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ABSTRACT 
 

In this research, off-line handwriting recognition system for Arabic alphabet is 

introduced. The system contains three main stages: preprocessing, segmentation and 

recognition stage. In the preprocessing stage, Radon transform was used in the design 

of algorithms for page, line and word skew correction as well as for word slant 

correction. In the segmentation stage, Hough transform approach was used for line 

extraction. For line to words and word to characters segmentation, a statistical method 

using mathematic representation of the lines and words binary image was used. 

Unlike most of current handwriting recognition system, our system simulates the 

human mechanism for image recognition, where images are encoded and saved in 

memory as groups according to their similarity to each other. Characters are 

decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, 

that represent a character in different possible shapes, are saved as groups with one 

representative for each group. The recognition is achieved by comparing a vector of 

the character to be recognized with group representatives.     

 

Experiments showed that the proposed system is able to achieve the recognition task 

with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a 

single character in a text of 15 lines where each line has 10 words on average.  
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ABSTRAK 

 

Dalam kajian ini, secara off-line untuk sistem pengenalan tulisan tangan huruf Arab 

diperkenalkan. Sistem ini mengandungi tiga tahap utama: pra-pemprosesan, 

segmentasi dan tahap pengiktirafan. Pada tahap pra-pemprosesan, Radon transform 

digunakan untuk merancang algoritma untuk laman, baris dan pembetulan Perkataan 

miring serta untuk pembetulan Perkataan SLANT. Pada tahap segmentasi, 

transformasi Hough pendekatan yang digunakan untuk ekstraksi garis. Untuk lini 

kata-kata dan kata untuk watak segmentasi, kaedah statistik menggunakan perwakilan 

matematik baris dan kata-kata citra biner digunakan. Tidak seperti kebanyakan sistem 

pengenalan tulisan tangan saat ini, sistem kami mensimulasikan mekanisma manusia 

untuk pengenalan gambar, di mana gambar akan dikodekan dan disimpan di dalam 

memori sebagai kumpulan sesuai dengan kesamaan mereka satu sama lain. Watak 

yang didekomposisi menjadi vektor pekali, dengan menggunakan transformasi 

wavelet cepat, kemudian, vektor, yang mewakili aksara dalam bentuk mungkin 

berbeza, akan disimpan sebagai kumpulan dengan satu wakil untuk setiap kumpulan. 

pengakuan ini dilakukan dengan membandingkan vektor dari karakter yang akan 

diiktiraf dengan wakil-wakil kumpulan.  

 

Experiment menunjukkan sistem ini mampu mencapai sehingga 90.26% ketepatan 

dalam pengenalan dengan masa hanya 3.41 saat, sistem ini mampu mengenal pasti 

setiap karakter yang berada di dalam petikan yg mengandungi 15 baris ayat dan 10 

perkataan di setiap baris.  
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3 ψ Greek letter PSI 

4 θ Greek letter THETA 

5 ζ Greek letter ZETA 

6 ∞ Infinity 

7 ∫ Integral 

8 ° Degree sing 

9 ∑ Sum 

10 π Pi≈3.14 

11 ⋁ logical conjunction OR 

12 ∧ logical conjunction AND 

13 < Less-than sing 

14 > Greater-than sing 

 

http://en.wikipedia.org/wiki/Logical_conjunction
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CHAPTER 1 

INTRODUCTION 

1.1 Chapter Overview 

This chapter presents the problem statement of this research. Then, the meaning of 

term “recognition” is highlighted to avoid any confusion between the term 

Recognition and the term Identification which is in a deferent research field. Then, 

challenges in the handwriting recognition field are discussed. Research objectives and 

the main contributions of this thesis are listed. Finally, this chapter is ended with the 

thesis outline. 

1.2 Problem Statement 

Pattern recognition is a wide field of applications that aims to enable the computer to 

have some human abilities such as vision and hearing by using artificial intelligence. 

Nowadays many developments are achieved in the field of artificial intelligence even 

if it is unlikely to build a system that can emulate all human abilities. The diversity of 

human abilities creates more challenges and generates new sub-fields of research. 

 

One of the research areas of pattern recognition is character recognition where the 

challenge is to make the computer able to read documents. In the literature, the term 

Optical Character Recognition (OCR) is used for numerous contexts ranging from 

isolated character recognition to document reading systems. 
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Character recognition systems can be used in a large variety of banking, business 

and data entry applications such as check verification and office automation. It is also 

used in other practical applications such as license plate recognition. 

