognition task with

promising performance, not only in handwriting recognition, but with all pattern

recognition applications.

The main challenge with handwriting recognition is that for a handwritten

character there is no specific form that can be used as a representative of that

character. In fingerprint recognition, for example, there is a specific shape of a

fingerprint, and the system duty is to find which shape in the data set can perfectly

match this fingerprint shape. However, in handwriting recognition there is no specific

 146

shape to compare with, instead, there is a group of similar shapes that represents

this character. The similarities among character shapes belonging to one character

increase when the writers obey the handwriting rules. In Arabic, where characters are

written cursively in different styles, the similarity within each group of shapes is less

as each character can be written in many different shapes.

The traditional way to achieve handwriting recognition is to extract features from

the character shape, then classify those features for character recognition purposes.

Because of the disadvantages of this method, such as complexity and time

consumption, a different recognition method has been chosen. Instead of extracting

features from the character image, the new method deals with the character image as a

whole by using its DCV to recognize it. A group of DCVs will be created at the

training stage. The representative of each group will be calculated as the mean of the

group, and the comparison will be done between the DCV of the character image that

need to be recognized and the DCV of the group representative.

In order to obtain a high accuracy level of recognition, the input character image

should be as clear as possible. Thus, the second task of our experiments is to improve

the efficiency of the proposed and selected methods for preprocessing and

segmentation stages. In this chapter, the experimental results will be presented in

three parts: the experiments of the preprocessing stage, the experiments of the

segmentation stage, and the experiments of the recognition stage.

As mentioned before, all experiments were conducted using MATLAB 7.6.0

(R2008a) version with Microsoft Windows XP, Home Edition, Version 2002, Service

Pack 3 0.99 of RAM and Intel Core2Duo processor with a speed of 1.86GHz.

6.3 Preprocessing Stage Experiments

The task of preprocessing is to convert the raw image into an image ready for

segmentation by maximizing the shape information and minimizing the noise. The

recognition accuracy level is greatly influenced by the efficiency of this stage. Some

 147

of the preprocessing operations, such as binarization and smoothing were done with

MATLAB commands that have been integrated with the proposed algorithms. In this

part, the results of the proposed algorithms for preprocessing operations including

skew page correction skew line correction, and slant correction will be presented.

6.3.1 Skew Page Correction Experiments

Normally, a skewed page is results from an improper positioning of the page during

scanning. For page skew detection and correction, Radon transform was used as

explained in 3.8.1.The proposed algorithm for skew detection consists of two steps

that start with converting the page image into structuring element, then applying the

Radon transform on it in order to detect the skew direction and to calculate the skew

angle.

For page skew correction, the proposed algorithm consists of three steps that start

with converting the page image into structuring elements, then Radon transform is

applied on these structuring elements to correct its skew. Finally, the image is

reconstructed by repeating dilations of the image until the contour of the marker

image fits under a second image.

As the proposed system is designed to deal with individual characters, the page is

considered free of skew if the skew angle is less than 3°. Thus, the page will be tested,

if the skew angle is less than 3°, the page will be sent to the next stage: the line

extraction. If the skew angle is more than 3°, the page will be considered as skewed

page and the skew correction algorithm will be applied to it.

As mentioned earlier in Section 3.3, we have 61 different full text images written

by 61 different writers consisting of more than 100 Arabic words. These words have

been selected to cover all Arabic characters in all their four positions (isolated,

beginning, middle, and end). These 61 text images are found free of skew. In order to

test the page skew detection and correction algorithms, 30 skewed text images were

created, half of them were clockwise skewed while the rest of them were

anticlockwise skewed. The skew angle for each text image was randomly chosen

 148

between 3° to 45°. Figure 6.1 shows a sample of the skewed images before and after

skew correction.

Figure 6.1: The text image before and after skew correction

Using the proposed algorithms for skew detection (in appendix A) and correction

(in appendix B), all the skew angles were successfully detected and corrected as it

shown in Table 6.1.

 149

Table 6.1: The detection and correction algorithms results

Sample No Skew direction Skew

angle

Corrected

angle Sample 1 Clockwise 45° 2°

Sample 2 Clockwise 41° 2°

Sample 3 Clockwise 37° 1°

Sample 4 Clockwise 28° 1°

Sample 5 Clockwise 24° 1°

Sample 6 Clockwise 19° 1°

Sample 7 Clockwise 18° 1°

Sample 8 Clockwise 15° 1°

Sample 9 Clockwise 10° 0°

Sample 10 Clockwise 7° 0°

Sample 11 Clockwise 44° 2°

Sample 12 Clockwise 39° 2°

Sample 13 Clockwise 33° 1°

Sample 14 Clockwise 26° 1°

Sample 15 Clockwise 21° 1°

Sample 16 Anticlockwise 20° 1°

Sample 17 Anticlockwise 17° 1°

Sample 18 Anticlockwise 12° 0°

Sample 19 Anticlockwise 7° 0°

Sample 20 Anticlockwise 5° 0°

Sample 21 Anticlockwise 44° 2°

Sample 22 Anticlockwise 38° 2°

Sample 23

Anticlockwise 31° 1°

Sample 24 Anticlockwise 27° 1°

1 Sample 25 Anticlockwise 22° 0°

Sample 26 Anticlockwise 16° 0°

Sample 27 Anticlockwise 15° 0°

Sample 28 Anticlockwise 9° 0°

 Sample 29 Anticlockwise 6° 0°

Sample 30 Anticlockwise 25° 1°

Table 6.1 shows that the proposed algorithm was totally successful to correct the skew

angle whenever this skew angle is less than 5°. The proposed algorithm was able to

reduce the skew angle to 1° when it is in the range of 18° to37°, and to reduce the

skew angle to 2° when it is in the range of 38° to 45°. However, practically, the skew

angle is usually less than 20°.

6.3.2 Skew Line/Word Correction Experiments

Skew line can be defined as the deviation of the base line of the text from the

horizontal direction. For handwritten text, especially on a blank paper, line skew can

 150

be caused by the writer himself. The skew can be observed either in the whole line or

in some words. The same algorithms for detection and correction were used for the

skew in both lines and words, as the line or word image will be converted into

structuring element before applying Radon transform to detect the skew direction and

to calculate the skew angle. The results of the line and words detection and correction

algorithms will be presented here as a part of the preprocessing stage. In the model

design, the line skew detection and correction algorithms (in appendix C) should take

place after line extraction and word extraction. Figure 6.2 shows the order of the

detection and correction algorithms in the model.

Figure 6.2: Detection and correction algorithms

No

Yes

Extracted word

Yes

Extracted line

Corrected line

Free of

Skew page?

Scanned

page

Skew correction

Algorithm

No

Corrected page

Free of

Skew line?

Skew correction

Algorithm

No

Lines extraction

Yes

Words extraction

Free of

Skew word?

Skew correction

Algorithm

Corrected page Character

segmentation

 151

Unlike page correction algorithm, some parameters of line correction algorithm

are dependent on the direction of the skew, due to the structuring element shape of the

line. Thus, after the direction of the line skew has been detected, the parameters for

line skew correction are set depending on whether the skew is clockwise skewed or

anticlockwise skewed.

The design of the word skew detection and correction algorithm (in appendix D)

is similar to the line skew correction with some changes of parameters to make the

algorithm suitable to be used with word shapes. The parameters that need to be

changed in case of page, line, or word correction are listed below:

1. The radius of the disk-shaped structuring element. The disk-shaped structuring

element is used to preserve the circular nature of the object in order to specify

the radius.

2. The range of angles used to find a maximum value of Radon transforms.

3. The value that should be deducted from the corresponding angle of maximum

Radon transform value, for all of the angles in that range in order to detect the

skew angle.

The value of each parameter for page, line and word skew correction algorithms is

shown in Table 6.2

Table 6.2: The parameters for page, line and word skew correction algorithms

Algorithm

Disk-shaped structuring

element radius Range of

Radon

transform

angle

Deducted value

Clockwise
Anti-

clockwise
Clockwise

Anti-

clockwise

Page skew

correction
17 17 50° to -50° 89° 89°

Line skew

correction
01 01 01° to -30° 98° 89°

Word skew

correction
10 17 25° to -25° 99° 70°

 152

The test of line skew correction algorithm is achieved after line extraction

operation, while the test of word skew correction algorithm is achieved after word

extraction operation. Line and word extractions belong to the segmentation stage.

This shows that OCR stages are not sequential. The results of skew correction

algorithms for line and word are presented here as those operations which belong to

the preprocessing stage. Unlike page skew correction, where the page is considered

skewed if the skew angle is bigger than 3°, for line and word skew correction, the

corrected line/word should be totally free of skew. Unlike page skew, for line and

word, even small skew angle can affect the results. For line skew correction algorithm

test, 15 full text samples were used to obtain 30 skewed lines, 2 lines, from each

sample. Then, the line skew correction algorithm was applied to each of those 30

skewed line. All 30 lines were successfully corrected. The results are summarized in

Table 6.3.

Table 6.3: Results of line skew correction algorithm test

Sample No Skewed lines Skew angle Skew after correction

Sample 1

Line 1 5° 0° Successfully corrected

Line 2 3° 0° Successfully corrected

Sample 2
Line 1 3° 0° Successfully corrected

Line 2 2° 0° Successfully corrected

Sample 3

Line 1 2° 0° Successfully corrected

Line 2 4° 0° Successfully corrected

Sample 4
Line 1 3° 0° Successfully corrected

Line 2 5° 0° Successfully corrected

Sample 5

Line 1 3° 0° Successfully corrected

Line 2 2° 0° Successfully corrected

Sample 6
Line 1 4° 0° Successfully corrected

Line 2 4° 0° Successfully corrected

Sample 7

Line 1 2° 0° Successfully corrected

Line 2 2° 0° Successfully corrected

Sample 8
Line 1 2° 0° Successfully corrected

Line 2 2° 0° Successfully corrected

Sample 9

Line 1 1° 0° Successfully corrected

Line 2 1° 0° Successfully corrected

Sample 10
Line 1 4° 0° Successfully corrected

Line 2 4° 0° Successfully corrected

 153

Table 6.3 Cont’d: Results of line skew correction algorithm test

Sample 11

Line 1 1° 0° Successfully corrected

Line 2 2° 0° Successfully corrected

Sample 12
Line 1 3° 0° Successfully corrected

Line 2 4° 0° Successfully corrected

Sample 13

Line 1 1° 0° Successfully corrected

Line 2 2° 0° Successfully corrected

Sample 14
Line 1 3° 0° Successfully corrected

Line 2 2° 0° Successfully corrected

Sample 15

Line 1 1° 0° Successfully corrected

Line 2 3° 0° Successfully corrected

The lines for skew correction algorithm test were chosen from both skew

directions: up and down. For line skew correction, the lines skewed anticlockwise are

known as down skewed lines, while the lines skewed clockwise are known as up

skewed lines. Figure 6.3 shows two samples of skewed lines in both anticlockwise

and clockwise cases.

Figure 6.3: Anticlockwise and clockwise skewed lines

To test word skew correction algorithm test, the word skew detection algorithm

was applied on 70 text line that were previously extracted from different pages to

obtain 30 skewed words. The word skew angle was in the range of 1° to 3° in both

directions. Using word skew correction algorithm, all 30 words were successfully

corrected.

Similar to lines for skew correction, word skewed anticlockwise is known as

down skewed word, while word skewed clockwise is known as up skewed word.

Table 6.4 shows word skew correction algorithm test results.

 154

Table 6.4: Results of word skew correction algorithm test

Word sample

No

Skew angle Skew after correction

Sample 1 2° 0° Successfully corrected

Sample 2 2° 0° Successfully corrected

Sample 3 3° 0° Successfully corrected

Sample 4 2° 0° Successfully corrected

Sample 5 2° 0° Successfully corrected

Sample 6 1° 0° Successfully corrected

Sample 7 2° 0° Successfully corrected

Sample 8 3° 0° Successfully corrected

Sample 9 2° 0° Successfully corrected

Sample 10 3° 0° Successfully corrected

Sample 11 3° 0° Successfully corrected

Sample 12 3° 0° Successfully corrected

Sample 13 3° 0° Successfully corrected

Sample 14 2° 0° Successfully corrected

Sample 15 2° 0° Successfully corrected

Sample 16 2° 0° Successfully corrected

Sample 17 1° 0° Successfully corrected

Sample 18 1° 0° Successfully corrected

Sample 19 2° 0° Successfully corrected

Sample 20 3° 0° Successfully corrected

Sample 21 3° 0° Successfully corrected

Sample 22 1° 0° Successfully corrected

Sample 23 3° 0° Successfully corrected

Sample 24 3° 0° Successfully corrected

Sample 25 1° 0° Successfully corrected

Sample 26 2° 0° Successfully corrected

Sample 27 3° 0° Successfully corrected

Sample 28 1° 0° Successfully corrected

Sample 29 1° 0° Successfully corrected

Sample 30 2° 0° Successfully corrected

 155

6.3.3 Slant Correction Experiments

Arabic word might be slanted in both directions either left or right depending on. the

slant angle, which is the angle between the vertical stroke and the baseline, and it

might be larger or smaller than 90°. As mentioned earlier in Section 3.9.2, the slant

correction algorithm consists of three steps: vertical stroke detection using Hough

Transform, slant angle measurement using boundary tracing routine, and finally, slant

correction using transform technique.

Like skew word correction, slant correction should take place after word

extraction in the segmentation stage. It should be achieved after skew word

correction.

To test the proposed algorithm, it was applied on the output of the word extraction

stage. 30 slanted words were chosen as not all of the output word are slanted words.

The algorithm was successful to detect 83.33 % of slanted words and was able to

correct 86.66 of the slanted words. The algorithm failed to detect the slant when the

slant angle is smaller than 3°. However, slant less than 3° could be tolerated as it will

not affect the segmentation and recognition processes. Table 6.5 shows the results of

slant word correction test.

Table 6.5: Results of slant word correction test

Word

sample No

Slant detection Slant correction

Sample 1 Detected Corrected

Sample 2 Failed to detect -

Sample 3 Detected Corrected

Sample 4 Detected Corrected

Sample 5 Failed to detect -

Sample 6 Failed to detect -

Sample 7 Detected Corrected

Sample 8 Detected Corrected

Sample 9 Detected Failed to correct

Sample 10 Failed to detect -

Sample 11 Detected Corrected

Sample 12 Detected Corrected

Sample 13 Detected Corrected

Sample 14 Detected Failed to correct

Sample 15 Detected Corrected

 156

Table 6.5 Cont’d: Results of slant word correction test

Word sample

No

Slant detection Slant correction

Sample 16 Detected Corrected

Sample 17 Detected Corrected

Sample 18 Detected Failed to correct

Sample 19 Detected Corrected

Sample 20 Detected Corrected

Sample 21 Detected Corrected

Sample 22 Detected Failed to correct

Sample 23 Detected Corrected

Sample 24 detected Corrected

Sample 25 Failed to detect -

Sample 26 Detected Corrected

Sample 27 Detected Corrected

Sample 28 Detected Corrected

Sample 29 detected Corrected

Sample 30 Detected Corrected

Success rate 83.33 % 86.66

6.3.4 Thinning Experiments

For thinning task, the algorithm designed by Zhang and Wang [32] was modified to

make it more suitable for handwriting text, as their algorithm was designed for

general thinning purpose. The most important thing when thinning operation is

performed in the handwritten text especially for Arabic text is to keep the dots, which

are a part of the characters. In some cases, thinning might delete some dots. However,

using modified Zhang and Wang algorithm, the text image was successfully thinned

and no dot was lost. A sample of text before and after thinning using modified Zhang

and Wang algorithm is shown in Figure 6.4.

Figure 6.4: Arabic text before and after thinning using the modified Zhang and Wang

algorithm

 157

6.4 Segmentation Stage Experiments

In the model, segmentation process contains three main stages, text to lines stage,

where lines are extracted from the handwritten text, text line-to-words stage, where

words are extracted from the lines, and word-to-characters stage, where words are

segmented into individual characters that will be subjected to recognition. Different

algorithms have been designed to achieve segmentation task in each stage. In this

chapter, the performance of each algorithm is presented.

6.4.1 Text-to-Lines Segmentation Experiments

Text line is the imaginary line that people use when they are writing. For Arabic text,

the text line contains mostly vertical strokes of the words. Text lines are separated

from each other by white spaces. Thus, for line segmentation, known as line

extraction, the boundaries of each text line are located by finding the horizontal gaps

between text lines.

For the proposed model, Hough transform approach has been adopted for text to

line segmentation stage. The proposed algorithm for text line segmentation starts with

the conversion of a text image into a binary image in order to find edges of the text

image. Then, Standard Hough Transform (SHT) is used to compute the Hough

transform of the edged image in order to detect the lines in the text image.

As mentioned before, several writers were requested to re-write a text that consist

more than 100 Arabic words. The writers were free to choose the number of text lines.

However, the majority of writers chose to re-write the text in 15 lines, as it was in the

printed version; only few of them re-wrote the text in more than 15 lines.

To test the text-to-lines segmentation algorithm (in appendix E), it was applied on

30 full text images. The results in Table 6.6 show that the algorithm was successful to

extract 99.15% of lines in the 30 full text images. The algorithm failed to extract some

lines in some samples as those lines are shorter than the majority of lines in the text

sample.

 158

Table 6.6: Results of text-to-line algorithm test

Sample No Extracted line

number

Success rate %

Sample 1 15 of 15 100

Sample 2 15 of 15 100

Sample 3 15 of 15 100

Sample 4 15 of 15 100

Sample 5 15 of 15 100

Sample 6 15 of 15 100

Sample 7 15 of 15 100

Sample 8 15 of 15 100

Sample 9 15 of 15 100

Sample 10 15 of 15 100

Sample 11 16 of 16 100

Sample 12 15 of 15 100

Sample 13 15 of 15 100

Sample 14 15 of 15 100

Sample 15 15 of 15 100

Sample 16 15 of 15 100

Sample 17 14 of 15 93.33

Sample 18 15 of 15 100

Sample 19 15 of 15 100

Sample 20 15 of 17 88.23

Sample 21 15 of 15 100

Sample 22 15 of 15 100

Sample 23 15 of 15 100

Sample 24 15 of 15 100

Sample 25 17 of 17 100

Sample 26 15 of 15 100

Sample 27 15 of 15 100

Sample 28 15 of 15 100

Sample 29 14 of 15 93.75

Sample 30 15 of 15 100

Average 99.77

6.4.1.1 Previous work in Arabic Text-to-lines Segmentation

To evaluate the performance of proposed algorithm for text-to-lines segmentation, the

results of previous work in Arabic text-to-lines segmentation are presented. Some of

the methods were specifically designed for Arabic text line extraction, while others

were designed for more than one language. Table 6.7 shows some text line extraction

methods and their accuracy.

 159

Table 6.7: Some text line extraction methods and their accuracy

Author and date Method Accuracy

Zahour et al. 2000.

[169].

Partial contour following

based method to detect the

separating lines.

Evaluated with 100

samples but no accuracy

was reported.

Lu et al. 2000. [170].

Three different types of

HMMs to model three

kinds of vertical regions: a

text line, white space

between two text lines, and

a horizontal rule.

Evaluated with 345

Arabic zones.17 zones

had either missed one

text line or had one extra

text line.

Li et al. 2006. [171].

Enhancing text line

structure using a Gaussian

window, and adopting the

level set method to evolve

text line boundaries.

Evaluated with 100

handwritten Arabic

documents. Accuracy of

85.6% was obtained.

Zahour et al. 2007.

[172].

Horizontal projection and

matching adjacent blocks

within two successive

strips using spatial

relationship.

Evaluated with100

historical documents.

Accuracy of 96% was

obtained.

Arivazhagan et al.

2007. [173].

Projection-based

algorithm.

Evaluated with 720

documents including

English, Arabic and

children's handwriting.

97.31% of the lines were

correctly segmented.

Shi et al. 2009. [174].

Generalized adaptive local

connectivity map using a

steerable directional filter.

Evaluated with 45

handwritten Arabic

document images. Only

two lines were

incorrectly merged.

Ouwayed et al. 2010.

[175].

Image paving that is

initialized with a small

window and Wigner-Ville

distribution on the

histogram projection

profile.

Evaluated with 100

handwritten Arabic

documents. 98.6% of the

lines were correctly

segmented.

6.4.2 Lines-to-words Segmentation Experiments

To segment a text line into words, an algorithm that uses statistical methods is

proposed (in appendix F). The proposed algorithm uses the mathematical

representation of the binary image as an array, where zeros represent the background.

The proposed algorithm uses empty columns to measure the space between words and

 160

characters, and to measure the width of words and characters. This measurement is

used to determine whether the segmented component is a word or a character.

The output of the line-to-words segmentation algorithm might be connecting

words, sub-words or characters as all of them appear as connected components. Thus,

the algorithm will test the segmented components to determine whether they are

words/ sub-words to be sent to the next segmentation algorithm or characters to be

sent to the recognizer.

To test the line-to-words segmentation algorithm, samples of 30 text line images

were used. The algorithm was successful to segment all 30 lines into their connected

components and was able to recognize 96.47% of the segmented components. The

main reason for recognition failure is overlapping of some characters in a word with

adjacent words or sub-words characters. Thus, overlapping characters will be

segmented by different algorithm. Table 6.8 shows the results of text line-to-words

segmentation algorithm test.

Table 6.8: Results of line-to-words segmentation algorithm test

Sample No Segmented components Recognition rate %

Words/sub-words Characters

Sample 1 9 1 90

Sample 2 9 1 90

Sample 3 10 2 90.90

Sample 4 9 2 100

Sample 5 12 2 100

Sample 6 9 1 100

Sample 7 8 2 90

Sample 8 10 1 90

Sample 9 9 2 100

Sample 10 8 1 100

Sample 11 8 1 100

Sample 12 11 1 90.90

Sample 13 12 2 91.66

Sample 14 7 1 100

Sample 15 10 2 100

Sample 16 12 2 83.33

Sample 17 11 2 100

 161

Table 6.8 Cont’d: Results of Text line-to-words segmentation algorithm test

Sample No Segmented components Recognition rate %

Words/sub-

words

Characters

Sample 18 11 2 100

Sample 19 9 2 100

Sample 20 9 1 100

Sample 21 8 1 90

Sample 22 8 1 100

Sample 23 7 1 100

Sample 24 7 1 100

Sample 25 9 1 100

Sample 26 11 2 90.90

Sample 27 9 1 100

Sample 28 8 1 100

Sample 29 8 1 100

Sample 30 10 2 90.90

Average 96.47

6.4.2.1 Previous Work in Arabic Text line-to-Words Segmentation

To evaluate the performance of the proposed algorithm for text line-to-words

segmentation, the results obtained from our experiment are compared with the results

of some previous works in Arabic text line-to-words segmentation. Table 6.9 shows

some methods and the accuracy of some previous works in Arabic text line-to-words

segmentation.

Table 6.9: Previous work in Arabic text line-to-words segmentation

Author and date Method Accuracy

Motawa et al.

1997. [176].

Vertical or semi-vertical strokes are used

to determine segmentation points

Accuracy of 81.88%

unspecified number of

samples

Lorigo and

Govindaraju.

2005. [65].

Over-segmenting each word, then

removes extra breakpoints using

knowledge of character shapes.

Accuracy of 92.3%

using a set of 200

images.

Ali. 2005. [16]. Classifying connected-pixels into

three different classes, then

associating geometrical attributes to

be used as extracted features.

Accuracy of 99.7% of

80-87% using a set of

63 images.

AlKhateeb et

al. [177]. 2008.

Analyzing distances between words

and sub-words to obtain their

statistical distributions to decide an

optimal threshold.

Accuracy of 66.67 to

91.84% using

IFN/ENIT database

Aghbari and

Brook [178].

2009

Projecting line image vertically to

create a vertical histogram

representing the word density.

Accuracy of 99.7%

using a set of 27 pages

(from one book)

 162

6.4.3 Word-to-Characters Segmentation Experiments

Word-to-characters is the last part of the segmentation stage where the output of this

stage, which is the individual characters, should be ready to be fed into the recognizer.

Due to the nature of Arabic characters, where characters are overlapping in many

cases, word-to -characters segmentation is the most difficult part of the segmentation

stage.

For the word-to-characters segmentation, the proposed algorithm uses the

mathematical representation of the binary image as an array to find the possible points

for segmentation. In the image array, columns that have a sum of 1 indicate a position

of horizontal strokes that can be considered as points of segmentation since strokes

are the connection between characters.

The problem of overlapping characters can be divided into two parts: detecting the

overlapping characters and segmenting the overlapping characters into individual

characters. For the first part, the recognizer is used to detect the overlapping

characters. The characters that failed to be recognized for the first time are sent to the

overlapping character segmentation algorithm (in appendix G). That means, the

overlapping character segmentation algorithm will take place after the recognition

stage but the results of its performance will be presented in this section as it is a part

of the segmentation stage. For the second part, the most common cases of overlapping

characters were analyzed. It was found that the overlapping characters in Arabic can

be classified into three classes: non-connected overlapping characters, connected

overlapping characters, and the special case of Lamalif. Different solutions for each

class are proposed.

The output of the word-to-characters segmentation algorithm might be either

characters only, or overlapping characters, or a mix of characters and overlapping

characters. However, the algorithm is considered successful if the individual character

or the two overlapping characters are correctly segmented.

To test the word-to-characters segmentation algorithm, it was applied on 30

different words with different number of characters. The algorithm was successful to

segment 91.78% of 180 characters in 30 words. Table 6.10 shows the results of word-

 163

to-characters segmentation algorithm test. The overlapping characters segmentation

algorithm was tested on 30 different cases of overlapping characters with different

number of characters. The algorithm was successful to segment 77.01% of 180

characters in 62 overlapping characters. The algorithm failed to segment overlapping

characters in the case of visually unclear connected point (Cp) between two

characters. The results of word-to- overlapping characters segmentation algorithm test

are tabulated in Table 6.11.

Table 6.10: Results of word-to-characters segmentation algorithm test

Sample No Segmented characters Segmentation rate %

Sample 1 5 out of 5 100

Sample 2 6 out of 6 100

Sample 3 6 out of 7 85.71

Sample 4 7 out of 8 87.5

Sample 5 4 out of 4 100

Sample 6 6 out of 6 100

Sample 7 5 out of 5 100

Sample 8 6 out of 7 85.71

Sample 9 7 out of 7 100

Sample 10 7 out of 7 100

Sample 11 8 out of 8 100

Sample 12 6 out of 6 100

Sample 13 5 out of 6 83.33

Sample 14 4 out of 5 80

Sample 15 4 out of 6 66.66

Sample 16 5 out of 5 100

Sample 17 6 out of 6 100

Sample 18 5 out of 5 100

Sample 19 4 out of 5 80

Sample 20 5 out of 7 71.42

Sample 21 6 out of 6 100

Sample 22 5 out of 6 83.33

Sample 23 4 out of 6 66.66

Sample 24 6 out of 7 85.71

Sample 25 7 out of 7 100

Sample 26 6 out of 6 100

Sample 27 6 out of 6 100

Sample 28 6 out of 7 85.71

Sample 29 4 out of 4 100

Sample 30 4 out of 4 100

Success rate 91.78

 164

In Table 6.10, the algorithm is considered successful regardless of the output,

whether it is one character, or two or more overlapping characters as long as the body

of one character or the bodies of overlapping characters is successfully segmented,

and there are no cut off from them. This is because the algorithm was not designed to

overcome the overlapping character problem. The segmentation is considered as a

failure only if the body of any character in the word was cut off.

Table 6.11: Results of overlapping character segmentation algorithm test

Sample No Segmented characters Segmentation rate %

Sample 1 2 out of 2 100

Sample 2 2 out of 2 100

Sample 3 1 out of 2 50

Sample 4 2 out of 2 100

Sample 5 1 out of 2 50

Sample 6 1 out of 2 50

Sample 7 1 out of 3 33.33

Sample 8 2 out of 2 100

Sample 9 2 out of 2 100

Sample 10 2 out of 3 66.66

Sample 11 1 out of 2 50

Sample 12 2 out of 2 100

Sample 13 2 out of 3 66.66

Sample 14 1 out of 2 50

Sample 15 1 out of 2 50

Sample 16 2 out of 2 100

Sample 17 2 out of 3 66.66

Sample 18 2 out of 2 100

Sample 19 2 out of 2 100

Sample 20 1 out of 2 50

Sample 21 1 out of 2 50

Sample 22 2 out of 2 100

Sample 23 2 out of 2 100

Sample 24 2 out of 2 100

Sample 25 2 out of 2 100

Sample 26 1 out of 2 50

Sample 27 2 out of 2 100

Sample 28 1 out of 2 50

Sample 29 2 out of 2 100

Sample 30 2 out of 2 100

Success rate 77.01

 165

Table 6.11 shows that the proposed algorithm for overlapping character

segmentation is more successful with two overlapping characters. It is less successful

with three overlapping characters. This is because the algorithm was mainly designed

for two overlapping characters. However, from the collected data, it was found that

two overlapping characters are more common than three overlapping characters.

6.4.3.1 Previous Work in Arabic Word-to-Characters Segmentation

To evaluate the performance of the proposed algorithm for word-to-characters

segmentation, the experimental results are compared with other results of some

previous works on Arabic word-to-characters segmentation. In this comparison, some

old works as well as new works are briefly presented to show the progress that has

been made in Arabic word-to-characters segmentation. Table 6.12 summarizes the

methods and accuracy of some previous works in Arabic word-to-characters

segmentation.

Table 6.12: Previous works in Arabic word-to-characters segmentation

Author and date Method Accuracy

Olivier, et al. 1996.

[179].

Words were segmented

into portions of characters

the portions were analyzed

and the words were coded

by a sequence of

observations similar to the

human perception.

Accuracy of 95.42%.

using a set of 6000

words.

Touj, et al. 2002. [180]. Planar HMM-based model Not reported.

Abdulla et al. 2008.

[181].

Rotational invariant

segments features

Accuracy of 95.66%

using AHD/AUST

database and 90.85%

using IFN/ENIT

database.

Dreuw, et al. 2008.

[182].

Using position-dependent

character shapes in Arabic

handwriting to insert large

white-spaces between

characters within words.

Not reported.

Wshah, et al. 2009.

[57].

Connected character s

were segmented to smaller

segments, each of which

contains no more than

three character s to be used

by a small size lexicon.

Accuracy of 93% using

a set of 45 different

documents.

 166

6.5 Recognition Stage Experiments

As mentioned earlier in Section 5.5, the accuracy of recognition stage is dependent on

four factors: filter type, decomposition level, codebook size, and size of the created

DCV. Thus, the experiments of the recognition stage have been divided into four parts

to separately analyze the influence of each factor.

The input of the recognition stage is made of individual segmented characters in

four different positions: isolated, at the beginning of a word, in the middle of a word,

and at the end of a word. To study the influence of the four factors, isolated characters

were tested first. After choosing the best parameters that enable the system to achieve

the best level of recognition, characters at the beginning of a word, in the middle of a

word, and at the end of a word were then tested.

6.5.1 Filter Type Experiments

In this experiment, the performance of five different filters was tested. One picture of

each isolated character was used. The DCV is a vector of 2115 elements, due the file

size of the character image, covering horizontal, vertical and diagonal details. The

training set has 24 samples of each character, as well as the test set. The results are

compared in Tables 6.13.

As mentioned earlier in Section 5.11.4, the filter.m function is responsible for creating

different wavelet decomposition filters. For each filter type, high-pass and low-pass

filters will be created. In this test, five types of filters were tested:

1. Haar

2. 4th order Daubechies

3. 4th order Symlets

4. Cohen-Daubechies-Feauveau biorthogonal

5. Antonini-Barlaud-Mathieu-Daubechies (JPEG 9.7)

 167

From Table 6.13 it can be seen that, on the overall, the system performed with the

highest level of accuracy while using the jpeg9.7 filter. On the other hand, the system

gave the lowest level of accuracy when Haar filter was used. Based on these results,

jpeg9.7 filter was selected. The performance of the five filters is compared as

illustrated in Figure 6.5

Table 6.13: A comparison between different filters performance

Character
Filters accuracy %

Haar filter Db4

filter

Sym4

filter

Bior6.8

filter

jpeg9.7 filter

 Alif 66.66 70.83 70.83 66.66 87.5 أ

 Baa 45.83 50 58.33 70.83 62.5 ب

 Taa 66.66 70.83 70.83 66.66 70.83 ت

 Thaa 41.66 66.66 66.66 45.83 70.83 ث

 Jeem 58.33 66.66 66.66 66.66 70.83 ج

 Haa 41.66 45.83 58.33 66.66 62.5 ح

 Kha 37.5 66.66 66.66 66.66 70.83 خ

 Daal 58.33 66.66 66.66 62.5 70.83 د

 Thaal 66.66 70.83 70.83 66.66 87.5 ذ

 Raa 41.66 45.83 50 75 58.33 ر

 Zay 45.83 45.83 50 66.66 58.33 ز

 Seen 37.5 70.83 70.83 45.83 87.5 س

 Sheen 41.66 58.33 58.33 66.66 66.66 ش

 Saad 58.33 66.66 66.66 66.66 70.83 ص

 Thaad 45.83 50 58.33 62.5 66.66 ض

 Tta 58.33 66.66 66.66 66.66 70.83 ط

 Thaa 45.83 50 58.33 58.33 62.5 ظ

 Aeen 41.66 45.83 50 62.5 58.33 ع

 Geen 37.5 45.83 50 58.33 58.33 غ

 Faa 41.66 45.83 45.83 66.66 45.83 ف

 Gaaf 58.33 66.66 66.66 50 70.83 ق

 Kaaf 41.66 66.66 66.66 45.83 70.83 ك

 Laam 12.5 12.5 12.5 66.66 12.5 ل

 Meem 41.66 66.66 66.66 70.83 70.83 و

 Noon 37.5 50 58.33 66.66 66.66 ن

 Ha 58.33 66.66 66.66 50 70.83 ه

 Wow 37.5 45.83 50 62.5 58.33 و

 Ya 37.5 50 66.66 45.83 70.83 ي

Average 46.57 56.84 59.81 61.90 66.06

 168

Figure 6.5: A comparison of the performance of five filters

The main disadvantage of jpeg9.7 filter is that it (as all jpeg filters) supports only

true-colour and gray-scale image types, while some other filters can also support

palette-based image type [183]. This disadvantage can be tolerated as the proposed

model deals only with binary images, which is a kind of gray-scale images.

6.5.2 Decomposition Level Experiments

As mentioned in Section 5.13.2, the decomposition process can be repeated to get

decomposed images in different decomposition levels. In this experiment, the aim is

to choose the best level of decomposition based on the nature of the input, which are

binary images of handwritten characters. Thus, the accuracy level of the model with

using one level, two levels and three levels are compared to examine the influence of

decomposition level.

The training set has 24 samples of each character as well as the testing set. The

results are compared in Table 6.14.

This test was carried out using the best filter as determined from the previous test.

During the test, it was observed that the accuracy decreased with using more

decomposition levels; with all filter types.

 169

Table 6.14: The system performance with different decomposition level

Character
Decomposition level

1 level 2 levels 3 levels

 Alif 87.5 70.83 58.33 أ

 Baa 62.5 62.5 45.83 ب

 Taa 70.83 62.5 45.83 ت

 Thaa 70.83 62.5 45.83 ث

 Jeem 70.83 45.83 8.33 ج

 Haa 62.5 62.5 62.5 ح

 Kha 70.83 45.83 8.33 خ

 Daal 70.83 62.5 45.83 د

 Thaal 87.5 62.5 45.83 ذ

 Raa 58.33 12.5 8.33 ر

 Zay 58.33 12.5 8.33 ز

 Seen 87.5 62.5 45.83 س

 Sheen 66.66 66.66 58.33 ش

 Saad 70.83 62.5 8.33 ص

 Thaad 66.66 66.66 58.33 ض

 Tta 70.83 62.5 45.83 ط

 Thaa 62.5 62.5 45.83 ظ

 Aeen 58.33 12.5 8.33 ع

 Geen 58.33 12.5 8.33 غ

 Faa 45.83 12.5 8.33 ف

 Gaaf 70.83 66.66 45.83 ق

 Kaaf 70.83 66.66 45.83 ك

 Laam 12.5 12.5 8.33 ل

 Meem 70.83 62.5 12.5 و

 Noon 66.66 66.66 45.83 ن

 Ha 70.83 66.66 45.83 ه

 Wow 58.33 12.5 8.33 و

 Ya 70.83 58.33 8.33 ي

Average 66.06 49.84 31.84

The results in Table 6.14 show that the highest level of accuracy can be achieved

when one level of decomposition is used. The accuracy decreased when the

decomposition level number increased. As mentioned in Section 5.13.2, the

approximations of each level can be decomposed again which means that the

approximations and details of level two, for example, is a result of the decomposition

of only level one approximations. In other words, only the approximations of each

 170

level will be decomposed to get approximations and details of the next level. As the

proposed model uses the uniqueness of the DCV to recognize the character image,

maximum amount of information are required. In case of multi-level decomposition,

this information will be reduced each time the decomposition process is repeated.

Thus, one level of decomposition will be used from now on. A comparison of the

accuracy using three different levels of decomposition is graphically shown in Figure

6.6. The next experiment shows the importance of having all available information

(approximations and details).

Figure 6.6: A comparison among three different numbers of decomposition levels

6.5.3 DCV Size Experiments

In the decomposition process, the character image will be decomposed into a

coefficient vector as it is passes though the filter set. In the proposed model, the

wave.m function produces the matrix C, which represents the coefficient

decomposition vector containing approximation, horizontal, vertical, and diagonal

coefficient matrices. Basically, the size of C depends on the size of the input image,

which in our input image case, produces a vector of 2115 elements.

To study the influence of the DCV size on the model accuracy, the results of two

experiments will be presented. In the first experiment, the size of DCV was decreased

 171

by modifying the wave.m function several times to produce only horizontal, vertical,

or diagonal each time. The accuracy of the system, in each case, is compared with the

case of having all details as shown in Table 6.15.

Table 6.15: A comparison between different cases of DCV contents

Character

Accuracy according to DCV contents %

Full

details

Approximation,

and horizontal

details

Approximation

and vertical

details

Approximation

and diagonal

details

 Alif 87.5 45.83 41.66 20.83 أ

 Baa 62.5 41.66 41.66 20.83 ب

 Taa 70.83 41.66 41.66 16.66 ت

 Thaa 70.83 37.5 37.5 20.83 ث

 Jeem 70.83 33.33 33.33 8.33 ج

 Haa 62.5 29.16 29.16 16.66 ح

 Kha 70.83 41.66 41.66 12.5 خ

 Daal 70.83 41.66 41.66 4.16 د

 Thaal 87.5 33.33 33.33 8.33 ذ

 Raa 58.33 41.66 41.66 12.5 ر

 Zay 58.33 25 25 25 ز

 Seen 87.5 41.66 41.66 12.5 س

 Sheen 66.66 45.83 41.66 4.16 ش

 Saad 70.83 20.83 20.83 8.33 ص

 Thaad 66.66 20.83 20.83 4.16 ض

 Tta 70.83 25 25 25 ط

 Thaa 62.5 0 0 0 ظ

 Aeen 58.33 20.83 20.83 0 ع

 Geen 58.33 0 0 4.16 غ

 Faa 45.83 20.83 20.83 0 ف

 Gaaf 70.83 0 0 0 ق

 Kaaf 70.83 25 25 25 ك

 Laam 12.5 20.83 20.83 0 ل

 Meem 70.83 45.83 41.66 16.66 و

 Noon 66.66 25 25 25 ن

 Ha 70.83 20.83 20.83 4.16 ه

 Wow 58.33 25 25 0 و

 Ya 70.83 41.66 41.66 16.66 ي

Average 66.06 29.01 28.56 11.15

 172

The results in Table 6.15 show that the accuracy of the system decreased

dramatically when only one kind of details was used. This shows that all details are

needed to enable the DCV to efficiently represent the character image. A comparison

of the accuracy using four different cases of DCV contents is graphically shown in

Figure 6.7.