 

Recognition of handwritten characters poses a greater challenge than typewritten 

characters because the challenge is how to make the computer able to recognize 

characters that were written by different writers. The variation in shape and size of the 

character, orientation, fragmentation and fusions are the main problems in 

handwriting recognition. The character recognition process and accuracy of result are 

also affected by the own nature of the alphabet in different languages. For Arabic 

characters, the recognition task is more difficult [1] since the characters are written 

cursively and dots are used to differentiate between several characters which have the 

same shape. That explains why only little research progress has been achieved 

compared to Latin and Chinese even if Arabic characters are used in several other 

languages such as Persian, Urdu, Jawi and Pishtu, involving more than a half of a 

billion people. 

 

Although researchers have been working on Arabic handwriting recognition for 

more than three decades, the subject is still one of the most challenging in pattern 

recognition. Most of the researchers used methods that extract features (skeleton or 

list of contours) from the character’s image. Then it is used in classification stage to 

recognize the image.  Artificial Neural Networks (ANN) and Hidden Markov Models 

(HMM) are the most popular classification methods. The weakness of ANN and 

HMM is the trade-off between accuracy and time consumption. That means, in order 

to get a high accuracy, many features that can provide enough information are needed. 

In this case a complex system is needed to be used which will take more time. If a 

simple system is used, the time will be reduced. But the accuracy will be reduced as 

well.  

 

The current offline handwriting recognition systems are still struggling to reach 

the human ability of recognizing handwritten text. Thus, in order to develop a robust 

handwriting recognition system, it is important to understand the human mechanisms 

of objects and patterns recognition. Then, explore the possibility of designing a new 
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handwriting recognition system that emulates the human mechanisms of objects and 

patterns recognition. 

1.3 Definition of Terms 

In order to present this research it is important to illustrate the meaning of the term 

’’recognition’’ in addition to other terms used in patterns recognition field. When 

dealing with handwriting, researchers refer to two different terms: Recognition, and 

Identification. In this research, Recognition of handwritten text will be studied. The 

Recognition of handwritten or typewritten text is the ability of a computer to receive 

and interpret intelligible handwritten or typewritten input from sources such as paper 

documents, photographs, touch-screens and other devices [2]. Identification is the task 

of identifying the author of a fragment of handwriting such as a signature. It also can 

be used in the field of forensic, where there may be a need to indentify a suspect using 

handwritten text [3].  

 

Optical Characters Recognition refers to the translation of scanned images of 

handwritten, typewritten or printed text into machine-encoded text [4]. In this thesis, 

the term” Off-line Handwriting Recognition” is used as it is more specific to the scope 

of this study.   

1.4 Challenges in Handwriting Character Recognition 

Handwriting recognition systems face several challenges. The main challenge is that 

each character in any language has specific shape, or number of specific shapes, but 

when that character is handwritten, it may appear in many shapes. People usually do 

not exactly follow the handwriting rules. Instead, each person has his own way to 

write manually, which makes the handwritten characters appear with many variations. 

 

For languages written cursively, where the characters in a word are connected, 

making that word as a complex stroke, there are two options to recognize a 

http://en.wikipedia.org/wiki/Image
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handwritten text. The first option is to segment the text into words, then recognize the 

word by itself. This option can be used when the word to be recognized belongs to a 

limited group of words, such as town names in mail addresses. In general application, 

using this option would require the availability of the whole lexicon of that language 

in order to train the system which seems impossible. The second option is to segment 

each word into characters, then, recognize each character separately. This option 

needs a robust segmentation method as each failure in the segmentation will result in 

recognition error.  

 

Finally, handwritten text usually need some kind of preparation to be processed 

known as preprocessing which aims to maximize shape information and reduce noise. 

There are different kinds of preprocessing operations involved in order to achieve 

several required tasks such as noise reduction, normalization and skew correction.  

1.5 Objectives of this research 

The research in characters recognition started in the second quarter of the 20th 

century. Today, even though there are many commercial and accurate systems for 

machine-printed characters, less success has been achieved with the handwritten 

characters. Among the languages, the characters of Arabic language have not received 

enough interests by the researchers and as a result little research progress has been 

achieved in comparison to other languages such as Latin and Chinese.  