After the influence of DCV size has been proven, the second experiment was

carried out to test the proposed method of an increase of the DCV size by using two

pictures for each character which provided additional DCV for each character. To

ensure that the additional DCV will provide new different approximation and details

for the same character, the character image is rotated before applying the wave.m

function as the rotation will produce a new image of the same character.

The best degree of rotation was found to be 90°, regardless of the direction. At

this degree of rotation, all vertical strokes in the character body shape were converted

into horizontal strokes and vice-versa, which made the character shape totally

different and provided “new” different DCV for the same character.

Figure 6.7: A comparison among four cases of DCV contents

The rotation of 180° will produce a horizontal mirror image of the character. The

strokes will be in the same vertical or horizontal position which makes the DCV of the

rotated image almost the same. The same will happen with 270° rotation, which will

 173

produce a vertical mirror image of the rotated character image at 90°. The results of

using additional pictures with different degrees of rotation degree for each character

are shown in Table 6.16.

Table 6.16: Effect of using additional pictures with different degrees of rotation

Characte

r

Accuracy (%) after additional picture at different degrees

of rotation %

Only one

picture

Rotation of

90°

Rotation of

180°

Rotation of

270°

 Alif 87.5 100 100 100 أ

 Baa 62.5 87.5 70.83 70.83 ب

 Taa 70.83 95.83 75 87.5 ت

 Thaa 70.83 95.83 87.5 95.83 ث

 Jeem 70.83 95.83 95.83 95.83 ج

 Haa 62.5 87.5 87.5 87.5 ح

 Kha 70.83 95.83 75 95.83 خ

 Daal 70.83 83.33 83.33 83.33 د

 Thaal 87.5 100 100 100 ذ

 Raa 58.33 66.66 66.66 66.66 ر

 Zay 58.33 70.83 70.83 70.83 ز

 Seen 87.5 100 100 100 س

 Sheen 66.66 91.66 91.66 91.66 ش

 Saad 70.83 91.66 87.5 87.5 ص

 Thaad 66.66 91.66 91.66 91.66 ض

 Tta 70.83 95.83 91.66 91.66 ط

 Thaa 62.5 87.5 70.83 91.66 ظ

 Aeen 58.33 75 75 79.16 ع

 Geen 58.33 79.16 75 79.16 غ

 Faa 45.83 54.16 54.16 54.16 ف

 Gaaf 70.83 70.83 70.83 70.83 ق

 Kaaf 70.83 95.83 75 87.5 ك

 Laam 12.5 16.66 16.66 16.66 ل

 Meem 70.83 95.83 87.5 95.83 و

 Noon 66.66 91.66 75 87.5 ن

 Ha 70.83 95.83 87.5 95.83 ه

 Wow 58.33 75 75 87.5 و

 Ya 70.83 95.83 87.5 87.5 ي

Average 66.06 85.11 79.46 83.92

 174

Tables 6.16 shows that the best degree of rotation that provides maximum amount

of additional different details is 90°. A comparison of the accuracy of using only one

picture and using additional picture after rotation is graphically shown in Figure 6.8.

Figure 6.8: A comparison of using one picture and using extra picture after

rotation at different degrees

6.5.4 Codebook Experiments

The recognition accuracy has been found to be affected by the size of training data

which are used to create the representative of each character that is able to represent

the character group more accurately can be created by using more samples.

In this experiment, as many character samples as available (47 samples out of 48

samples) were tested with the proposed technique. Table 6.17 shows the influence of

codebook size on the accuracy level.

The results of this test had catalyzed us to think of new ways to maximize the

codebook size by adding an optional validation part. This validation is activated after

the recognition stage, whereby the system will request the user to validate the

characters that have been successfully recognized, and to correct the characters that

 175

failed to be recognized. The validated characters and the corrected characters will be

stored in the codebook to increase the codebook size each time the system is used.

Table 6.17: The influence of codebook size on accuracy level

Character
Accuracy according to the codebook size

(%)

Using 24 samples Using 47 samples

 Alif 100 100 أ

 Baa 87.5 95.74 ب

 Taa 95.83 100 ت

 Thaa 95.83 100 ث

 Jeem 95.83 100 ج

 Haa 87.5 95.74 ح

 Kha 95.83 100 خ

 Daal 83.33 93.61 د

 Thaal 100 100 ذ

 Raa 66.66 68.08 ر

 Zay 70.83 72.34 ز

 Seen 100 100 س

 Sheen 91.66 97.87 ش

 Saad 91.66 97.87 ص

 Thaad 91.66 97.87 ض

 Tta 95.83 100 ط

 Thaa 87.5 95.74 ظ

 Aeen 75 82.97 ع

 Geen 79.16 87.23 غ

 Faa 54.16 55.31 ف

 Gaaf 70.83 78.72 ق

 Kaaf 95.83 100 ك

 Laam 16.66 19.14 ل

 Meem 95.83 100 و

 Noon 91.66 97.87 ن

 Ha 95.83 100 ه

 Wow 75 80.85 و

 Ya 95.83 100 ي

Average 85.11 89.89

Table 6.17 shows that there is a considerable increase in the accuracy when the

codebook size was increased. According to the proposed method for validation, the

 176

more the system is used, the greater the accuracy will be. The system with the latest

enhancement was applied on connected characters at three different positions in a

word. The results are shown in Table 6.18.

Table 6.18: Recognition accuracy of characters at different positions

Character
Accuracy of isolated

shape (%)

Accuracy of connected shape (%)

Beginning Middle End

 Alif 100 100 100 100 أ

 Baa 95.74 95.74 95.74 95.74 ب

 Taa 100 95.74 95.74 95.74 ت

 Thaa 100 100 100 100 ث

 Jeem 100 100 100 100 ج

 Haa 95.74 95.74 95.74 95.74 ح

 Kha 100 100 100 100 خ

 Daal 93.61 93.61 93.61 93.61 د

 Thaal 100 100 100 100 ذ

 Raa 68.08 68.08 68.08 68.08 ر

 Zay 72.34 72.34 72.34 72.34 ز

 Seen 100 95.74 95.74 95.74 س

 Sheen 97.87 97.87 97.87 97.87 ش

 Saad 97.87 97.87 97.87 97.87 ص

 Thaad 97.87 97.87 97.87 97.87 ض

 Tta 100 100 100 100 ط

 Thaa 95.74 95.74 95.74 95.74 ظ

 Aeen 82.97 82.97 82.97 82.97 ع

 Geen 87.23 87.23 87.23 87.23 غ

 Faa 55.31 55.31 55.31 55.31 ف

 Gaaf 78.72 78.72 78.72 78.72 ق

 Kaaf 100 100 100 100 ك

 Laam 19.14 78.72 78.72 31.91 ل

 Meem 100 100 100 100 و

 Noon 97.87 97.87 97.87 97.87 ن

 Ha 100 100 100 100 ه

 Wow 80.85 80.85 80.85 80.85 و

 Ya 100 78.72 78.72 78.72 ي

Average 89.89 90.95 90.95 89.28

Average of

averages

90.26

From Table 6.18, it can be seen that the average of the system accuracy increases

when the system is applied on connected characters. The main reason of this increase

 177

is contributed by the character Laam which showed a significant increase of accuracy

from 19.14% for the isolated case to 31.91-78.72% for the connected cases. This is

because this character has different shapes when connected which renders similarity

with other characters, especially with the character Kaaf as will be discussed in the

next section. On the other hand, it can be seen that a majority of the character have the

same accuracy level at the four different character positions. There are two reasons for

this. First, when the difference between the character shapes at different position is

only a small stroke connected to the right side with some characters as in (- ذ -د -ز -ر

-و ت -ب) or to the left side such as (ظ -ط). In these cases, the character shape looks

almost the same as in the isolation position. Second, when the character shape is

totally different but it is still unique such as character (هـ). The same accuracy

obtained in at different character positions also indicates the advantage of using the

DCV, which represent the image as a whole instead of using extracted features of the

characters because the features of some characters might change according to the

character position.

Figure 6.9: The increase of accuracy after applying the proposed methods

In summary, two methods have been tested to increase the accuracy level. The

first method uses additional rotated picture of each character image. As shown in

Figure 6.9, using this method the accuracy increased from 66.06 % to 85.11% which

represent an increase of 19.05%. In the second method, the number of samples used to

build the codebook was increased from 24 samples to 47 samples. Using this method,

the model accuracy increased from 85.11 % in the case of using 24 samples to

 178

89.89% when 47 samples were used, which represent an increase of 4.78 %. The

success of each method can be evaluated from the graph in Figure 6.9.

6.6 Analysis of Results

It is important to analyze the results obtained from the experimental investigations in

order to understand the reason for recognition failure, in the attempt to improve the

system performance. In other words, it should be clear why the system has been

successful to recognize some characters more than others. This brings to mind the

special nature of Arabic characters, where the characters, in many cases, share the

same primary shape and are differentiated only by the dots and the same character can

take totally different shape according to its position in the word. In general, the

similarity between different characters is the main reason for recognition failure. Even

though, the experiments have shown that the model has been successful to recognize

some similar characters such as (- ب ث - ت) while it was less successful to recognize

others such as (- ف - ق - ز ر). This shows that the model is more successful to

recognize characters where the main part of the character body is a straight stroke.

The system becomes confused with characters where the main part of the character

body is curved such as (ر - ز) or with those characters that have loops such as (ق -

 This happens only if there are two or more similar characters. Characters that .(ف

have unique shape are easier to be recognized even it has loops such as (ه (. However,

in many cases, the way the characters are written has been found as the cause for

recognition failure. Some writers are used to write some of the characters which make

them look similar to other characters. This kind of recognition failure is difficult to

avoid.

Although the segmentation stage should produce individual characters, but there

will be small strokes connected to the right side, i.e. end word position, or on the left

side, i.e. beginning of word position, or on both sides, i.e. middle of word position. To

analyze the system performance, the results of each sample recognition is shown in

Table 6.19, where the shaded cells indicate failure of recognition.

 179

Table 6.19: Full recognition results

Sample No Alif Baa Taa Tha Jeem Haa Kha

1 Alif Baa Taa Tha Jeem Haa Kha

2 Alif Baa Taa Tha Jeem Haa Kha

3 Alif Baa Taa Tha Jeem Haa Kha

4 Alif Baa Taa Tha Jeem Haa Kha

5 Alif Baa Taa Tha Jeem Haa Kha

6 Alif Baa Taa Tha Jeem Haa Kha

7 Alif Baa Taa Tha Jeem Haa Kha

8 Alif Baa Taa Tha Jeem Haa Kha

9 Alif Baa Taa Tha Jeem Haa Kha

10 Alif Baa Taa Tha Jeem Haa Kha

11 Alif Baa Taa Tha Jeem Haa Kha

12 Alif Baa Taa Tha Jeem Jeem Kha

13 Alif Baa Taa Tha Jeem Haa Kha

14 Alif Baa Taa Tha Jeem Haa Kha

15 Alif Baa Taa Tha Jeem Haa Kha

16 Alif Baa Taa Tha Jeem Haa Kha

17 Alif Baa Taa Tha Jeem Haa Kha

18 Alif Baa Taa Tha Jeem Haa Kha

19 Alif Baa Taa Tha Jeem Haa Kha

20 Alif Ra Taa Tha Jeem Haa Kha

21 Alif Baa Taa Tha Jeem Haa Kha

22 Alif Baa Taa Tha Jeem Haa Kha

23 Alif Baa Taa Tha Jeem Haa Kha

24 Alif Baa Taa Tha Jeem Haa Kha

25 Alif Baa Taa Tha Jeem Haa Kha

26 Alif Baa Taa Tha Jeem Haa Kha

27 Alif Baa Taa Tha Jeem Haa Kha

28 Alif Baa Taa Tha Jeem Jeem Kha

29 Alif Baa Taa Tha Jeem Haa Kha

30 Alif Baa Taa Tha Jeem Haa Kha

31 Alif Baa Taa Tha Jeem Haa Kha

32 Alif Baa Taa Tha Jeem Haa Kha

33 Alif Baa Taa Tha Jeem Haa Kha

34 Alif Baa Taa Tha Jeem Haa Kha

35 Alif Baa Taa Tha Jeem Haa Kha

36 Alif Baa Taa Tha Jeem Haa Kha

37 Alif Baa Taa Tha Jeem Haa Kha

38 Alif Baa Taa Tha Jeem Haa Kha

39 Alif Baa Taa Tha Jeem Haa Kha

40 Alif Baa Taa Tha Jeem Haa Kha

41 Alif Baa Taa Tha Jeem Haa Kha

42 Alif Baa Taa Tha Jeem Haa Kha

43 Alif Baa Taa Tha Jeem Haa Kha

44 Alif Baa Taa Tha Jeem Haa Kha

45 Alif Baa Taa Tha Jeem Haa Kha

46 Alif Baa Taa Tha Jeem Haa Kha

47 Alif Ra Taa Tha Jeem Haa Kha

Accuracy (%) 100 95.74 100 100 100 95.74 100

 180

Table 6.19 Cont’d: Full recognition result

Sample No Dal Thal Ra Zay Seen Sheen Saad

1 Dal Thal Ra Zay Seen Sheen Saad

2 Dal Thal Ra Zay Seen Sheen Saad

3 Dal Thal Ra Zay Seen Sheen Saad

4 Dal Thal Ra

Ra

Zay Seen Sheen Saad

5 Dal Thal Ra Zay Seen Sheen Saad

6 Dal Thal Zay Zay Seen Sheen Saad

7 Dal Thal Ra Zay Seen Sheen Saad

8 Dal Thal Ra Zay Seen Sheen Baa

9 Dal Thal Ra Zay Seen Sheen Saad

10 Dal Thal Zay Zay Seen Sheen Saad

11 Dal Thal Zay Zay Seen Sheen Saad

12 Dal Thal Zay Ra Seen Sheen Saad

13 Dal Thal Zay Ra Seen Sheen Saad

14 Dal Thal Ra Ra Seen Sheen Saad

15 Dal Thal Ra Zay Seen Sheen Saad

16 Dal Thal Ra Zay Seen Sheen Saad

17 Dal Thal Ra Ra Seen Sheen Saad

18 Dal Thal Ra .Zay Seen Sheen Saad

19 Dal Thal Dal Dal Seen Sheen Saad

20 Dal Thal Ra

Ra

Zay Seen Sheen Saad

21 Dal Thal Ra Zay Seen Sheen Saad

22 Dal Thal Ra Ra Seen Sheen Saad

23 Dal Thal Ra Zay Seen Sheen Saad

24 Dal Thal Ra Zay Seen Sheen Saad

25 Dal Thal Dal Zay Seen Sheen Saad

26 Wow Thal Dal Zay Seen Sheen Saad

27 Dal Thal Dal Zay Seen Sheen Saad

28 Dal Thal Dal Zay Seen Sheen Saad

29 Dal Thal Ra Ra Seen Faa Saad

30 Dal Thal Ra Zay Seen Sheen Saad

31 Dal Thal Ra Zay Seen Sheen Saad

32 Wow Thal Ra Dal Seen Sheen Saad

33 Dal Thal Zay Zay Seen Sheen Saad

34 Dal Thal Zay Zay Seen Sheen Saad

35 Dal Thal Zay Zay Seen Sheen Saad

36 Dal Thal Ra

Ra

Dal Seen Sheen Saad

37 Wow Thal Ra Zay Seen Sheen Saad

38 Dal Thal Ra Ra Seen Sheen Saad

39 Dal Thal Ra Zay Seen Sheen Saad

40 Dal Thal Dal Dal Seen Sheen Saad

41 Dal Thal Ra Zay Seen Sheen Saad

42 Dal Thal Ra Zay Seen Sheen Saad

43 Dal Thal Ra Zay Seen Sheen Saad

44 Dal Thal Zay Zay Seen Sheen Saad

45 Dal Thal Zay Zay Seen Sheen Saad

46 Dal Thal Ra Ra Seen Sheen Saad

47 Dal Thal Ra Ra Seen Sheen Saad

Accuracy (%) 93.61 100 93.61 72.34 100 97.87 97.87

 181

Table 6.19 Cont’d: Full recognition results

Sample No Thaad Dta Thaa Aeen Geen Faa Gaaf

1 Thaad Dta Thaa Aeen Geen Faa Gaaf

2 Thaad Dta Thaa Aeen Geen Faa Gaaf

3 Thaad Dta Thaa Aeen Geen Faa Gaaf

4 Thaad Dta Thaa Aeen Geen Wow Gaaf

5 Thaad Dta Thaa Aeen Geen Thal Gaaf

6 Thaad Dta Thaa Aeen Geen Faa Gaaf

7 Thaad Dta Thaa Aeen Geen Baa Gaaf

8 Seen Dta Thaa Aeen Geen Taa Gaaf

9 Thaad Dta Thaa Aeen Geen Faa Gaaf

10 Thaad Dta Thaa Aeen Geen Faa Gaaf

11 Thaad Dta Thaa Aeen Geen Baa Gaaf

12 Thaad Dta Thaa Aeen Kha Taa Gaaf

13 Thaad Dta Thaa Aeen Geen Ra Baa

14 Thaad Dta Thaa Aeen Geen Noon Taa

15 Thaad Dta Thaa Aeen Geen Faa Wow

16 Thaad Dta Thaa Aeen Geen Taa Gaaf

17 Thaad Dta Thaa Aeen Geen Faa Gaaf

18 Thaad Dta Thaa Aeen Geen Wow Baa

19 Thaad Dta Thaa Aeen Geen Faa Gaaf

20 Thaad Dta Dta Aeen Geen Faa Gaaf

21 Thaad Dta Thaa Aeen Geen Wow Gaaf

22 Thaad Dta Thaa Aeen Geen Faa Gaaf

23 Thaad Dta Thaa Aeen Aeen Tha Gaaf

24 Thaad Dta Thaa Aeen Geen Taa Gaaf

25 Thaad Dta Thaa Aeen Geen Faa Gaaf

26 Thaad Dta Thaa Aeen Geen Tha Gaaf

27 Thaad Dta Thaa Aeen Geen Wow Gaaf

28 Thaad Dta Thaa Aeen Geen Faa Wow

29 Thaad Dta Thaa Laam Geen Faa Wow

30 Thaad Dta Thaa Aeen Aeen Faa Gaaf

31 Thaad Dta Dta Geen Geen Faa Gaaf

32 Thaad Dta Thaa Aeen Geen Faa Gaaf

33 Thaad Dta Thaa Geen Geen Noon Gaaf

34 Thaad Dta Thaa Aeen Geen Faa Gaaf

35 Thaad Dta Thaa Aeen Geen Faa Gaaf

36 Thaad Dta Thaa Dal Kha Taa Wow

37 Thaad Dta Thaa Aeen Geen Faa Gaaf

38 Thaad Dta Thaa Laam Geen Thal Wow

39 Thaad Dta Thaa Aeen Geen Faa Gaaf

40 Thaad Dta Thaa Geen Laam Faa Gaaf

41 Thaad Dta Thaa Aeen Geen Faa Gaaf

42 Thaad Dta Thaa Aeen Geen Taa Wow

43 Thaad Dta Thaa Geen Geen Faa Gaaf

44 Thaad Dta Thaa Aeen Geen Faa Gaaf

45 Thaad Dta Thaa Aeen Geen Thal Wow

46 Thaad Dta Thaa Aeen Geen Faa Gaaf

47 Thaad Dta Thaa Aeen Aeen Wow Gaaf

Accuracy (%) 97.87 100 95.74 82.97 87.22 55.31 78.72

 182

Table 6.19 Cont’d: Full recognition results

Sample No Kaaf Laam Meem Noon Ha Wow Ya

1 Kaaf Kaaf Meem Noon Ha Wow Ya

2 Kaaf Kaaf Meem Noon Ha Wow Ya

3 Kaaf Kaaf Meem Noon Ha Wow Ya

4 Kaaf Kaaf Meem Noon Ha Wow Ya

5 Kaaf Laam Meem Noon Ha Wow Ya

6 Kaaf Kaaf Meem Noon Ha Wow Ya

7 Kaaf Kaaf Meem Noon Ha Wow Ya

8 Kaaf Kaaf Meem Noon Ha Wow Ya

9 Kaaf Kaaf Meem Noon Ha Wow Ya

10 Kaaf Laam Meem Noon Ha Wow Ya

11 Kaaf Kaaf Meem Noon Ha Wow Ya

12 Kaaf Kaaf Meem Noon Ha Wow Ya

13 Kaaf Kaaf Meem Noon Ha Ra Ya

14 Kaaf Kaaf Meem Noon Ha Wow Ya

15 Kaaf Kaaf Meem Noon Ha Ha Ya

16 Kaaf Laam Meem Noon Ha Wow Ya

17 Kaaf Kaaf Meem Noon Ha Wow Ya

18 Kaaf Kaaf Meem Noon Ha Wow Ya

19 Kaaf Kaaf Meem Noon Ha Zay Ya

20 Kaaf Kaaf Meem Noon Ha Wow Ya

21 Kaaf Kaaf Meem Noon Ha Wow Ya

22 Kaaf Kaaf Meem Wow Ha Wow Ya

23 Kaaf Kaaf Meem Noon Ha Wow Ya

24 Kaaf Laam Meem Noon Ha Wow Ya

25 Kaaf Laam Meem Noon Ha Wow Ya

26 Kaaf Kaaf Meem Noon Ha Wow Ya

27 Kaaf Kaaf Meem Noon Ha Wow Ya

28 Kaaf Kaaf Meem Noon Ha Wow Ya

29 Kaaf Kaaf Meem Noon Ha Wow Ya

30 Kaaf Kaaf Meem Noon Ha Wow Ya

31 Kaaf Kaaf Meem Noon Ha Wow Ya

32 Kaaf Kaaf Meem Noon Ha Wow Ya

33 Kaaf Kaaf Meem Noon Ha Wow Ya

34 Kaaf Laam Meem Noon Ha Wow Ya

35 Kaaf Kaaf Meem Noon Ha Zay Ya

36 Kaaf Kaaf Meem Noon Ha Wow Ya

37 Kaaf Kaaf Meem Noon Ha Zay Ya

38 Kaaf Laam Meem Noon Ha Wow Ya

39 Kaaf Kaaf Meem Noon Ha Wow Ya

40 Kaaf Laam Meem Noon Ha Wow Ya

41 Kaaf Kaaf Meem Noon Ha Wow Ya

42 Kaaf Kaaf Meem Noon Ha Zay Ya

43 Kaaf Kaaf Meem Noon Ha Dal Ya

44 Kaaf Laam Meem Noon Ha Wow Ya

45 Kaaf Kaaf Meem Noon Ha Dal Ya

46 Kaaf Kaaf Meem Noon Ha Wow Ya

47 Kaaf Kaaf Meem Noon Ha Ha Ya

Accuracy (%) 100 19.14 100 97.87 100 80.85 100

 183

Table 6.19 indicates recognition failure for each character. Two main reasons

have been found for the recognition failure. First, which happens to be in the majority

of cases, if characters share the same body shape or if there is some kind of similarity

between the body shape in both characters. From Table 6.19-b, the first sample of the

character Ra was wrongly recognized as Zay. The reason for this misidentification is

because both characters share the same body shape, and only a dot makes the

difference as shown in Figure 6.10.

Figure 6.10: First case of recognition failure

In fact, only specific samples of the character Ra were wrongly recognized as

Zay, i.e. when the character Ra was written as sloped stroke and not as a curved

stroke as it should be. Unlike the Ra samples, the majority of Zay samples were

correctly written as a curved stroke as shown in Figure 6.11. The representative of any

character will be closer to the majority, as it is calculated as the mean of the DCVs of

that character group.

a

b

Figure 6.11: The full data of character Ra (a) and character Zay (b)

Figure 6.11 shows that the shape of the representative of character Ra (a) is closer

to the sloped stroke shape, while that of the representative of character Zay (b) is

closer to the curved stroke shape. The second reason for recognition failure, even if

 184

there is no strong similarity between the shape of two characters, is that one character

was written in a shape so close to the shape of the other. For example, from Table

6.19, the character Faa, (sample 4) was wrongly recognized as Wow. When sample 4

of the character Faa was checked, it was found that the character was written in a way

that made it look like Wow, as shown in Figure 6.12.

Figure 6.12: An example of recognition failure

From Figure 6.12, the character Faa (c) was written in a shape quite similar to the

shape of character Wow (b) with a curved stroke instead of a vertical stroke as it

should be the character Faa (a). From Table 6.19, it can be noted that most recognition

failure occurred with character Lam where the recognition accuracy was only 19.14%.

The character Lam was recognized as Kaaf in 80.86% of the 47 samples. The reason

for that low accuracy is due to the body shape of both characters. As shown in Figure

6.13, both characters were written mostly in the same body shape. The difference

between them is that the character Kaaf has a zigzag stroke called (Hamzah) which

should be written above its main body as shown in Figure 6.13.

 ل

a

 ك

b

Figure 6.13: The correct shape of character s Lam (a) and Kaaf (b)

Figure 6.13 shows that in addition to the Hamzah, the vertical stroke in the

character Lam should be shorter and quite curved, while the vertical stroke in

character Kaaf should be longer and not curved. From the collected data, it was noted

 185

that most writers did not make that difference when the writing Lam and Kaaf as

shown in Figure 6.14.

a

b

Figure 6.14: Collected data for character Lam (a) and Kaaf (b)

Figure 6.14 shows that in many samples, the character lam was written with long

non-curved vertical stroke, which makes the character body, somehow, looks like the

body of Kaaf even if there is no Hamzah with it. However, the similarity between the

shape of the character Lam and the character Kaaf happens only when both are

written as isolated characters. When the characters are connected, especially in the

middle and at the end of a word, the shape of both characters will be different and the

similarity will be reduced as shown in Table 6.20.

Table 6.20: The characters Lam and Kaaf at different positions

Character Isolated shape
Connected shape

Beginning Middle End

Lam ـم ـهـ نـ ل

Kaaf ـك ـكـ كـ ك

6.7 Time Consumption Estimation

As mentioned in Section 2.6, the time consumed in the recognition process is a

significant factor in the evaluation of the system, especially if the system is designed

for applications where the speed of delivery is an important factor such as mail

 186

sorting. In the reviewed works, it was noted that most of the researchers did not

include the consumed time in their test results.

In this section, time consumption for each operation in the proposed system is

estimated. The total estimated time is the time needed to recognize one character.

Since the stages in the proposed system are overlapping, the time consumed by each

operation is estimated separately. Only operations that are achieved by separate

algorithms will be considered in this estimation. Operations that are included within

other operations, such as binarization, or operations that are achieved by algorithms

within other algorithms, such as thinning will not be considered in this estimation.

Table 6.21 shows the estimated time consumption by each stage.

Table 6.21: Consumed time estimation

Operation Consumed time in second Operation

share%

1
Line extraction 18 sec to extract 15 lines.

1.2 sec to extract 1 line.
35.19

2 Line skew detection

and correction

0.12 sec to detect and correct 1 line

skew.
3.51

3

Word extraction 3.6 sec to extract 14 connected

components (word, sub-words and

some characters).

0.25 sec to extract 1 connected

component.

7.33

4
Slant word detection

and correction
1.06 sec to detect and correct 1

word slant.
31.08

5
Characters

segmentation
1.18 sec to segment 5 characters.

0.23 sec to segment 1 character.
6.74

6

Overlapping

characters

segmentation

0.73 sec to segment 2 characters.

0.36 sec to segment 1 character.
10.55

7 Character recognition 8.93 sec to recognize 47 characters.

0.19 sec to recognize 1 character.
5.57

Total

estimated

consuming

time

Maximum 3.41

100

Minimum 2.23

 187

In Table 6.21 the consumed time to recognize one character falls in the range

between 2.23 sec as the best case, where the system extracted non-skewed line,

segmented non-slanted words, and then recognizes non-overlapping characters, and

3.41 sec as the worst case, where the system extracted skewed line, segmented slanted

words, and then recognize overlapping characters. Table 6.21 shows that the longest

operation in the proposed system is line extraction as the algorithm will be dealing

with the whole text image. Figure 6.15 shows each operation share in the whole

consumed time.

Figure 6.15: Share of operations in consumed time

6.8 System Speed Evaluation

In order to evaluate the system speed, it was compared with the reviewed systems.

Unfortunately, the recognition speed was not specified in most of the published works

in off-line Arabic handwriting recognition. Furthermore, according to the reviewed

works, there is no published time estimation for full Arabic handwriting system.

Instead, the system speed was estimated depending on the classifier speed without

specifying the training time, since the training stage is done separately. Since most of

the current off-line Arabic handwriting recognition systems are adopting features

extraction and classification approaches, such as ANN, HMM or other methods, the

 188

training time is much longer than recognition time. In some cases, while the

recognition time was 0.2 sec for one character, the training time was 68.3 sec for one

character [76].

In ICDAR2007 and ICDAR2009 competitions, time consumption was adopted to

evaluate the participating systems. In ICDAR2007, the system with the highest

recognition result (37.94-94.58%) had a speed of 0.109 - 0.125 sec/image, while the

fastest system 0.034-0.041 sec/image had an accuracy of 41.32-83.70%. This brings

to mind the trade-off between accuracy and time consumption as discussed earlier in

Section 2.7. The slowest system had a speed of 15.8-10.8 sec/image with accuracy of

49.91-85.69%.

In ICDAR2009, the system with the highest recognition result (78.83-99.94%)

had a speed of 0.12-0.46 sec/image, which is the highest speed among the

participating systems. The slowest system had a speed of 17.84-18.64 sec/image with

an accuracy of 71.33-99.79%. However, competed systems in ICDAR2007 and

ICDAR2009 used IFN/ENIT database which contains only separated town names.

Thus, operations such as lines extraction and word extraction, which take a long time,

are not required. This should be considered when these competitions results are

compared with the proposed system result.

In the proposed system, the recognition time for one character including training

time is 0.19 second. This time is acceptable as the system re-calculates the mean of

each DCV group and the Euclidian distance for each character every time the system

is being used. The mean of each DCV group and the Euclidian distance for each

character should be re-calculated because they are subject to change as the validation

part might add new character images each time the system is used.

To estimate the consuming time for one text, it was found that each line in the text

dataset contains 40 characters as an average and each text contains 15 lines as

average. Thus, the time needed for the whole text is 1.9 minute.

 189

6.9 Results and Discussion

Arabic handwriting recognition is a challenging problem. The difficulties in Arabic

handwriting recognition come from two sources. The first source is the nature of

Arabic characters itself, where characters are written in different styles and the

majority of characters have different shapes according to their position in the word,

which means the need to deal with a large number of different shapes. This leads to

dealing with a large number of dataset, which consequently means a long time is

needed for the system to recognize a character. On the other hand, the similarity

between some characters that share the same primary body shape, where only dots

make the difference between them, makes recognition task more difficult. This leads

to increase the possibility of confusion between those similar characters, which means

recognition failure and low accuracy. The second source of difficulty is due to the fact

that the majority of people do not write the characters in a proper way according to

the Arabic handwriting rules. The problem becomes worse when they do not even

stick with any particular style when they write manually. This makes the common

Arabic handwriting a mixture of several styles with non-proper character shapes

which leads to reducing the recognition accuracy.

It is seems impossible to correct people mistakes in their handwriting. Thus, the

only way to increase the recognition accuracy is to follow their handwriting style

regardless of whether the style is correct or not, since the aim of OCR is to recognize

words either written manually or typed. In our opinion, the best way to achieve that is

to emulate the human mechanism of object and pattern recognition.

Although much is still unknown about how human brain deals with information,

some theories tried to explain how human can recognize images. To recognize an

image, the human brain, or even animal brain must have pre-identified saved image,

or representation of that image. This pre-identified saved image might be directly

obtained by seeing that image before or by having some kind of discretion which

enables the brain to build that image by fantasy. On the other hand, the capacity of the

brain of abstraction enables us to recognize different objects as long as they belong to

the same group of objective because of common points.

 190

According to some researchers [125,126], the images are saved in human

memory, after being encoded in the optic nerve, in different abstraction levels where

similar images are grouped together as clusters. The levels structure is built based on

similarity measures, not feature measures. When we see a new image, it will be

compared with all images in the memory. If there is any stored image very similar to

the new image then the image is recognized, otherwise it is considered as a strange

one and will be separately saved.

That means, for human handwriting recognition, all characters image are being

saved in our memory; mostly during childhood learning stage. When we see a

character written in a new shape, we first might not be able to recognize it, but once

we know which character this image represents, this image will be saved and it will be

easier to be recognized when we see it again. This might explain the human ability of

handwriting recognition that exceeds current OCR systems.

A recognition model that emulates the human recognition mechanism is proposed

as a part of OCR system. In the proposed model, the system will deal with the

character image as a whole instead of extracting features. Then, the image will be

decomposed into a vector which can be saved and used for comparing process. For

each character, a group of vectors will be saved during the training process. Each

group will have a representative, which is the mean of the vectors in that group. To

emulate the human ability to save new shapes for the same character image, optional

validation part is provided in the model that enables the user to store recognized

characters and to store the characters that the system fails to recognize, as new shapes

of character image which will enable the system to recognize them in future.

The validation part makes the system more interactive and trainable. As the

system is used, more shapes will be added to the codebook. The result of this is the

representative of each group will be changed according to the character of shapes as

written by the majority of people regardless whether the shape conforms to the rules

or proper way of writing that character.

 191

Currently, many researches have been conducted on Arabic handwriting

recognition. Most of these researches presented some methods and techniques for

specific stage of OCR system, and only few researches have presented a full OCR

system. In this thesis, a full OCR system that that aims to recognize every single

character of a handwritten text on paper is presented. When dealing with a system as a

whole, it is important to combine different operations that would ensure each different

steps of the whole process can be achieved successfully. In most of the reviewed

works, it was found that the OCR stages were arranged sequentially, as preprocessing,

segmentation, recognition, giving the impression that they occur sequentially. In fact,

the stages overlap one another. For instance, as the first operation, the step that should

be accomplished is to extract line from the text image with a segmentation operation.

Then, the line is checked to detect the presence of a skew line and to correct it

accordingly, which is a preprocessing operation.

Many researches and even competitions used IFN/ENIT database consisting of

Arabic words (i.e. Tunisian town). This limits the system ability to deal only with

words, and not with full text image. In this research, the primary input is a full

handwritten text on A4 paper which makes the system capable to deal with any

handwritten input.

The proposed system contains three stages: preprocessing stage, segmentation

stage and recognition stage. The preprocessing stage includes several operations

aiming to prepare the text, line, word, or character image to be processed by another

operation. Some operation are achieved by separate proposed algorithms such as

page, line and word skew correction and word slant correction. Other operations are

achieved within the previous algorithms such as thinning and binarization. Radon

transform is used for skew and slant correction.

The segmentation stage includes three kinds of operations: line extraction, line-to

-word segmentation and word-to-characters segmentation. For line extraction, Hough

transform is used due to two factors. First, the main advantage of using the Hough

transform is that the pixels lying on one line do not need all to be contiguous, which is

necessary to detect lines with short breaks in them due to noise that can be expected in

 192

the case of handwritten text lines. Second, the Hough transform has been chosen

earlier as a method for slant correction in the preprocessing stage.

For line-to-words segmentation and word-to-characters segmentation, the same

concept is adopted, where the mathematical representation of the line/word binary

image as a two-dimensional array is used. In this array, a column with sum of zero

indicates a space that can be used as a point to segment a line into word, sub-word and

isolated characters. On the other hand, a column with sum of one indicates a vertical

stroke, which can be used as a point to segment a word into characters. The use of this

method enables the system to obtain some segmented characters even before word-to-

characters segmentation.

One of the biggest challenges in Arabic word segmentation is the overlapping

characters. It was found that overlapping characters in Arabic can be classified into

three classes: non-connected overlapping characters, connected overlapping

characters and the special case of Lamalif. For non-connected overlapping characters,

a technique that labels each character to be segmented is proposed. For connected

overlapping characters, an algorithm that uses the mathematical representation of the

overlapping image is proposed. For the special case of Lamalif, where, unlike other

cases, two characters are overlapping, the addition of these two overlapping character

s to the system dataset is proposed.

The final stage contains the proposed model for recognition where decomposition

process is used to convert a character image into a coefficient vector. The

decomposition is processed by Fast Wavelet Transform. The model parameters such

as type of filter, decomposition level and DCV size are selected experimentally.

This proposed OCR system contains 12 algorithms to achieve different kind of

tasks. Among the 12 algorithms, three algorithms were modified from the work of

previous researchers while nine were developed specifically for this system. The first

modified algorithm used for thinning was modified from Zhang and Wang [98], while

the second and third modified algorithms used to generate wavelet decomposition and

reconstruction filters were modified from Gonzalez et al. [147].

 193

A comparison with the latest works on Arabic handwriting was made to evaluate

the performance of the proposed system. For a fair comparison, only systems

designed for individual characters were considered. Systems designed for words or

numbers were excluded. The comparison is shown in Table 6.22.

Table 6.22: A comparison between the proposed system and some latest works on

Arabic handwriting recognition

Author name Technique Accuracy

Amin.

)2001(. [71].

Used Freeman code representation to

detect structural features including open

curves in several directions from the

skeleton of each character, then,

determined the relationships with

Inductive Logic Programming (ILP).

86.65% of 10

characters written

by different

writers.

Haraty and

Ghaddar.

)2003(. [70].

Used a skeleton representation and

structural and quantitative features feed

two neural networks classifier.

73% of 2,132

characters.

Pechwitz and

Maärgner.

)2003(.[72].

Used 160 semi-continuous HMMs

representing the characters or shapes,

then, the models were combined into a

word model.

89 % using the

IFN/ENIT

database.

Khorsheed.

)2003(.[73].

Used structural features with HMM

recognizer constructed from 32 individual

character HMMs, each with unrestricted

jump margin.

87 % of 405

character samples

of a single font.

El-Hajj et al.

)2005).[76].

Used features based on upper and lower

baselines, within the context of frame-

based features with an HMM recognizer.

86.40% using

IFN/ENIT

database.

Our system

(2010)

Used FWT to decompose the character

image into a vector that is used to

recognize the character

90.26% of 5264

characters.

Table 6.22 shows that the proposed system has been able to achieve a high level

of accuracy compared to the other systems. Unfortunately, most of the researchers did

not report the time consumed for the recognition process.

 194

6.10 Summary

In this chapter, our main aim is to demonstrate the theory of our recognition model,

i.e. character image can be represented as a unique vector that can be used to

recognize the character image itself. Next, we aim to test the different methods and

techniques that have been proposed for each stage of the recognition system and to

present their performance.

.

For the preprocessing stage, the proposed algorithm for skew correction has been

found suitable for page, line and word skew correction after changing some

parameters for each different case as the concept of skew correction using this method

is the same for all three cases. The method has been successful to correct all the tested

samples. For slant detection and correction, the proposed method was successful to

detect 83.33% and corrected 86.66% of the tested samples.

For segmentation stage, four different algorithms have been proposed for different

segmentation cases. For line extraction, the proposed algorithm successfully extracted

99.15% of lines in the tested samples. For word extraction, the proposed algorithm

successfully extracted 96.47% of words in the tested line samples. For character

segmentation, two algorithms have been proposed; one for word-to-characters

segmentation and the second was specifically designed for overlapping characters.

The first algorithm was successful to segment 91.78% of characters in the tested word

samples, while the second algorithm achieved 77.01% segmentation of overlapping

characters in the tested samples.

For the recognition stage, the model was tested with each factor that affects the

recognition accuracy namely the type of filter, the decomposition level and the DCV

size. The best set of parameters that has enabled the system to achieve a maximum

level of accuracy is Jpeg9.7 filter, one level of decomposition and DCV with a

maximum of 2115 elements to ensure the DCV will provide the maximum amount of

information that will lead to maximum level of uniqueness.