 

The aim of this study is to propose an off-line handwriting recognition system, 

that can emulates the capability of human brain to recognize objects and patterns by 

recognizing handwritten characters without features extraction and classification 

stages. Instead, the system will use Fast Wavelet Transform to produce coefficient 

vectors of the characters images. This coefficient vector will be directly used to 

recognize the handwritten characters. This study aims to add a new contribution to 

Arabic handwriting recognition by: 
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i. Performing reliable preprocessing steps to prepare the handwritten script to be 

ready for segmentation and recognition stages.  

ii. Testing the available segmentation techniques that can deal with cursiveness-

overlapping problems, and subsequently to design a suitable segmentation method 

that can be used with Arabic words. 

iii. Designing a new recognition system that can accomplish the recognition task 

within a short time but with high accuracy.  

1.6 Main Contributions  

This thesis presents a new segmentation-based system for off-line Arabic handwriting 

recognition. The major contributions are listed below: 

 

i. An accurate algorithm for line extraction.  

The algorithm adopts Hough transform approach which is a global method for 

finding straight lines in a binary image. 

ii. A fast accurate algorithm for page, line and word skew detection and 

correction.  

The algorithm consists of three steps: conversion of word or line image into 

structuring element, applying Radon transform on the structuring element, and 

finally, reconstruction of the word or line image.  

iii. An algorithm for line to word segmentation suitable for Arabic handwritten 

text.   

The algorithm makes use of mathematical representation of the text line binary 

image, where spacing between words have zero value in the image array. 

Using this algorithm, the width of the connected components and distance 

between each of two adjacent components can be measured. The width of the 

connected components and the distance between them are used to determine 

whether that component is an isolated character, which can be sent to the 

recognizer, or a word/sub-word, that needs more segmentation.  
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iv. An algorithm for word to character segmentation suitable for Arabic 

handwritten words. 

The algorithm makes use of the thinning operation that limits the width of the 

word strokes into only one pixel. This is used to find possible segmentation 

points.  

 

 

v. An algorithm for overlapping-characters segmentation suitable for Arabic 

handwritten words.  

The algorithm uses the connection point between two overlapping characters 

as a segmentation path. 

vi. A reliable model for handwritten-character recognition.  

In this model, the character image will be decomposed using wavelets 

transform, then, the output of the decomposition operation, which will be 

represented as a coefficient, will be used for character recognition.   

1.7 Thesis Outline 

This thesis is divided into seven chapters. In the first chapter, the problem 

statement, the research objectives, and the main contributions are briefly presented. 

The second chapter presents an overview of Arabic alphabet, history of its 

development, the nature of Arabic characters, and the different Arabic handwriting 

styles, has been presented followed by an overview of handwriting recognition field. 

After defining the two main approaches in handwriting recognition, the online and 

offline approaches, the main stages in handwriting recognition system was discussed 

followed by a discussion on Arabic Optical Text Recognition (AOTR) systems. In 

order to have a good view of AOTR systems, AOTR software, AOTR competitions, 

and AOTR available databases were briefly discussed.  

 

 The third chapter presents the main parts of preprocessing stage: data acquisition, 

binarization, smoothing, normalization and thinning. For normalization, a fast 

algorithm which uses Radon transform method for skew correction is proposed. The 
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new proposed algorithm can also be used for page skew correction as well as base line 

correction. For slant correction, a three-step technique is proposed; detection of 

vertical strokes using Hough Transform, measurement of angle using boundary 

tracing routine, and slant correction using transform technique. For thinning, an 

algorithm that utilizes the algorithm proposed by Zhang and Wang is proposed. For 

skew detection and correction, the proposed algorithm consists of three steps: 

conversion of word or line image into structuring element, applying Radon transform 

on the structuring element, and finally, reconstruction of the word or line image. 

 

The fourth chapter presents the proposed a full set of segmentation which includes 

the segmentation of page into lines, sometimes known as line extraction, then, line to 

words, and, finally, word to character. In order to design a segmentation algorithm 

more suitable for Arabic handwriting segmentation, some Arabic handwriting 

characteristics that make segmentation more difficult compared to other languages 

have been highlighted. For the proposed segmentation model, several algorithms for 

various parts of the segmentation are proposed. 