A further analysis of the model parameters enabled us to propose two methods to

increase the model accuracy. The first method involves increasing the DCV size by

 195

using additional rotated picture for each character image which had increased the

accuracy level from 66.06% when only one picture was used to 85.11% when

additional picture was used. The second method involves improving the

representative of each group by increasing the number of samples used to build the

codebook. In this work, we had used 47 samples instead of 24 samples, which had

increased the model accuracy from 85.11 % in case of using 24 samples to 89.89%

when 47 samples were used.

The results from the recognition stage were also analyzed to determine the reasons

for failure. Similarities between some characters and writer’s failure to write some

characters in their proper shape have been identified as the two major causes for

failing to recognize the characters.

 196

CHAPTER 7

CONCLUSION AND FURTHER WORKS

7.1 Conclusion

Character recognition is one of the active research areas of pattern recognition. The

challenge in this field is to make the computer able to recognize the character shapes.

Character recognition systems can be used in a large variety of banking, business and

data entry applications such as check verification and office automation. It is also

used in other practical applications such as license plate recognition.

Recognition of handwritten characters is more challenging than typewritten

characters because the computer in this case is dealing with characters written by

different writers with variation in shape and size, orientation, fragmentation and

fusions. The character recognition accuracy is affected by the own nature of the

alphabet in different languages. For Arabic characters, the recognition task is more

complicated since the characters are written cursively and dots are used to

differentiate between many characters which have the same shape.

In most of the reviewed Arabic recognition system, HMM and ANN are the most

widely used classifiers. Initially, they were be used as a pure, simple model, then, as

multi-layers or hybrid. The HMM and ANN are still used in the latest designed

systems even with the usage of other classifiers such as: Beam search algorithm and

Support Vector Machines classifier.

However, HMM and ANNs suffer from the trade-off between accuracy and time

consumption. In order to get high accuracy, many features are needed to provide

enough information, which requires a complex model that needs longer time. In the

 198

case of using a simple model, the time will be reduced but the accuracy will be

reduced as well.

In this research, we have presented a non-traditional model that is able to

accomplish the recognition task with a high accuracy and possibly consume less time.

The proposed model emulates the human mechanism for image recognition as we

believe that it is the easier way to reach the human ability in image recognition, which

currently exceeds the computer ability.

Unlike most of the published work in Arabic offline handwriting recognition

systems, the proposed system is designed to be a consummate system which contains

all necessary stages such as preprocessing and segmentation which enable it to deal

with all possible cases of Arabic handwritten text. The proposed system contains three

stages as follows:

1- In preprocessing stage, a fast algorithm is proposed for word, line and page

skew detection and correction. Then, a three-step technique is proposed for

slant correction. Finally, a modified algorithm is proposed for thinning. Some

Matlab Toolbox functions are used for some preprocessing operations such as

binarization, and smoothing.

2- In segmentation stage, a full set of segmentations that includes the

segmentation of page into lines, then, line to words, and, finally, word to

character is proposed. This makes the system able to receive any form of

handwriting input.

3- In the recognition stage, the model has been designed using the same concept

of human mechanism to code and save images, and the image to be recognized

will be compared with the saved images. On the other hand, our proposed

model has been designed to be able to interact with current and common ways

that people used to write characters by considering these common ways

instead of relying on handwriting rules which are not commonly used.

 199

The experimental results have shown that the proposed system is able to achieve

an average of 90.26% of accuracy. The system needs only 3.41 seconds a most to

recognize a single character in a text of 15 lines where each line has 10 words on

average. This time is inclusive pre-procession and segmentation operations, as well as

the computing time of the recognizer, keeping in mind that no training time is needed.

With the accomplishment of this research, we hope we have added an important

contribution to the field of Arabic handwriting recognition that can be a start for

further improvements and development

7.2 Further Works

Due to time constraints, we did not have the opportunity to address some issues that

we think may provide more enhancements for the proposed system. Here, we outline

some further works that we believe can contribute toward improving the system

performance:

1. Adding some techniques to enable the system to deal with pages that might

have tables, images or other elements since the proposed system has been

designed to deal with pages containing only handwritten text.

2. Adding more preprocessing operations to enable the system to deal with

historical documents that usually have a lot of noise and bad quality

background. This might require some modification to the dataset by adding

new images to reflect the old way of writing Arabic characters.

3. Adding another algorithm to deal with three overlapping characters as the

proposed algorithm has been designed for two overlapping characters only.

4. The proposed system will be tested with other languages as well as other

patterns recognition such as fingerprint, iris, and face recognition.

 200

REFERENCES

[1] M. S. Khorsheed and W. F. Clocksin, “Multi-Font Arabic word recognition Using

spectral features,” Proc. 15th Int. Conf. Pattern Recognition, 2000, Vol.4, pp.543-

546.

[2] Wikipedia, the free encyclopedia. (2010, May 10). Handwriting recognition.

Available: http://en.wikipedia.org/wiki/Handwriting_recognition.

[3] K. M. bin Abd and S. M. Hashim, “Handwriting identification: a direction

Review,” in 2009 IEEE International Conf. on Signal and Image Processing

Applications, pp. 459.

[4] Wikipedia, the free encyclopedia. (2010, May 5). Computer vision. Available:

Available: http://en.wikipedia.org/wiki/Computer_vision

[5] C.Y. Suen. “Future Challenges in Handwriting and Computer Applications”

Proc.3rd International Symposium on Handwriting and Computer Applications,

Montreal, retrieved 2008-10-03

[6] S. Mori, C.Y. Suen and K. Yamamoto, “Historical review of OCR research and

development,” Proc. IEEE. vol.80. no. 7.JULY 1992, pp.1030.

[7] V. Govindan, and A. P. Shivaprasad, “Character Recognition-A Review,” J.

Pattern Recognition.1999,vol.23, pp. 671-683.

[8] S.A. Mohamoud and A.S. Mahmoud, “The use of Hartley transform in OCR with

application to printed Arabic character recognition,” Springer-verlag 2008, pp.2.

[9] Wikipedia, the free encyclopedia. (2010, May 5). History of the alphabet.

Available: http://en.wikipedia.org/wiki/History_of_the_alphabet

[10] K. Jumari and M. Ali, “A survey and comparative evaluation of selected off-

line Arabic handwriting character recognition systems,” J. Teknologi 36(E) Jun

2002 Universiti Teknologi Malaysia, pp.1-18.

[11] T. R. Jordan, K.B. Paterson and A.A Almabruk “Revealing the superior

perceptibility of words in Arabic,” Perception 2010, vol.39, pp.426-42.

[12] P. Wilson “Philology, The alphabet of tree,” TUG boat, vol. 26 2005, no.3,

pp.199.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://users.erols.com/rwservices/pens/biblio88.html#Suen88

 201

[13] S. D. Abdulhab, “Roots of modern Arabic script: from Musnad to Jazm,” j.

The New York based quarterly Dahesh Voice 2009, pp.50-51.

[14] M. H. Shirali and M. Shirali, “Arabic/Persian text steganography utilizing

similar letters with different codes,” J. The Arabian Journal for Science and

Engineering, vol.35, April 2010, no.1B, pp.213.

[15] A. F.L. Beeston.(2006) The Arabic Language Today. Washington, D.C.

Georgetown University Press. Available:

http://hss.fullerton.edu/linguistics/cln/pdf/Kaye-Beeston.pdf

[16] M. A. Ali, “Offline Arabic handwritten character recognition using learning

vector quantization network” Universiti Kebangsaan Malaysia, 2005,

unpublished.

[17] Wikipedia, the free encyclopedia. (2010, March 5). Islamic calligraphy.

Available: http://en.wikipedia.org/wiki/Islamic_calligraphy

[18] H. kakayi. (2010). The art of oriental calligraphy. Available:

http://kakayicalligraphy.webs.com/thuluthscripts.htm

[19] Indiana University. Near eastern languages and cultures. Arabic language.

(2010, March 7).Origin of Arabic script. Available :

http://www.indiana.edu/~arabic/arabic_script.htm.

[20] C.C. Tappert, C.Y. Suen and T. Wakahara, “On-line handwriting recognition -

a survey,” Int. Conf. Multimedia Computing and Systems. ICMCS ‘09,2009

pp.1123.

[21] Amin, “Off line Arabic character recognition: a survey,” Proc. 4th Int. Conf.

on Document Analysis and Recognition, 1997,

vol.2, pp.596 – 599.

[22] Ch. C. TAPPERT, Ch .Y. SUEN and T. Wakahara, “The state of the art in on-

line handwriting recognition,” IEEE Trans. pattern analysis and machine

intelligence, vol.12, no.8, August, 1990, pp.787.

[23] R. Plamindon and S. N. Srihari, “On-line and offline handwriting recognition:

a comprehensive survey,” IEEE Trans. pattern analysis machine intelligence, vol.

22, no.1, January, 2010, pp.63.

[24] B. Al-Badr, S. A. Mahmoud, “Survey and Bibliography of Arabic optical text

recognition,” j. Elsevier Science, 1995 vol.41, pp.49 – 77.

http://hss.fullerton.edu/linguistics/cln/pdf/Kaye-Beeston.pdf
http://www.indiana.edu/index.shtml
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5235870

 202

[25] J. Huading, L. Binjie and W. Li, “A new binarization algorithm based on

maximum gradient of histogram,” Proc. 4th Int. Conf. Image and Graphics 2007,

pp. 368-371.

[26] N. nikolaos and V. dimitrios, “A binarization algorithm for historical

manuscripts,” 12th WSEAS Int. Conf. communications, July 2008, pp41.

[27] J.P. Thiran and B. Macq, “Morphological feature extraction for the

classification of digital images of cancerous tissues,” IEEE Trans. biomedical

engineering, 1996, vol. 43, no.10, pp.1011.

[28] L. Lam., S. W. Lee, and Ch. Y. Suen, “Thinning methodologies – A

comprehensive survey,” IEEE Trans. pattern analysis and machine intelligence,

1992, vol.14, no.9, pp869.

[29] Y. S. Kim, W. S. Choi, and S. W. Kim, “High-speed thinning processor for

character recognition system,” IEEE Trans. Consumer Electronics. 1992, vol.38,

no.4, pp.762.

[30] S. A. Mahmoud, I. Abuhaiba, and R. J. Green, “Skeletonization of Arabic

characters using clustering based skeletonization algorithm,” j. Pattern

Recognition, 1991, vol.24, no.5, pp.453-464.

[31] M. Ahmad and R. Ward, “A rotation invariant rule-based thinning algorithm

for character recognition,” IEEE Trans. pattern analysis and machine intelligence,

2002, vol.24, no.12, pp.167.

[32] X. Zhu and S. Zhang, “A Shape-adaptive thinning method for binary images,”

J. IEEE computer society, Int. Conf. Cyber worlds 2008, Dio. 10.1109/CW,

pp.721.

[33] G. Srikantan, D. Lee, J. T. Favata, “Comparison of normalization methods for

character recognition,” Proc. 3rd Int. Conf. Document Analysis and Recognition,

1995. vol.2, pp.719.

[34] T. Wakahara, Y. Kimura and M. Sano, “Handwritten Japanese character

recognition using adaptive normalization by global affine transformation,” Proc.

6th Int. Conf. Document Analysis and Recognition, 2001, pp.424-228.

[35] S. S. Maddouri, H. Amiri, and A. Belaid, “Local normalization towards global

recognition of Arabic handwritten script,” 4th Int. Workshop on Document

Analysis Systems - DAS'2000 (2000), pp.1-13.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4755
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4755
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569

 203

[36] R. M. Bozinovic and S. N. Srihari, “Off-line cursive script word recognition,”

IEEE Trans. pattern analysis and machine intelligence, 1989, vol.11, no.1, pp.68.

[37] Y. Ding, F. Kimura, Y. Miyake, and M. Shridhar, “Evaluation and

improvement of slant estimation for handwritten words,” Proc. 5th int. conf.

document analysis and recognition, 1999. pp.753.

[38] R. Bertolami, S. Uchida, M. Zimmermann, and H. Bunke, “Non-uniform slant

correction for handwritten text line recognition,” Proc. 9th Int. Conf. Document

Analysis and Recognition (ICDAR 2007), pp18-22.

[39] W. Chin, A. Harvey, and A. Jennings, “Skew detection in handwritten scripts”

IEEE TENCON - Speech and image technologies for computing and

telecommunications 1997, pp.319.

[40] Y. Li, Y. Zheng, and D. Doermann, “Detecting text lines in handwritten

documents,” Proc. 18th Int. Conf. Pattern Recognition (ICPR'06), 2006. vol.2,

pp1030-1033.

[41] S. Lu, Ch. L. Tan, “Automatic document orientation detection and

categorization through document vectorization,” Proc. 14th Annu. ACM int. conf.

Multimedia, 2006. pp.113-116.

[42] AL-Shatnawi and K. Omar, “A comparative study between methods of Arabic

baseline detection,” Int. Conf. on Electrical Engineering and Informatics ICEEI

‘09, 2009. vol.01, pp.73-77.

[43] M. F. Tolba, and E. Shaddad, “On the automatic reading of printed Arabic

characters,” Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, 1990 pp.

496-498.

[44] K. M. Jambi, “An experimental approach for recognizing handwriting Arabic

words,” 4th Saudi engineering conference JKAU: sci., vol.7, 1995, pp.119-130.

[45] R. G. Casey and E. Lecolinet, “A survey of methods and strategies in

character segmentation,” IEEE Trans. pattern analysis and machine intelligence,

vol.18, no. 7, July 1996, pp.690-706.

[46] W. Wang, A. Brakensiek, A. Kosmala, and G. Rigoll, “Multi-branch and two-

pass HMM modeling approaches for off-line cursive handwriting recognition,”

Proc. 6th Int. Conf. Document Analysis and Recognition, 2001, pp.231-235.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569

 204

[47] U. V. Marti and H. Bunke, “Text line segmentation and word recognition in a

system for general writer independent handwriting recognition,” Proc. 6th Int.

Conf. Document Analysis and Recognition, 2001, pp.159-163.

[48] Y. H. Tay, M. Khalid, R. Yusof, and C. Viard-Gaudin, “Offline cursive

handwriting recognition system based on hybrid markov model and neural

networks,” IEEE Int. Symp. Computational Intelligence in Robotics and

Automation. July 2003, vol.3, pp.1190-1195.

[49] N. Tripathy and U. Pal, “Handwriting segmentation of unconstrained Oriya

text,” Proc. 9th Int. Workshop on Frontiers in Handwriting Recognition (IWFHR-

9 2004), pp.306-311.

[50] J. Sas, U. Markowska-Kaczmar, “Semi-supervised handwritten word

segmentation using character samples similarity maximization and evolutionary

algorithm,” Proc. 6th Int. Conf. on Computer Information Systems and Industrial

Management Applications (CISIM'07), 2007. pp.316-321.

[51] H. Lee and B. Verma, “Over-segmentation and validation strategy for offline

cursive handwriting recognition,” Proc. Int. Conf. Intelligent Sensors, Sensor

Networks and Information ISSNIP 2008, pp.91-96.

[52] H. Lee and B. Verma, “Binary segmentation with neural validation for cursive

handwriting recognition,” Proc. Int. Joint Conf Neural Networks 2009, pp.1730-

1735.

[53] A. Kundu, T. Hines, J. Phillips, B. D. Huyck and L. C. Guilder, “Arabic

Handwriting recognition using variable duration HMM,” Proc. 9th Int. Conf. on

Document Analysis and Recognition ICDAR, 2007, pp644-648.

[54] T. Sari, L. Souici and M. Sellami, “Off-line handwritten Arabic character

segmentation algorithm: ACSA,” Proc. 8hth Int. Workshop on Frontiers in

Handwriting Recognition (IWFHR’02), 2002. pp452-457.

[55] L. Lorigo, V. Govindaraju, “Segmentation and pre-recognition of Arabic

handwriting,” Proc. 8ht Int. Conf. Document Analysis and Recognition

ICDAR’05, 2005. vol.2, pp.605-609.

[56] P. Natarajan, K. Subramanian, A. Bhardwaj, and R Prasad, “Stochastic

segment modeling for offline handwriting recognition,” Proc. 10th Int. Conf.

Document Analysis and Recognition ICDAR’09, 2009. pp.971-975.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569

 205

[57] S. Wshah, Z. Shi and V. Govindaraju, “Segmentation of Arabic handwriting

based on both contour and skeleton segmentation,” Proc. 10th Int. Conf.

Document Analysis and Recognition ICDAR’09, 2009. pp.793-797.

[58] N. Jusoh, J. M. Zain, N. N. Ismail, T. A. Abdkadir, “Comparison between

techniques in feature extraction,” Proc. Int. Conf. Electrical Engineering and

Informatics ISBN, 2007. pp.188-190.

[59] D. Trier, A. K. Jain and T. Taxt, “Feature extraction methods for character

recognition- a survey,” J. Pattern Recognition, 1996, vol. 29, no.4, pp.641-662.

[60] S. N. Srihari, A. Shekhawat and S. W. Lam, “Optical character recognition

(OCR)” J. Encyclopaedia of Computer Science, 4th edition 2003, pp.1326-1333.

[61] V. Margner, M. Pechwitz, and H. El Abed, “ICDAR 2005 Arabic handwriting

recognition competition,” Proc. 8ht Int. Conf. Document Analysis and

Recognition ICDAR’05 ,vol.1, pp.70-74.

[62] V. Margner, M. Pechwitz, and H. El Abed, “ICDAR 2007 - Arabic

handwriting recognition competition,” Proc. 9ht Int. Conf. Document Analysis

and Recognition ICDAR’07, vol.2 pp. 1274 – 1278.

[63] V Margner, H. El Abed, “ICDAR 2009 Arabic handwriting recognition

competition,” Proc. 10ht Int. Conf. Document Analysis and Recognition

ICDAR’09, pp1383-1387.

[64] M. S. Khorsheed, “Off-line Arabic character recognition – A Review,” J.

Pattern Analysis and Applications, 2002, vol.5, no.1, pp. 31–45.

[65] H. El Abed and V. Margner, “Base de données et compétitions - outils de

développement et d’evaluation de systèmes de reconnaissance de mots manuscrits

Arabes,” Actes du dixième Colloque International Francophone sur l’Écrit et le

Document, 2008. pp.103-106.

[66] M. S. Khorsheed and W. F. Clocksin, “Multi-Font Arabic word recognition

Using spectral features,” Proc. 15th Int. Conf. Pattern Recognition, 2000, Vol.4,

pp.543-546.

[67] L. M. Lorigo, and V. Govindaraju, “Offline Arabic handwriting recognition: a

survey,” IEEE Trans. pattern analysis and machine intelligence, vol.28, no.5,

May 2006, pp.712-724.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237

 206

[68] H. Othman and O. K. Aisha, “Handwritten Arabic word recognition: a review

of common approaches,” Proc. of the Int. Conf. Computer and Communication

Engineering ICCCE2008, pp.801-805.

[69] M. Al-shatnawi and K. Omar, “Methods of Arabic language baseline detection

– the state of art,” ARISER, 2008, vol.4 no.4, pp.185-193.

[70] H. Almuallim and S Yamaguchi, “A method of recognition of Arabic cursive

Handwriting,” IEEE Trans. pattern analysis and machine intelligence, vol. PAMI-

9, 1987. no.5, pp.715-722.

[71] H. AI-Yousefi and S. S. Udpa, “Recognition of Arabic characters,” IEEE

Trans. pattern analysis and machine intelligence. 1992. vol.14, no.8, pp.853-857.

[72] H. Goraine, M. Usher, and S. AI-Emami, “Off-Line Arabic character

recognition,” J. IEEE Computer Society, 1992, vol.25, pp.71-74.

[73] M.M.M. Fahmy and S. Al Ali, “Automatic recognition of handwritten Arabic

characters using their geometrical features,” Studies in Informatics and Control J.,

vol. 10, 2001.

[74] M. Dehghan, K. Faez, M. Ahmadi, and M. Shridhar, “Handwritten Farsi

(Arabic) word recognition: a holistic approach using discrete HMM,” J. Pattern

Recognition- Elsevier Science Ltd., 2001, pp.1057-1065.

[75] S. S. Maddouri, H. Amiri, A. Belaïd and Ch. Choisy, “Combination of local

and global vision modeling for Arabic handwritten words recognition,” Proc. 8hth

inter. workshop on frontiers in handwriting Recognition IWFHR’02, 2002.

pp.128-135.

[76] R. Haraty and C. Ghaddar, “Neuro-classification for handwritten Arabic text,”

International Conference on ACS/IEEE 2003, pp.109.

[77] A. Amin, “Recognition of hand-printed characters based on structural

description and inductive logic programming,” Proc. 6xth Int. Conf. Document

Analysis and Recognition, 2001, pp.333-337.

[78] M. Pechwitz and V. Maergner, “HMM based approach for handwritten Arabic

word recognition using the IFN/ENIT-database,” Proc. 7th Int. Conf. Document

Analysis and Recognition, 2003, pp. 890-894.

[79] M.S. Khorsheed, “Recognising handwritten Arabic manuscripts using a single

hidden Markov model,” J. Pattern Recognition Letters, vol. 24, 2003, pp 2235-

2242.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8696
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8701
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8701

 207

[80] S. Alma’adeed, C. Higgens, and D. Elliman, “Off-line recognition of

handwritten Arabic words using multiple hidden Markov models,” J. Knowledge-

Based Systems, 2004, vol.17, pp.75-79.

[81] L. Souici-Meslati and M. Sellami, “A hybrid approach for Arabic literal

amounts recognition,” The Arabian J. Science and Eng., vol.29, 2004, pp.177-194

[82] R. El-Hajj, L. Likforman-Sulem, and C. Mokbel, “Arabic handwriting

recognition using baseline dependant features and hidden Markov modeling,”

Proc. 8ht Int. Conf. Document Analysis and Recognition ICDAR’05, 2005. pp.

893-897.

[83] S. Mozaffari, K. Faez, and M. Ziaratban, “Structural decomposition and

statistical description of Farsi/Arabic handwritten numeric characters,” Proc. 8ght

Int. Conf. Document Analysis and Recognition ICDAR’05, 2005. pp.237-241.

[84] R. Safabakhsh and P. Adibi, “Nastaaligh handwritten word recognition using a

continuous-density variable-duration HMM,” The Arabian J. Science and Eng.,

vol.30, 2005, pp.95-118

[85] M. T. El-Melegy and A. A. Abdelbaset, “Global features for offline

recognition of handwritten Arabic literal amounts,” Proc. 5th Int. Conf.

Information and Communications Technology ICICT 2007, pp.125-129.

[86] A. AbdulKader, “A two-tier Arabic offline handwriting recognition based on

conditional joining rules,” Springer, D.S. Doermann and S. Jaeger (Eds.): SACH,

2008, pp.70–81.

[87] R. Mohamad, L. Likforman-Sulem, and C. Mokbel, “combining slanted-frame

classifiers for improved HMM-based Arabic handwriting recognition,” IEEE

Trans. pattern analysis and machine intelligence, 2009, vol.31, no.7, pp.1165-

1177.

[88] M. A. Al-Alaoui, M. A. Abou Harb, Z. A. Chahine, and E. Yaacoub “A new

approach for Arabic offline handwriting recognition,” IEEE Multidisciplinary

engineering education magazine, 2009, vol.4, no.3, pp.89-97.

[89] S. A. Mahmoud and S. M. Awaida, “Recognition of off-line handwritten

Arabic (Indian) numerals using multi-scale features and support vector machines

vs. hidden Markov models,” The Arabian J. for Science and Engineering, 2009.

vol.34, no 2B, pp.429-444.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4459487

 208

[90] I. J. Kim, “Multi-Window Binarization of camera image for document

recognition,” Proc. 9th Int. Workshop on Frontiers in Handwriting Recognition,

IEEE, 2004. pp.323-327.

[91] W. Bieniecki, S. Grabowski and W. Rozenberg “Image preprocessing for

improving OCR accuracy,” Proc. Int. Conf. Perspective Technologies and

Methods in MEMS Design, MEMSTECH’2007, pp75-80.

[92] D. Lancaster. Exploring the .BMP File Format. Synergetics, Box 809,

Thatcher, AZ 85552. (2010, May 27). Available:

http://www.tinaja.com/glib/expbmp.pdf.

[93] The Math Works, Inc. (1993-2008). Image Processing Toolbox 6. User’s

Guide.

[94] M. Zhao, Y. Yang, and H. Yan, “An adaptive thresholding method for

binarization of blueprint images,” J. Pattern Recognition Letters, 21 (2000),

pp.927-943.

[95] H. Tian, S. K. Lam, and T. Srikanthan, “Implementing otsu’s thresholding

process approximation unit using area-time efficient logarithmic,” Proc. Int.

Symp. Circuits and Systems ISCAS '03, 0-7803-7761-3- vol.4, 2003 IEEE, pp.21-

24.

[96] D. You and G. Kim, “Slant correction of handwritten strings based on

structural properties of Korean characters,” Proc. 8th Int. Workshop on Frontiers

in Handwriting Recognition IWFHR’02, pp. 467 – 472.

[97] J. Sadri and M. Cheriet, “A new approach for skew correction of documents

based on particle swarm optimization,” Proc. 10th Int. Conf. Document Analysis

and Recognition, ICDAR '09, pp.1066-1070.

[98] R. Kapoor, D. Bagai, and T.S. Kamal, “A new algorithm for skew detection

and correction,” J. Pattern Recognition Letters 25 (2004), pp.1215–1229.

[99] J. Dong, P. Dominique, A. Krzyzak and Ch. Y. Suen, “Cursive word

skew/slant corrections based on Radon transform,” Proc. 8th Int. Conf. Document

Analysis and Recognition ICDAR’05, pp.478 – 483.

[100] V. Ganapathy and W. L. Lui, “A Malaysian vehicle license plate localization

and recognition system,” J. Systemics, Cybernetics and Informatics, 2009, vol.8,

pp.1-8.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4283407
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4283407
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8570
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8570
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5277471
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5277471

 209

[101] E. Kavallieratou, N. Fakotakis and G. Kokkinakis “New algorithms for

skewing correction and slant removal on word-level” Proc. 6th IEEE Int. Conf.

Electron. Circuits and Systems, ICECS '99, 1999, vol.2, pp1159-1162.

[102] R. Bourne,” Spatial Transformation” in Fundamentals of digital imaging in

medicine. Springer London 2010, ch.8, pp.173.

[103] S. Wshah, Z. Shi and V. Govindaraju, “Segmentation of Arabic handwriting

based on both contour and skeleton segmentation,” Proc. 10th Int. Conf.

Document Analysis and Recognition, 2009, pp.793-797.

[104] Y.Y. Zhang and P.S.P. Wang,”A parallel thinning algorithm with two-

subiteration that generates one-pixel-wide skeletons” Proc. ICPR, 2002. vol.4,

pp.457-461.

[105] Z. Razak, K. Zulkiflee, M. Y. Idris, E. M. Tamil, and M. Noorzaily, “Off-line

handwriting text line segmentation: a review,” IJCSNS Int. J. Computer Science

and Network Security, July 2008, vol.8 no.7, pp.12-20.

[106] G. Louloudis, B. Gatos, I. Pratikakis, and K. Halatsis, ”A block-based Hough

transform mapping for text line detection in handwritten documents,” Proc. 10th

Int. Workshop on Frontiers in Handwriting Recognition, France, 2006.

[107] H. Li, H. Zheng, and Y. Wang, “Segment Hough transform – a novel Hough-

based algorithm for curve detection,” Proc. 4th Int. Conf. Image and Graphics,

2007, pp. 471 – 477.

[108] R. Mori, K. Kobayashi, and K. Watanabe, “Hough-based robust lane boundary

detection for the omni-directional camera,” SICE Annu. Conf. Sapporo, Japan,

2004, pp.2113-2117.

[109] J. Liados, E. Mart, and J. L´opez-Krahe, “A Hough-based method for hatched

pattern detection in maps and diagrams,” Proc. 5th Int. Conf. Document Analysis

and Recognition ICDAR '99, 1999. pp.479 – 482.

[110] G. L. Foresti, “A real-time Hough-based method for segment detection in

complex multisensor images” Real-Time Imaging 6, 2000, pp.93-111.

[111] S. Lei, L. Jian-feng, and Y. Jing-yu, “Diffused Region of Hough Method

Based Road Detection Algorithm,” Chinese Conf. Pattern Recognition CCPR '08,

2008, pp.1-4.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6565
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6420
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6420

 210

[112] L. Likforman-Sulem , A. Hanimyan, and C. Faure, “Text Line Segmentation

of Historical Documents: a Survey” Int. J. Document Analysis and Recognition,

2006, vol.9, pp.123-138.

[113] V. Shapiro, G. Gluhchev, V. Sgurev, “Handwritten document image

segmentation and analysis. Pattern Recognition,” Real-Time Imaging, 1993,

vol.14, pp.71-78.

[114] L. Likforman-Sulem , A. Hanimyan, and C. Faure, “a Hough based algorithm

for extracting text lines in handwritten documents,” Proc. 3rd Int. Conf.

Document Analysis and Recognition, 1995, vol.2, pp.774-777.

[115] Y. Pu and Z. Shi, “A natural learning algorithm based on Hough transform for

text lines extraction in handwritten documents” Proc. 6th Int. Workshop on

Frontiers in Handwriting Recognition, Korea, 1998, pp. 637–646.

[116] G. Hamarneh, K. Althoff and R. Abu-Gharbieh. (1999, Aug.). Automatic Line

Detection. Image Analysis Group, Department of Signals and Systems Chalmers

University of Technology.

[117] G. Louloudis, B. Gatos, I. Pratikakis and C. Halatisis, “Text line and word

segmentation of handwritten documents” J. Pattern Recognition 42, 2009,

pp.3169-183.

[118] U. Mahadevan and R. C. Nagabushnam, “Gap metrics for word separation in

handwritten lines,” Proc. 3rd Int. Conf. Document Analysis and Recognition,

Canada, 1995, pp.124-127.

[119] U. V. Marti and H. Bunke, ''Text line segmentation and word recognition in a

system for general writer independent handwriting recognition,'' Proc. 6th Int.

Conf. Document Analysis and Recognition, USA, 2001, pp. 159-163.

[120] G. Seni, and E. Cohen, ''External word segmentation of offline handwritten

text lines,'' J. Pattern Recognition 27, 1994, pp.41-52.

[121] S. Nandagopalan, B. S. Adiga, and N. Deepak, “A Universal Model for

Content-Based Image Retrieval,” Int. J. Computer Science, 4:4 2009, pp.242-245.

[122] C. Chiang, “A Model of a Human Recognition System with 'Thinking'” J.

Biological Cybernetics, 2004, vol36, no3, pp.131-135.

[123] S. Je1, E. Cha, and J. Cho, “Encoding Image Based on Retinal Ganglion Cell,”

Springer-Verlag Berlin Heidelberg, 2004, pp. 486–494.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4755
http://www.springerlink.com/content/100465/?p=dd69285c03e14a50b64e37eda6e02e23&pi=0

 211

[124] K. Larson. (2004, July). The Science of Word Recognition. Advanced

Reading Technology, Microsoft Corporation. Available:

http://www.microsoft.com/typography/ctfonts/WordRecognition.aspx

[125] K. Le, “A Proposed Model of Human Consciousness System with

Applications in Pattern Recognition” Proc. 1st Int. Conf. Knowledge-Based

Intelligent Electronic Systems, 1997, Australia, vol.1, pp.159-166.

[126] S. Bow, “Clustering Analysis and Unsupervised Learning,” in Pattern

Recognition and Image Prepossessing, 2002. 2nd edition, New York, Marcel

Dekker, Inc., pp.112-167.

[127] Ch. Jing, H. Y. Bin, “Efficient Wavelet Transform on FPGA Using Advanced

Distributed Arithmetic” Proc. 8th Int. Conf. on Electronic Measurement and

Instruments ICEMI’2007, pp.512-515.

[128] Wavelet Toolbox User’s Guide., 5th ed., M. Misiti, Y. Misiti, G. Oppenheim,

and J. Poggi, The MathWorks, Inc., 1997–2008, pp.33-41.

[129] W. L. CHAN, C. H. Choi and R. G. Baraniuk, “Directional hyper complex

wavelets for multidimensional signal analysis and processing,” Proc. IEEE Int.

Conf. Acoustics, Speech, and Signal Processing ICASSP’04, 2004. Quebec-

Canada, vol.3, pp.996-999.

[130] F. Yung and W. Liao. (1997, July). Modeling and decomposition of HRV

signals with wavelet transforms. IEEE Engineering in Medicine and Biology mag.

vol.16, no.4, pp.17-22.

[131] A. Stefanovska, M. Brucic, and H.D. Kvernmo, “Wavelet analysis of

oscillations in the peripheral blood circulation measured by laser Doppler

technique” IEEE Tran. Biomedical Engineering, 1999, vol.46, no.10, pp.1230-

1239.

[132] S. Blunco, S. Kochen, O. A. Rosso, and P. Suldudo. (1997, Jan.). Applying

Tome-Frequency Analysis to Seizure EEG Activity. IEEE Engineering in

Medicine and Biology mag. vol.16, pp.64-71.

[133] W. Li, X. Zhu and S. Wu, “A Novel Approach to Fast Medical Image Fusion

Based on Lifting Wavelet Transform,” Proc. 6th World Congress on Intelligent

Control and Automation, 2006, China,pp.9881-9884.

[134] K. Kozlov, E. Myasnikova, and M. Samsonova, “Fast Redundant Dyadic

Wavelet Transform in Application to Spatial Registration of the Expression of

 212

Drosophila Segmentation Genes,” Proc. 15th Int. Conf. Pattern Recognition,

2000, vol.3, pp 459 – 462.

[135] S. Samra, S. E. Gad Allah, and R. M. Ibrahim, “Face Recognition Using

Wavelet Transform, Fast Fourier Transform and Discrete Cosine Transform,”

IEEE Int. Symp. Micro-Nano Mechatronics and Human Science,2003 ,vol.1 ,

pp.272-275.

[136] Y. Xiemei, “Fast algorithm of detecting circular edge based on multi-

resolution wavelet transform,” Int. Conf. on Communications, Circuits and

Systems ICCCAS 2007, pp.807-811.

[137] T. Ebrahimi and M. Kunt, “Application of an optimally localized and fast

wavelet transform in image compression,” IEEE Int. Conf. Acoustics, Speech, and

Signal Processing, ICASSP-92, 1992. vol.5, pp.57-60.

[138] D. Z. Tian, and M. Ha, “Applications of wavelet transform in medical image

processing,” Proc. 3rd Int. Conf. on Machine Learning and Cybernetics, 2004

vol.3, pp1816 – 1821.

[139] J. Je, E. Cha, and J. Cho, “Encoding Image Based on Retinal Ganglion Cell,”

J. Springer-Verlag Berlin, Heidelberg, 2004, pp.486–494.

[140] Y. Sun and S. T. Bow, “Fast Wavelet Transform for Color Image

Compression,” Proc. Int. Conf. Image Processing, 1996, vol.1, pp.541-544.

[141] D. Dimov,” Fast, Shape Based Image Retrieval,” Proc. 4th int. conf.

Computer systems and technologies: e-Learning, 2004, pp.296 – 302.

[142] S. E. N. Correia, J. M. de Carvalho and R. Sabourin, “On the Performance of

Wavelets for Handwritten Numerals Recognition” Proc. 16th Int. Conf. Pattern

Recognition ICPR'02, vol.3, pp.27-30.

[143] P. Zhang, “Reliable Recognition of Handwritten Digits Using A Cascade

Ensemble Classifier System and Hybrid Features,” M.S. thesis, The Department

of Computer Science and Software Engineering, Concordia University Montreal,

Quebec, Canada, 2006.

[144] A. Aburas and S. M. Rehiel, "Off-line Omni-style Handwriting Arabic

Character Recognition System Based on Wavelet Compression," Arab Research

Institute For Science \& Engineering, 2007, vol. 3, pp. 123-135.

[145] Wikipedia, the free encyclopedia. (2010, May 27). MATLAB. Available:

http://en.wikipedia.org/wiki/MATLAB.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10444
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4348116
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4348116
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=626
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=626
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4140

 213

[146] R. C .Gonzalez, R. E. Wood and S. L. Eddins, “Wavelets” in Digital Image

processing Using MATLAB, 2nd ed. New jersey:pearson. Prentice Hall, Upper

Saddle River,2004, pp.242-281.

[147] “An Introduction to Digital Filters,” Intersil Corporation, pp.3-10.

[148] H. Sheikhzadeh and L. Deng, “Waveform-Based Speech Recognition Using

Hidden Filter Models: Parameter Selection and Sensitivity to Power

Normalization,” IEEE Trans. speech and audio processing,1994, vol.2, no.1,

pp.80-89.

[149] R. A. Dosari, R. C. Hardie, A. M. Sarhan, and K. E Barner, “Multichannel

nonlinear filters for signal restoration,” Proc. IEEE Nat. Conf. Aerospace and

Electronics NAECON 1997, vol.1, pp.386-391.

[150] Ch. Chou, S. Shih, and D. Chen, “Design of Gabor filter banks for iris

recognition,” Proc. Int. Conf. Intelligent Information Hiding and Multimedia

Signal Processing IIH-MSP'06, 2006. pp.403-406.

[151] P. Borwonwatanadelok, B. Purahong and S. Udomhunsakul, “Selection of

Wavelet Filters for Panoramic Dental X-Ray Image Compression,” Proc. Int.

Conf. Electronic Computer Technology, 2009, pp237-241.

[152] H. Kong, L. Peng, and X. Ding, “An Approach to Preprocess Degraded Text

Images Based on Morphological Filters,” Proc. 4th Int. Conf. Signal Processing,

ICSP '98,1998. vol.2, pp. 1068 – 1071.

[153] S. Zhou, Ch. Liu, and Z. Cui, and S. Gong, “An Improved Adaptive Document

Image Binarization Method,” Proc. 2nd Int. Congress on Image and Signal

Processing CISP '09, 2009. pp.1-5.

[154] Y. Yang, “OCR Oriented Binarization Method of Document Image” Proc.

Congress Image and Signal Processing CISP '08.

2008. vol. 4, pp. 622 – 625.

[155] M. Nikaido and N. Tamm, “Noise Reduction for Gray Image Using a Kalman

Filter," Proc. SICE Annu. Conf, 2003, vol.2, pp. 1748 – 1751.

[156] L. Yu-feng, “A new approach for text segmentation based on stroke filter,”

Proc. 2nd Int. Conf. Intelligent Computation Technology and Automation ICICTA

'09, 2009. vol.4, pp. 493 - 496.

[157] H. Nishimura, M. Tsutsumi, M. Maruyama, H. Miyao, and Y. Nakan, “Off-

line Hand-written Character Recognition Using Integrated 1D HMMs based on

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4871
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4871
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4795899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300806
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300806
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4566097
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5287481
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5287481

 214

Feature Extraction Filters,” Proc. 6th Int. Conf. Document Analysis and

Recognition, 2001, pp. 417 - 421.

[158] R. Ramanathan, A.S. Nair, L.Thaneshwaran, S. Ponmathavan, and

K.P.Soman, “Robust Feature Extraction Technique for Optical Character

Recognition,” Proc. Int. Conf. Advances in Computing Control &

Telecommunication Technologies ACT '09, 2009. pp. 573 - 575.

[159] N. Araki, M. Okuzaki, Y. Konishi, and H. Ishigaki, “A Statistical Approach

for Handwritten Character Recognition Using Bayesian Filter,” Proc. 3rd Int.

Conf. Innovative Computing Information and Control ICICIC'08, 2008. pp. 194 –

194.

[160] M. Ha, X. Tian, and Z. Zhang, “Optical font recognition based on Gabor

filter,” Proc. 4th Int. Conf. Machine Learning and Cybernetics, vol.8, pp.4864 –

4869.

[161] R. C .Gonzalez, R. E. Wood and S. L. Eddins, “Wavelets and multiresolution

processing” in Digital Image processing, 3nd ed. New jersey:pearson. Prentice

Hall, Upper Saddle River,2010, pp.485-543.