 

The fifth chapter presents the proposed model for the recognition stage. The 

proposed system is presented as a simulation of the human mechanism of objects and 

patterns recognition. This chapter includes a review of previous works on using FWT 

in different image processing applications, such as face recognition, edge detection, 

character recognition, search in image database, and image compression. Then, we 

discuss the construction of the model by presenting each of the four proposed 

algorithms. The factors that affect the model accuracy are, and the methods to 

increase the model accuracy have will be proposed.  

 

 The sixth chapter presents experiments and results of all proposed methods, as 

well as, for the recognition model. The seventh chapter presents some discussion, a 

conclusion, and future works.    
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Chapter Overview 

In this chapter, the field of Arabic handwriting recognition is reviewed. It starts with 

an introduction to highlight the history of handwriting recognition as a sub-field of 

image recognition, which is one of the image processing applications. The nature of 

Arabic handwritten characters is discussed as they are the subject of this research. 

Then, Arabic characters in terms of history and different styles are presented. This is 

followed by a highlight on the difference between the two main approaches in 

handwriting recognition, online and offline approaches. Next, the main stages in a 

typical offline recognition system are presented. Finally, an overview of Arabic text 

recognition systems is presented which covers Arabic text recognition competitions, 

softwares, databases, and previously published works.   

2.2 Introduction 

Although image recognition has been an active research area since the early days of 

computers, it is still one of the most challenging and exciting fields of research in 

image processing field. Image processing, as one of the computer vision applications, 

relies on the theory of artificial systems that extract information from images. The 

image data comes in many forms like video sequences, camera pictures, or multi-

dimensional data from a medical scanner. In the early days of computing, it seemed 

difficult to process large sets of image data. In the late 1970s, more studies started to 

focus in the field. 
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Computer vision covers a wide range of topics that are related to other disciplines. 

Recently, there are numerous methods for solving various computer vision tasks, 

which seldom can be generalized over a wide range of applications. Many of the 

methods and applications are still in the stage of basic research, but more and more 

methods have been converted into commercial products, where they often constitute a 

part of a larger system which can solve complex tasks (e.g. in the area of medical 

images, or quality control and measurements in industrial processes). In most 

practical computer vision applications, the computers are programmed to achieve a 

specific task, but methods based on learning become more common [5]. 

 

The problem of character recognition has changed over time.  The task started to 

be only recognizing printed numerals of constant font and size. Nowadays, the 

challenge involves many levels including handwritten text. The challenge in 

handwritten text is that while human can easily (read) recognize cursive handwritten 

characters with 100% recognition rate when they are neatly written. There is no 

optical recognition system that could reach this rate yet. Thus, character recognition, 

particularly for handwritten characters, is still an active field of research. 

 

The challenge of character recognition is how to understand the concept of a 

character‟s shape and to create a mechanism that identifies any instantiation of this 

concept for the handwritten characters. The nature of the character which varies from 

one language to another, the variation in the character shape when it is written by 

different writers (sometimes even by the same writer) and the noise such as stains, 

dots, and gaps are the main difficulties faced in the recognition task. While it seems 

impossible to change the nature of the character in any language to make it easier to 

be recognized by the computer, the noise problem can be partly solved by designing 

more effective preprocessing techniques. 

 

Since 1929, when the first patent was obtained on OCR, many papers have been 

published on character recognition. With the rapid progress in computer applications, 

the research on character recognition has intensified, and more industrial applications 

have emerged. The first commercial machine developed in 1950, was used for sorting 

checks in banks by reading numbers in specific standardized font. The recognition 
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logic for the early systems was based on hardware technique rather than software. In 

early 1970s, researchers started utilizing software as the recognition logic [6]. Since 

then, OCR system has been used in many applications such as mail storing, zip code 

reading, helping the blind to read, automating office archiving and retrieving text, and 

car plate recognition [7].  

 

Since 1980, faster document readers have been developed. They are evaluated 

according to the type of fonts that they can recognize, and also according to the time 

needed for recognition. Recent commercial systems can recognize different writing 

styles for Latin, Chinese, Korean, Japanese, Cyrillic, and Arabic languages [8]. 

2.3 The Nature of Handwritten Characters  

The term alphabet refers to a writing system that has characters that represent both 

consonant and vowel sounds. The history of the alphabet started in ancient Egypt. By 

2700 BC Egyptian writing had a set of some 22 hieroglyphs to represent syllables that 

begin with a single consonant of their language [9].  