[162] Wikipedia, the free encyclopedia. (2010, June 1). Daubechies wavelets.

Available: http://en.wikipedia.org/wiki/Daubechies_wavelet

[163] M. Grgic, M. Ravnjak, and B. Zovko-Cihlar, “Filter comparison in wavelet

transform of still images,” Proc. IEEE Int. Symp on. Industrial Electronics, ISIE

'99, 1999. vol.1, pp. 105 – 110.

[164] I. Kaplan. (2001, July). The Daubechies D4 wavelets transform. Available:

http://www.bearcave.com/misl/misl_tech/wavelets/daubechies/index.html.

[165] Z. Yang, “Joint time frequency analysis of global positioning system,” M.S.

thesis, The Faculty of the Russ College of Engineering and Technology, Ohio

University, August 1998.

[166] Wikipedia, the free encyclopedia (2010, June 3). biorthogonal wavelet..

Available: http://en.wikipedia.org/wiki/Biorthogonal_wavelet

[167] M. Unser, and T. Blu, “Mathematical properties of the JPEG2000 wavelet

filters,” IEEE Trans. image processing, 2003, vol.12, pp.1080 – 1090.

[168] N. El-Sheimy, S. Nassar, and A. Noureldin. (2004, October). Wavelet De-

Noising for IMU Alignment. IEEE Aerospace and Electronic Systems Mag. pp.

50-57.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375735
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375735
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6460
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6460
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=62

 215

[169] A. Zahour, L. Likforman-Sulem, W. Boussalaa, and B. Taconet, “Text Line

segmentation of historical Arabic documents,” Proc. 9th Int. Conf. Document

Analysis and Recognition ICDAR 2007, 2007. vol.1, pp. 138 – 142.

[170] Z. Lu, R. Schwartz, and C. Raphael, “Script-Independent, HMM-based Text

Line Finding for OCR,” Proc. 15th Int. Conf. Pattern Recognition, 2000, vol.4,

pp.551 – 554.

[171] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger, “A new algorithm for detecting

text line in handwritten documents,” Proc. 10th Int. Workshop on Frontiers in

Handwriting Recognition, 2006, pp. 35-40.

[172] A. Zahour, B. Taconet, P. Mercy, and S. Ramdane, “Arabic Hand-Written

Text-Line Extraction,” Proc. 6th Int. Conf. Document Analysis and Recognition,

2001, pp. 281 – 285.

[173] M. Arivazhagan, H. Srinivasan, S. N. Srihari, "A Statistical Approach to

Handwritten Line Segmentation," Proc. SPIE Document Recognition and

Retrieval XIV, 2007, pp.1-11.

[174] Z. Shi, S. Setlur and V. Govindaraju, “A Steerable Directional Local Profile

Technique for Extraction of Handwritten Arabic Text Lines,” Proc. 10th Int.

Conf. Document Analysis and Recognition ICDAR '09, 2009pp.176 – 180.

[175] N. Ouwayed, A. Belaid and F. Augerb, “General text line extraction approach

based on locally orientation estimation,” Proc. 10th Int. Conf. Document

Recognition and Retrieval XVII 2010, pp.1-7.

[176] D. Motawa, A. Amin, and R. Sabourin, “Segmentation of Arabic Cursive

Script,” Proc. 4th Int. Conf. Document Analysis and Recognition, 1997, vol.1, pp.

625-628.

[177] J. H. AlKhateeb, J. Ren, S. S Ipson, and J. Jiang, “Knowledge-Based Baseline

Detection and Optimal Thresholding for Words Segmentation in Efficient

PreProcessing of Handwritten Arabic Text,” Proc. 4th Int. Conf. Information

Technology ITNG 2008, pp.1158 – 1159.

[178] Z. Al Aghbari and S. Brook, “Word stretching for effective segmentation and

classification of historical Arabic handwritten documents,” Proc. 3rd. Int. Conf.

Research Challenges in Information Science RCIS 2009, pp. 217 - 224 .

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4376968
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4376968
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5277471
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4891
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4891
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4492647&queryText%3DKnowledge-based+Baseline+Detection+and+Optimal+Thresholding+for+Words%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4492647&queryText%3DKnowledge-based+Baseline+Detection+and+Optimal+Thresholding+for+Words%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4492647&queryText%3DKnowledge-based+Baseline+Detection+and+Optimal+Thresholding+for+Words%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4492647&queryText%3DKnowledge-based+Baseline+Detection+and+Optimal+Thresholding+for+Words%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4492647&queryText%3DKnowledge-based+Baseline+Detection+and+Optimal+Thresholding+for+Words%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4492647&queryText%3DKnowledge-based+Baseline+Detection+and+Optimal+Thresholding+for+Words%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5089285&queryText%3DWord+Stretchingfor+Effective+Segmentation+and+Classification+of%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5089285&queryText%3DWord+Stretchingfor+Effective+Segmentation+and+Classification+of%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5089285&queryText%3DWord+Stretchingfor+Effective+Segmentation+and+Classification+of%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5089285&queryText%3DWord+Stretchingfor+Effective+Segmentation+and+Classification+of%26openedRefinements%3D*%26searchField%3DSearch+All

 216

[179] C. Olivier, H. Miled, K. Romeo, and Y. Lecourtier, “Segmentation and

Coding of Arabic Handwritten Words,” Proc. 13th Int. Conf. Pattern Recognition,

1996, vol.3, pp. 264 - 268.

[180] S. M. Touj, N. Ben Amara, and H. Amiri, “Segmentation stage of a PHMM-

based model for off-line recognition of Arabic handwritten city names,” Proc.

IEEE Int. Conf. Systems, Man and Cybernetics, 2002, vol.4, pp1-5.

[181] S. Abdulla, A. Al-Nassiri and R. Abdul Salam, “Off-line Arabic handwriting

word segmentation using rotational invariant segments features,” The Int. Arab J.

of information technology, April 2008, vol.5, pp.200-207.

[182] P. Dreuw, S. Jonas, and H. Ney, “White-Space Models for Offline Arabic

Handwriting Recognition,” Proc. 19th Int. Conf. Pattern Recognition 2008. ICPR,

pp.1-4.

[183] Roelofs G. “A basic introduction to PNG features” Available:

http://www.libpng.org/pub/png /pngintro.html.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3995
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3995
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1173263&queryText%3DSegmentation+stage+of+a+PHMM-based+model%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1173263&queryText%3DSegmentation+stage+of+a+PHMM-based+model%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1173263&queryText%3DSegmentation+stage+of+a+PHMM-based+model%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1173263&queryText%3DSegmentation+stage+of+a+PHMM-based+model%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1173263&queryText%3DSegmentation+stage+of+a+PHMM-based+model%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4740202
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4740202
http://www.libpng.org/pub/png

 217

APPENDIXS

APPENDIX A

PAGE SKEW DETECTION ALGORITHM

%%% OCR system /Preprocessing stage/page skew detection

% This code to detect Page skew as a part of the preprocess of Arabic handwriting

recognition system

clc; clear all; Close all;

% % get the page image

k=input('Enter the file name ','s');

I=imread(k);

%% 1- To create the Create structuring element

% convert the page image into gray scale image

grayImage = rgb2gray(I);

% Create structuring element of the gray scale image

se = strel('disk',17);

structuringElement = imopen(grayImage,se);

% show the structuring Element(elective)

%figure; imshow(structuringElement);

%% 2- To apply the Randon tranform:

% detect the image edges using Canny Edge Detector

CannyImage = edge(structuringElement,'canny');

% create edge linking by a morphological operation

ThickenImage = bwmorph(CannyImage,'thicken');

% show the ThickenImage(elective)

%figure;imshow(ThickenImage);

%Radon transform projections along 180 degrees, from -90 to +89

theta = -90:89;

 218

[R,V] = radon(ThickenImage,theta);

% R is the Radon transform of ThickenImage in -90 to 89 degrees.

% V is a vector that contains the radial coordinates corresponding to each row of the

Random Transform.

[R1,MaxR] = max(R);

% R1 is a vector which its elements are equal the maximum value of Radon transform

along each angle.

% MaxR is a vector that includes corresponding of 'R1'.

% to detect lines a Hough-like search is performed to find maximum value of Radon

% transform over all angles in angles > 50 or < -50.

% angle indicates the slope of the upper bond of the image detected.

Maxtheta = 90;

while(Maxtheta > 50 || Maxtheta<-50)

 [R2,Maxtheta] = max(R1);

% R2: Maximum Radon transform value for all of the angles.

% theta_max: Corresponding angle of R2

R1(Maxtheta) = 0;

% To find other maximum values,R2 element are deleted from vector R1.

 Maxtheta = Maxtheta - 89;

end

x=90+ Maxtheta;

if (x<88)

 y=90-x;

 fprintf('The page is skewed against clockwise, The skew angle is %d\n', y);

else if (x>92)

 y=x-90;

 fprintf('The page is skewed clockwise, The skew angle is %d\n', y);

else

 fprintf('The page is not skewed, Go to Line extraction');

 end

end

 219

APPENDIX B

PAGE SKEW CORRECTION ALGORITHM

%%%OCR system /Preprocessing stage/page skew correction

% This algorithm is to correct page skew as a part of the preprocess of Arabic

handwriting recognition system

clc; clear all; Close all;

% get the page image

k=input('Enter the file name ','s');

I=imread(k);

%% 1- To create the Create structuring element

% convert the page image into gray scale image

grayImage = rgb2gray(I);

% Create disk-shaped structuring element of the gray scale image

se = strel('disk',17);

structuringElement = imopen(grayImage,se);

%% 2- To apply the Randon tranform:

% detect the image edges using Canny Edge Detector

CannyImage = edge(structuringElement,'canny');

% create edge linking by a morphological operation

ThickenImage = bwmorph(CannyImage,'thicken');

% Radon transform projections along 180 degrees, from -90 to +89

theta = -90:89;

[R,V] = radon(ThickenImage,theta);

% R is the Radon transform of ThickenImage in -90 to 89 degrees.

% V is a vector that contains the radial coordinates corresponding to each

% row of the Random Transform.

[R1,MaxR] = max(R);

% R1 is a vector which its elements are equal the maximum value of Radon

 220

% transform along each angle.

% MaxR is a vector that includes corresponding of 'R1'.

% to detect lines a Hough-like search is performed to find maximum value of %

Radon

% transform over all angles in angles > 50 or < -50.

% angle indicates the slope of the upper bond of the image detected.

Maxtheta = 90;

while(Maxtheta > 50 || Maxtheta<-50)

 [R2,Maxtheta] = max(R1);

% R2: Maximum Radon transform value for all of the angles.

% theta_max: Corresponding angle of R2

R1(Maxtheta) = 0;

% To find other maximum values,R2 element are deleted from vector R1.

 Maxtheta = Maxtheta - 89;

end

%% 3- To reconstruct the image

% oprate morphological reconstruction process using repeated..

% dilations of the image ' marker' image, until the contour of the marker..

% image fits under a second image 'mask' image.

mask=grayImage;

marker=structuringElement;

IM = imreconstruct(marker,mask);

% Rotation correction

FinalCorrectedImage = imrotate(IM,-Maxtheta);

% to convert the black area into white

FinalCorrectedImage(FinalCorrectedImage == 0) = 255;

figure; imshow(FinalCorrectedImage) title('Corrected page image (after correction)');

 221

APPENDIX C

LINE SKEW DETECTION AND CORRECTION ALGORITHM

%%%OCR system /Preprocessing stage/line skew detection and correction

% This algorithm is to detect and correct Line skew as a part of the preprocess of

Arabic handwriting recognition system

clc; clear all; Close all;

%% get the page image

k=input('Enter the file name ','s');

I=imread(k);

%% Section (1): Skew line detection

% convert the page image into gray scale image

grayImage = rgb2gray(I);

% Create structuring element of the gray scale image

se = strel('disk',17);

structuringElement = imopen(grayImage,se);

% detect the image edges using Canny Edge Detector

CannyImage = edge(structuringElement,'canny');

% create edge linking by a morphological operation

ThickenImage = bwmorph(CannyImage,'thicken');

% Radon transform projections along 180 degrees, from -90 to +89

theta = -90:89;

[R,V] = radon(ThickenImage,theta);

% R is the Radon transform of ThickenImage in -90 to 89 degrees.

% V is a vector that contains the radial coordinates corresponding to each row of the

Random Transform.

[R1,MaxR] = max(R);

Maxtheta = 90;

while(Maxtheta > 30 || Maxtheta<-30)

 222

 [R2,Maxtheta] = max(R1);

% R2: Maximum Radon transform value for all of the angles.

% theta_max: Corresponding angle of R2

R1(Maxtheta) = 0;

% To find other maximum values,R2 element are deleted from vector R1.

 Maxtheta = Maxtheta - 89;

end

x=90+ Maxtheta;

if (x<90)

 y=90-x;

 fprintf('The line is skewed clockwise, The skew angle is %d\n', y);

else if (x>92)

 y=x-90;

 fprintf('The line is skewed against clockwise, The skew angle is %d\n', y);

else

 fprintf('The page is not skewed, Go to Line extraction');

 end

end

if x>90

 z=95; r=17;

else

 z=89; r=10;

end

%% Skew line correction

%1- To create the Create structuring element

% convert the line image into gray scale image

grayImage = rgb2gray(I);

% show the gray scale image (elective)

imshow(grayImage),title('Skewed line image (before correction)');

% Create structuring element of the gray scale image

se = strel('disk',r);

structuringElement = imopen(grayImage,se);

% show the structuring Element(elective)

 223

% figure; imshow(structuringElement);

%% 2- To apply the Random tranform:

% detect the image edges using Canny Edge Detector

CannyImage = edge(structuringElement,'canny');

% show the CannyImage (elective)

% figure; imshow(CannyImage);

% create edge linking by a morphological operation

ThickenImage = bwmorph(CannyImage,'thicken');

% show the ThickenImage(elective)

% figure;imshow(ThickenImage);

% Radon transform projections along 180 degrees, from -90 to +89

 theta = -90:89;

[R,V] = radon(ThickenImage,theta);

% R is the Radon transform of ThickenImage in -90 to 89 degrees.

% V is a vector that contains the radial coordinates corresponding to each row of the

Random Transform.

[R1,MaxR] = max(R);

% R1 is a vector which its elements are equal the maximum value of Radon transform

along each angle.

% MaxR is a vector that includes corresponding of 'R1'.

% to detect lines a Hough-like search is performed to find maximum value of %

Radon

% transform over all angles in angles > 50 or < -50.

% angle indicates the slope of the upper bond of the image detected.

Maxtheta = 90;

while(Maxtheta > 30 || Maxtheta<-30)

 [R2,Maxtheta] = max(R1);

% R2: Maximum Radon transform value for all of the angles.

% theta_max: Corresponding angle of R2

R1(Maxtheta) = 0;

% To find other maximum values,R2 element are deleted from vector R1.

 Maxtheta = Maxtheta - z;

end

 224

%% 3- To reconstruct the image

% oprate morphological reconstruction process using repeated..

% dilations of the image ' marker' image, until the contour of the marker..

%image fits under a second image 'mask' image.

mask=grayImage;

marker=structuringElement;

IM = imreconstruct(marker,mask);

% Rotation correction

FinalCorrectedImage = imrotate(IM,-Maxtheta);

% to convert the black area into white

FinalCorrectedImage(FinalCorrectedImage == 0) = 255;

figure; imshow(FinalCorrectedImage),title('Corrected line image (after correction)');

 225

APPENDIX D

WORD SKEW DETECTION AND CORRECTION ALGORITHM

%%% OCR system /Preprocessing stage/word skew detection and correction

% This algorithm is to detect and correct word skew as a part of the preprocess of

Arabic handwriting recognition system

clc; clear all; Close all;

%% get the page image

k=input('Enter the file name ','s');

I=imread(k);

%% Section (1): Skew word detection

% convert the page image into gray scale image

grayImage = rgb2gray(I);

% Create structuring element of the gray scale image

se = strel('disk',10);

structuringElement = imopen(grayImage,se);

% detect the image edges using Canny Edge Detector

CannyImage = edge(structuringElement,'canny');

% create edge linking by a morphological operation

ThickenImage = bwmorph(CannyImage,'thicken');

%Radon transform projections along 180 degrees, from -90 to +89

theta = -90:89;

[R,V] = radon(ThickenImage,theta);

% R is the Radon transform of ThickenImage in -90 to 89 degrees.

% V is a vector that contains the radial coordinates corresponding to each row of the

Random Transform.

[R1,MaxR] = max(R);

Maxtheta = 90;

while(Maxtheta > 50 || Maxtheta<-50)

 226

 [R2,Maxtheta] = max(R1);

% R2: Maximum Radon transform value for all of the angles.

% theta_max: Corresponding angle of R2

R1(Maxtheta) = 0;

% To find other maximum values,R2 element are deleted from vector R1.

 Maxtheta = Maxtheta - 89;

end

x=90+ Maxtheta;

if (x<90)

 y=90-x;

 fprintf('The word is skewed clockwise, The skew angle is %d\n', y);

else if (x>92)

 y=x-90;

 fprintf('The word is skewed against clockwise, The skew angle is %d\n', y);

else

 fprintf('The word is not skewed, Go to Line extraction');

 end

end

if x>92

 z=70; r=17;

else

 z=99; r=10;

end

%% Section (2): Skew word correction

% 1- Create structuring element

% convert the word image into gray scale image

grayImage = rgb2gray(I);

% show the gray scale image (elective)

imshow(grayImage),title('Skewed word image (before correction)');

% Create structuring element of the gray scale image

se = strel('disk',r);

structuringElement = imopen(grayImage,se);

% show the structuring Element(elective)

 227

% figure; imshow(structuringElement);

%% 2- To apply the Random tranform:

% detect the image edges using Canny Edge Detector

CannyImage = edge(structuringElement,'canny');

% show the CannyImage (elective)

% figure; imshow(CannyImage);

% create edge linking by a morphological operation

ThickenImage = bwmorph(CannyImage,'thicken');

% show the ThickenImage(elective)

% figure;imshow(ThickenImage);

% Radon transform projections along 180 degrees, from -90 to +89

 theta = -90:89;

[R,V] = radon(ThickenImage,theta);

% R is the Radon transform of ThickenImage in -90 to 89 degrees.

% V is a vector that contains the radial coordinates corresponding to each row of the

Random Transform.

[R1,MaxR] = max(R);

% R1 is a vector which its elements are equal the maximum value of Radon transform

along each angle.

% MaxR is a vector that includes corresponding of 'R1'.

% to detect lines a Hough-like search is performed to find maximum value of Radon

% transform over all angles in angles > 50 or < -50.

% angle indicates the slope of the upper bond of the image detected.

Maxtheta = 90;

while(Maxtheta > 25 || Maxtheta<-25)

 [R2,Maxtheta] = max(R1);

% R2: Maximum Radon transform value for all of the angles.

% theta_max: Corresponding angle of R2

R1(Maxtheta) = 0;

% To find other maximum values,R2 element are deleted from vector R1.

 Maxtheta = Maxtheta - z;

end

%% 3- To reconstruct the image

 228

% oprate morphological reconstruction process using repeated..

% dilations of the image ' marker' image, until the contour of the marker..

% image fits under a second image 'mask' image.

mask=grayImage;

marker=structuringElement;

IM = imreconstruct(marker,mask);

% Rotation correction

FinalCorrectedImage = imrotate(IM,-Maxtheta);

% to convert the black area into white

FinalCorrectedImage(FinalCorrectedImage == 0) = 255;

figure; imshow(FinalCorrectedImage),title('Corrected word image (after correction)');

 229

APPENDIX E

LINE EXTRACTION ALGORITHM

%%%% OCR system /Segmentation stage/Line Extraction

% This Code is to segment the text file into lines as a first step in our segmentation

stage

% The Standard Hough Transform (SHT) is used to computes the Hough transform of

the edged image in order to detect the lines in the text image.