 

Presently, many alphabets are used worldwide such as Latin, Cyrillic Arabic, 

Hebrew, Russian, Chinese, Japanese, and many more. Table 2.1 shows some 

examples of alphabets belonging to different languages. 

 

Table 2.1: Some alphabets of different languages  

Language Example 

Arabic اٸر٥ه٪ ٤ٹى اٸؽهچ٪ اٸٽٵرڇتح ٌكچٌا 

Chinese 手写汉字识别 

Japanese 文字認識手書き 

Hebrew תו בכתב יד הכרה 

Hindi चररत्र हस्तलऱखित मान्यता 

Russian 
распознавание 
рукописного 

Thai รู้จ ำตัวอักษร เขียนด้วยลำยมือ 
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Obviously, there are clear differences between the shapes of the characters used in 

different languages. In some languages, dots and punctuations are parts of the 

characters. These dots and punctuations might be considered as noise and will be 

removed in the smoothing process which will cause a recognition error. Furthermore, 

some languages are written cursively which add more difficulties in word 

segmentation.  In addition to that, in some languages, such as Arabic, some characters 

are written in more than one style which makes it more difficult to have one 

abstracted form of the same character as these characters looks different depending on 

different style. 

2.4 The Arabic Characters 

Arabic characters are the alphabet in more than 30 different languages and slangs, 

such as Arabic, Persian, Urdu, Jawi, Pishtu, and Kurd (more than half a billion 

people). In addition to that, most Muslims (almost ¼ of the people on Earth) can read 

Arabic because it is the language of the Quran, the holy book of Muslims [10]. Arabic 

is the most widely used alphabet around the world after the Latin alphabet [11]. 

2.4.1 The History of Arabic Characters 

Arabic alphabet is a derivative of the Nabataean or the Syriac variation of the 

Aramaic alphabet, which descended from the Phoenician alphabet, which among 

others gave rise to the Hebrew alphabet and the Greek alphabet [12]. In the early 

years of Islam, in the seventh century AD, the Arabic alphabet first emerged in its 

classical form while being used to write the Quran. Subsequently, a system of dots 

was added to the Arabic alphabet to distinguish the characters that have the same 

shape.  

 

In the early eighth century A.D, diacritical marks started to be used to ensure more 

correct reading of Quran. For example, the Fatha which is a small diagonal line placed 

above a character, represents a short „a‟ sound with the character sound, while the 

Kasra is a small diagonal line placed below the character, and represents a short „i‟ 

sound.  
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However, these diacritical marks are seldom used in handwriting. Beside the 

teaching purposes, they are used exclusively in religious texts and literature [13]. 

When the Arabic alphabet spread to countries which used other languages such as 

Persian and Urdu, extra characters were added to spell non-Arabic sounds.  

2.4.2 The Nature of Arabic Characters 

Arabic alphabet contains 28 characters.  These characters are written cursively when 

they are used to write words. The shape of these characters, when the character is 

isolated, is different from its shape when it is connected with other characters. Their 

shapes will also be different according to their position in the word (beginning, 

middle or end of the word). This will increase the number of classes to be recognized 

from 28 to 84. Table 2.2 shows the Arabic characters in 4 different positions. 

 

There are some characteristics that make Arabic cursive writing unique compared 

to Latin, Chinese and Japanese.  These characteristics can be summarized as follow: 

 

i. While some languages script are written from left to right, such as Latin, or 

from top to bottom, such as Chinese, Arabic is written from right to left in 

both printed and handwritten forms, as shown in Figure 2.1. No upper or lower 

case exists in Arabic. 

 

 

 

 

 

 

Figure 2.1: Arabic writing direction 

 

ii. Arabic is always written cursively and words are separated by spaces. Most of 

the Arabic characters can be joined from both right and left side. Specifically, 

six characters can be connected from the right side only, these are: ق ,ل ,ن ,و ,چ, 

 .as shown in Table 2.2 ا

 

 

 الحروف العربية 
The direction of writing 
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Table 2.2: Arabic alphabet in four different positions 