% The Hough transform is designed to detect lines, using the parametric

% Read the text image

clc; clear all; Close all;

k=input('Enter the file name ','s');

I=imread(k);

% Convert into gray scale image

J=rgb2gray(I);

bw2 = edge(J, 'canny', [], 1);

% figure; imshow(bw2)

% get Standard Hough Transform (SHT)using hough Matlab Toolbox function.

[H,theta,rho] = hough(bw2);

% find peak values in the parameter space using houghpeaks Toolbox function.

peaks = houghpeaks(H,15);

% find find the endpoints of the line segments corresponding to peaks in the % Hough

transform

% using houghlines Toolbox function.

lines = houghlines(bw2,theta,rho,peaks);

% find the white pixels in the input image that correspond to a particular

% Hough transform accumulator bin

hold on

 230

for k = 1:numel(lines)

 x1 = lines(k).point1(1); y1 = lines(k).point1(2);

 x2 = lines(k).point2(1); y2 = lines(k).point2(2);

 plot([x1 x2],[y1 y2],'Color','g','LineWidth', 4)

end

hold off

% find the corresponded white pixels for each line.

for n=1:15

bw3 = hough_bin_pixels(bw2, theta, rho, peaks(n,:));

% figure; imshow(bw3);

% find the corresponded white pixels line as a vector

[x,y]=find(bw3==1);

% find the mean of X axis of the corresponded white pixels line.

Xmaen=mean(x);

% find the top and bottom border of the text line.

Xt=Xmaen+45.00;

Xb=Xmaen-55.00;

% Create new file to store the extracted text line image

I2 = fix(I); I3=I2(Xb:Xt, 5:2500);

%figure;imshow(I2);

title(['Text line number:',int2str(n)],'Color','b');

ExtractedLine = I3;

filename = (['C:\Documents and Settings\MohamedGumah\My

Documents\MATLAB\Text Line Extruction\Final

work\store2\ExtractedLine_',num2str(n),'.bmp']);

imwrite(ExtractedLine, filename);

end

 231

APPENDIX F

WORD EXTRACTION ALGORITHM

%%%% OCR system /Segmentation stage/Line-to-word

% This code is to segment text-line into words

% Read the text image

clc; clear all; Close all;

k=input('Enter the file name ','s');

I=imread(k);

% convert text line image into binary image

I=rgb2gray(I);

level = graythresh(I);

bw = im2bw(I,level);

imshow(bw);

% make the empty space as zeros pixels

bw2=~bw;

imshow(bw2);

% calculate how many empty column in the image

horizontalProfile = sum(bw2, 1);

imshow(horizontalProfile)

zeroIndexes = find(horizontalProfile == 0);

n = numel(zeroIndexes);

% for the last column

n=n-1; x=0;

% cut the text image whenever empty column is found

 for i=1:n

 x1=zeroIndexes(i); x2=zeroIndexes(i+1);

 bw3=I(1:100, x1:x2);

 232

 % conseider only column with words

 z=size(bw3); a=z(2);

 % Check the segmented component

 % if the segmented component is a character, store it in the segmented

 % characters store

 if (a>2 && a<10)

 figure; imshow(bw3)

 SegmentedWord = bw3;

 title(['Character-No:',int2str(x),' lettersize:',int2str(z)],'Color','b');

 x=x+1;

filename = (['C:\Documents and Settings\MohamedGumah\My

Documents\MATLAB\Segmentation

work\Line2words\store\SegmentedCharacter_',num2str(i),'.bmp']);

imwrite(SegmentedWord, filename);

 % if the segmented component is a word, store it in the segmented

 % words store

 elseif (a>10)

 figure; imshow(bw3)

 SegmentedWord = bw3;

 title(['Word-No:',int2str(x),' Word size:',int2str(z)],'Color','b');

 x=x+1;

filename = (['C:\Documents and Settings\MohamedGumah\My

Documents\MATLAB\Segmentation

work\Line2words\store\SegmentedWord_',num2str(i),'.bmp']);

imwrite(SegmentedWord, filename);

 else

 % Dont cut

 end

 end

 233

APPENDIX G

OVERLAPPING CHARACTER SEGMENTATION ALGORITHM

%%%% OCR system /Segmentation stage/Overlapping character

% This code is to segment Overlapping character as a part of segmentation

% stage of Arabic handwriting recognition system

clc; clear all; Close all;

% Read the text image

k=input('Enter the file name ','s');

I2=imread(k);

% convert text line image into binary image

level = graythresh(I2);

bw3 = im2bw(I2,level);

% apply thinning algorithm

bw3 = Thinning2(bw3);

% make the empty space as zeros pixels

bw4=~bw3;

% normalization: The normalization parameters according to the dataset

bw5=bw4 (40:100, 60:100);

imshow(bw5)

% calculate how many empty column in the image

horizontalProfile = sum(bw5, 1);

nonzero=find(horizontalProfile >1);

m=numel(nonzero);

%%--- to segment the below character

x=nonzero(1); c=bw5(:,x);

c=find(c>0); n=numel(c);

y1=c(1); y2=c(n);

y2=y2+2;

 234

% normalization

bw6=bw5(y1:y2 , 1:41);

figure; imshow(bw6); title('below character');

% Store segmented characters

title([Character number:',int2str(n)],'Color','b');

SegmentedCharacter = bw6;

filename = (['C:\Documents and Settings\MohamedGumah\My

Documents\MATLAB\Segmentation\Final

work\store2\SegmentedCharacter_',num2str(n),'.bmp']);

imwrite(SegmentedCharacter, filename);

%-----to segment the upper character

x=nonzero(m);

d=bw5(:,x); d=find(d>0);

y3=d(1); y3=y3-2;

% normalization

bw7=bw5(y3:y1 , 1:41);

figure; imshow(bw7); title('upper character');

% Store segmented characters

title([Character number:',int2str(n)],'Color','b');

SegmentedCharacter = bw7;

filename = (['C:\Documents and Settings\MohamedGumah\My

Documents\MATLAB\Segmentation\Final

work\store2\SegmentedCharacter_',num2str(n),'.bmp']);

imwrite(SegmentedCharacter, filename);

 235

APPENDIX H

TEST.M FUNCTION

%%%% OCR system /Recognition stage/Test function (test.m)

% This code is to apply FWT on characters images to create DCV as a part

% of recognition stage of Arabic handwriting recognition system

%--%

clear all; close all; clc;

% Read the text image

k=input('Enter the file name ','s'); I=imread(k);

% Binarization

I=rgb2gray(I); level = graythresh(I); bw = im2bw(I,level);

% Assigment the boundaries for each image

a=3 ; b=39 ; c=45; d=81 ; e=86 ; f=122; g=126; h=162; i=167; j=203; k=209; l=245;

m=250; n=286;

% produces 48 images from i1 to i48. Each image is 40x40 8-pexil

i1=bw(a:b ,a:b); i2=bw(a:b ,c:d); i3=bw(a:b ,e:f); i4=bw(a:b ,g:h); i5=bw(a:b ,i:j);

i6=bw(a:b ,k:l); i7=bw(a:b ,m:n); i8=bw(c:d ,a:b); i9=bw(c:d ,c:d); i10=bw(c:d ,e:f);

i11=bw(c:d ,g:h); i12=bw(c:d ,i:j);

i13=bw(c:d ,k:l); i14=bw(c:d ,m:n); i15=bw(e:f ,a:b); i16=bw(e:f ,c:d);i17=bw(e:f

,e:f); i18=bw(e:f ,g:h); i19=bw(e:f ,i:j); i20=bw(e:f ,k:l); i21=bw(e:f ,m:n);

i22=bw(g:h ,a:b); i23=bw(g:h ,c:d); i24=bw(g:h ,e:f); i25=bw(g:h ,g:h); i26=bw(g:h

,i:j); i27=bw(g:h ,k:l); i28=bw(g:h ,m:n); i29=bw(i:j ,a:b); i30=bw(i:j ,c:d); i31=bw(i:j

,e:f); i32=bw(i:j ,g:h); i33=bw(i:j ,i:j); i34=bw(i:j ,k:l); i35=bw(i:j ,m:n); i36=bw(k:l

,a:b); i37=bw(k:l ,c:d); i38=bw(k:l ,e:f); i39=bw(k:l ,g:h) i40=bw(k:l ,i:j); i41=bw(k:l

,k:l); i42=bw(k:l ,m:n); i43=bw(m:n ,a:b); i44=bw(m:n ,c:d); i45=bw(m:n

,e:f);i46=bw(m:n ,g:h); i47=bw(m:n ,i:j); i48=bw(m:n ,k:l);

% Create DCV for each image

 236

% Parameters:

% Decomposition level number:1

% Filter type: jpeg9.7

% DCV used elements: 2115

% Rotation degree: 90

for n=1:48

% apply wavefast algorithm on the character image before rotation

c1 =wavefast(i(n),1, 'jpeg9.7');

% determine DCV size

Z1= c1(1, 1:2115);

% Rotate the image 90 degree

i(n)=imrotate(i(n),90,'bilinear');

% apply wavefast algorithm on the character image after rotation

c2 =wavefast(i,1, 'jpeg9.7');

% determine DCV size

Z2= c2(1, 1:2115);

% send the two CDVs (Z1,Z2) to train.m function to be compared with the

% characters groups representatives

Testimage;

end

 237

APPENDIX J

TRAIN.M FUNCTION

%%%% OCR system /Recognition stage/Train function (train.m)

% This code is to apply FWT on characters images to create DCV as a part

% of recognition stage of Arabic handwriting recognition system

%--%

% Read the text image

I= imread('A.bmp');

% Binarization

I=rgb2gray(I); level = graythresh(I); bw = im2bw(I,level);

% Assigment the boundaries for each image

a=3 ; b=39 ; c=45; d=81 ; e=86 ; f=122; g=126; h=162; i=167; j=203; k=209; l=245;

m=250; n=286;

% define cells of 48 values

test_cell_c=cell(1,48); % for 48 DCVs (before size determination)

test_cell_v=cell(1,48); % for 48 DCVs (after size determination)

test_cell=cell(1,48); % for 48 sub-images (before rotation)

test_cell2=cell(1,48); % for 48 sub-images (after rotation)

% cell values declaration

test_cell{1,1}=bw(a:b ,a:b);test_cell{1,2}=bw(a:b ,c:d);test_cell{1,3}=bw(a:b ,e:f);

test_cell{1,4}=bw(a:b ,g:h); test_cell{1,5}=bw(a:b ,i:j); test_cell{1,6}=bw(a:b ,k:l);

test_cell{1,7}=bw(a:b ,m:n); test_cell{1,8}=bw(c:d ,a:b); test_cell{1,9}=bw(c:d ,c:d);

test_cell{1,10}=bw(c:d ,e:f);test_cell{1,11}=bw(c:d ,g:h);test_cell{1,12}=bw(c:d

,i:j);

test_cell{1,13}=bw(c:d ,k:l);test_cell{1,14}=bw(c:d ,m:n);test_cell{1,15}=bw(e:f

,a:b);test_cell{1,16}=bw(e:f ,c:d);test_cell{1,17}=bw(e:f ,e:f);test_cell{1,18}=bw(e:f

,g:h);test_cell{1,19}=bw(e:f ,i:j); test_cell{1,20}=bw(e:f ,k:l);test_cell{1,21}=bw(e:f

,m:n); test_cell{1,22}=bw(g:h ,a:b);test_cell{1,23}=bw(g:h ,c:d);

 238

test_cell{1,24}=bw(g:h ,e:f);test_cell{1,25}=bw(g:h ,g:h); test_cell{1,26}=bw(g:h

,i:j); test_cell{1,27}=bw(g:h ,k:l); test_cell{1,28}=bw(g:h

,m:n);test_cell{1,29}=bw(i:j ,a:b);test_cell{1,30}=bw(i:j ,c:d);test_cell{1,31}=bw(i:j

,e:f); test_cell{1,32}=bw(i:j ,g:h);test_cell{1,33}=bw(i:j ,i:j); test_cell{1,34}=bw(i:j

,k:l); test_cell{1,35}=bw(i:j ,m:n); test_cell{1,36}=bw(k:l

,a:b);test_cell{1,37}=bw(k:l ,c:d); test_cell{1,38}=bw(k:l ,e:f);

test_cell{1,39}=bw(k:l ,g:h); test_cell{1,40}=bw(k:l ,i:j);test_cell{1,41}=bw(k:l ,k:l);

test_cell{1,42}=bw(k:l ,m:n); test_cell{1,43}=bw(m:n ,a:b); test_cell{1,44}=bw(m:n

,c:d);test_cell{1,45}=bw(m:n ,e:f);test_cell{1,46}=bw(m:n

,g:h);test_cell{1,47}=bw(m:n ,i:j); test_cell{1,48}=bw(m:n ,k:l);

% Create DCV for each image

% Parameters:

% Decomposition level number:1

% Filter type: jpeg9.7

% DCV used elements: 2115

% Rotation degree: 90

for i=1:48

 % apply wavefast algorithm on the character image before rotation

 test_cell_c{1,i}=wavefast(test_cell{1,i},1, 'jpeg9.7');

 temp_c=test_cell_c{1,i};

 % determine DCV size

 test_cell_v{1,i}=temp_c(1,1:2115);

end

% for 48 DCVs (after size determination)

V_new=[test_cell_v{1,1};

test_cell_v{1,2};test_cell_v{1,3};test_cell_v{1,4};test_cell_v{1,5};test_cell_v{1,6};..

.

test_cell_v{1,7};test_cell_v{1,8};test_cell_v{1,9};test_cell_v{1,10};test_cell_v{1,11

};test_cell_v{1,12};test_cell_v{1,13};test_cell_v{1,14};test_cell_v{1,15};test_cell_v

{1,16};test_cell_v{1,17};test_cell_v{1,18};test_cell_v{1,19};test_cell_v{1,20};test_c

ell_v{1,21};test_cell_v{1,22};test_cell_v{1,23};test_cell_v{1,24};test_cell_v{1,25};t

est_cell_v{1,26};test_cell_v{1,27};test_cell_v{1,28};test_cell_v{1,29};test_cell_v{1,

30};test_cell_v{1,31};test_cell_v{1,32};test_cell_v{1,33};test_cell_v{1,34};test_cell

 239

_v{1,35};test_cell_v{1,36};test_cell_v{1,37};test_cell_v{1,38};test_cell_v{1,39};tes

t_cell_v{1,40};test_cell_v{1,41};test_cell_v{1,42};test_cell_v{1,43};test_cell_v{1,4

4};test_cell_v{1,45};test_cell_v{1,46};test_cell_v{1,47};test_cell_v{1,48}];

% representative determination (calculate the mean)

Y_new=mean(V_new);

% calculate Euclidean distance between this group representative and the character

image to be recognized

%(before rotation)

% where:

% t1= Euclidean distance

% Z= DCV of character image to be recognized (sent from test.m)

 t1= sum((Z-Y_new).^2).^0.5;

% Images rotation

for i=1:48

 test_cell2{1,i}=imrotate(test_cell{1,i},90,'bilinear');

end

for i=1:48

 % apply wavefast algorithm on the character image after rotation

 test_cell_c{1,i}=wavefast(test_cell2{1,i},1, 'jpeg9.7');

 temp_c=test_cell_c{1,i};

 % determine DCV size

 test_cell_v{1,i}=temp_c(1,1:2115);

end

% for 48 DCVs (after size determination)

V_new=[test_cell_v{1,1};

test_cell_v{1,2};test_cell_v{1,3};test_cell_v{1,4};test_cell_v{1,5};test_cell_v{1,6};..

.

test_cell_v{1,7};test_cell_v{1,8};test_cell_v{1,9};test_cell_v{1,10};test_cell_v{1,11

};test_cell_v{1,12};test_cell_v{1,13};test_cell_v{1,14};test_cell_v{1,15};test_cell_v

{1,16};test_cell_v{1,17};test_cell_v{1,18};test_cell_v{1,19};test_cell_v{1,20};test_c

ell_v{1,21};test_cell_v{1,22};test_cell_v{1,23};test_cell_v{1,24};test_cell_v{1,25};t

est_cell_v{1,26};test_cell_v{1,27};test_cell_v{1,28};test_cell_v{1,29};test_cell_v{1,

30};.test_cell_v{1,31};test_cell_v{1,32};test_cell_v{1,33};test_cell_v{1,34};test_cel

 240

l_v{1,35};test_cell_v{1,36};.test_cell_v{1,37};test_cell_v{1,38};test_cell_v{1,39};te

st_cell_v{1,40};test_cell_v{1,41};test_cell_v{1,42};.test_cell_v{1,43};test_cell_v{1,

44};test_cell_v{1,45};test_cell_v{1,46};test_cell_v{1,47};test_cell_v{1,48}];

% representative determination (calculate the mean)

Y_new=mean(V_new);

% calculate Euclidean distance between this group representative and the character

image to be recognized

%(after rotation)

% where:

% t1= Euclidean distance

% Y= DCV of character image to be recognized (sent from test.m)

t1b= sum((Y-Y_new).^2).^0.5;

. % Euclidean distances of characters before rotation

T1=[t1 t2 t3 t4 t5 t6 t7; t8 t9 t10 t11 t12 t13 t14; t15 t16 t17 t18 t19 t20 t21; t22 t23

t24 t25 t26 t27 t28];

% Euclidean distances of characters after rotation

T2=[t1b t2b t3b t4b t5b t6b t7b; t8b t9b t10b t11b t12b t13b t14b; t15b t16b t17b

t18b t19b t20b t21b; t22b t23b t24b t25b t26b t27b t28b];

% combine both Euclidean distances

D1=[t1+t1b]; D2=[t2+t2b];D3=[t3+t3b]; D4=[t4+t4b]; D5=[t5+t5b];

D6=[t6+t6b]; D7=[t7+t7b]; D8=[t8+t8b]; D9=[t9+t9b]; D10=[t10+t10b];

D11=[t11+t11b]; D12=[t12+t12b]; D13=[t13+t13b]; D14=[t14+t14b];

D15=[t15+t15b]; D16=[t16+t16b]; D17=[t17+t17b]; D18=[t18+t18b];

D19=[t19+t19b]; D20=[t20+t20b];D21=[t21+t21b];D22=[t22+t22b];

D23=[t23+t23b];D24=[t24+t24b];D25=[t25+t25b];

D26=[t26+t26b];D27=[t27+t27b]; D28=[t28+t28b];

% combined Euclidean distances

D=[D1 D2 D3 D4 D5 D6 D7; D8 D9 D10 D11 D12 D13 D14; D15 D16 D17 D18

D19 D20 D21; D22 D23 D24 D25 D26 D27 D28];

% find the minimum Euclidean distance

C = min(D);

C=min(C);

 241

% check the minimum Euclidean distance belong to which character: the character

will be recognized according to the shorter Euclidean distances

switch (C)

 case (D1)

 fprintf('. Alif \n');

% apply validation function

validation;

case (D2)

 fprintf('. Baa \n');

 % apply validation function

validation;

 case (D28)

 fprintf('. Ya \n');

% apply validation function

validation;

 otherwise

% Store as overlapping character

title([Character number:',int2str(n)],'Color','b');

SegmentedCharacter = I;

filename = (['C:\Documents and Settings\MohamedGumah\My

Documents\MATLAB\Segmentation\Final

work\store2\OverlappingCharacter_',num2str(n),'.bmp']);

imwrite(SegmentedCharacter, filename);

end

 242

APPENDIX I

LIST OF PUBLICATIONS

1- A. A. Ali and M. E. Gumah, “Arabic handwriting recognition: Challenges and

solutions,” Proc. International Symposium on Information Technology, 2008.

pp.2-6. Kuala Lumpur, Malaysia Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05561302

2- M. E. Gumah, E. Schneider, A. A. Ali,” Handwriting recognition system using

fast wavelets transform,” Proc. International Symposium on Information

Technology, 2010. Kuala Lumpur, Malaysia pp.1-6. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4631744

3- M. E. Gumah, E. Schneider, A. A. Ali, “Accurate Method for Malaysian-Cars

Plate Recognition Using Fast Wavelets Transform,” Proc. 3rd International

Conference on Informatics and Technology 2009, Kuala Lumpur, Malaysia

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7237