No Name 
Position 

Isolated 
End Middle Beginning 

1 Alif ـا -ا  ـا  ا ا 

2 Baa ب تـ ـثـ ـة 

3 Taa  ـح -ـد  خ ذـ ـرـ 

4 Thaa ز شـ ـصـ ـس 

5 Jeem ض ظـ ـعـ ـط 

6 Haa غ ؼـ ـؽـ ـػ 

7 Khaa ؾ ــ ـفـ ـؿ 

8 Daal ق ق ـك ـك 

9 Thaa

l 
 ل ل ـم ـم

01 Raa ن ن ـه ـه 

11 Zay و و ـى ـى 

12 Seen ًي ٌـ ـٍـ ـ 

13 Shee

n 
 َ ِـ ـّـ ـُ

14 Saad ٓٔـ ـٕـ ـ ْ 

15 Shaa

d 
 ٖ ٘ـ ـٙـ ـٗ

06 Ttaa ٜٛـ ـٝـ ـ ٚ 

17 Dtha

a 
 ٞ ٠ـ ـ١ـ ـٟ

18 Ain ٢ ٤ـ ـ٥ـ ـ٣ 

19 Ghee

n 
 ٦ ٨ـ ـ٩ـ ـ٧

20 Faa ٬ـ ـ٭ـ ـ٫ ٪ 

21 Qaf ٮ ٰـ ـٱـ ـٯ 

22 Kaf ٲ ٴـ ـٵـ ـٳ 

23 Lam ٶ ٸـ ـٹـ ـٷ 

24 Mee

m 
 ٺ ټـ ـٽـ ـٻ

25 Noon پ ڀـ ـځـ ـٿ 

26 Haa ڂ ڄـ ـڅـ ـڃ 

27 Wow چ چ ـڇ ـڇ 

28 Yaa ًي ٌـ ـٍـ ـ 
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iii. Diacritical marks are used in limited cases to help the reader to pronounce the 

words correctly.  Without these diacritical marks, some words may have 

several different meanings. Thus, diacritical marks are used to determine a 

particular meaning.  Table 2.3 shows a list of Arabic diacritical marks.  

 

Table 2.3: Arabic diacritical marks 

Diacritical marks Usage Example 

Fatha 
The character is pronounced with 

an „a‟ sound  َب 

Damma 
The character is pronounced with 

an „o‟ sound  ُب 

Kasra 
The character is pronounced with 

an „i‟ sound  ِب 

Shadah Indicates gemination  ّب 

Sukun Indicates a consonant  ْب 

Madah  only with Alif 
Indicates a glottal stop followed by 

long „a‟ sound آ   

Tanween 
Indicates that the vowel is followed 

by the consonant „n‟ ٍبٌ تاً ب 

 

iv. The presence of the following six characters (ا ,ق ,ل ,ن ,و ,چ) in a word, leads to 

divide the word into two or more sub-words separated by spaces, usually 

shorter than the space between words. Otherwise, the word will appear 

connected. This must be considered to avoid segmenting a word into multiple 

words. Table 2.4 shows some examples of words and sub-words 

 

Table 2.4: Examples of word and sub-word 

Connected 

word 
2 sub-words 3 sub-words 4 sub-words 

 ټؽٽك
 ٴاٸڇٔاٌا ټاٸٍىٌا ٌاٸٻ

 ٴا ٸڇ ٔا ٌا ټا ٸٍى ٌا ٌا ٸٻ

 

v. Fifteen characters have dots that distinguish characters that share the same 

primary shape. Some characters are distinguished by adding one dot below the 

character (only ب). Dot is added above the character in ( ٦  –ٞ  –ٖ  –و  –ل  –ؾ 
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 Others have two dots .(ض only )  or in the middle of the character ( پ -٪  –

above, such as in ( ٮ - خ  Two characters are .(ي) or below, in only (ج - 

distinguished by three dots above the character which are ( َ -ز )   According 

to the writing style, the two dots can be written separately or connectively as 

small parallelogram while the three dots can be written separately or 

connectively as small angle, as shown in Figure 2.2. In other languages that 

use the Arabic alphabet such as Persian, dots have been added to other 

characters. 

 

 

Figure 2.2: Dots in different Arabic writing styles 

2.4.3 Different Arabic Writing Styles  

Arabic text can be written in many different writing styles. Since the early ages of 

Islam, Arabic calligraphy has changed over time into many nicely shaped styles. The 

Arabic calligraphy which is widely used to write copies of the Quran and as 

decoration arts has been influenced by the cultures and arts of different people who 

converted to Islam such as Persians and Turks. In the present days, six writing styles 

are widely used which are: Naskh, Ruqq‟a, Kufic, Thuluth, Farisi, and Diwani. The 

Arabic characters do appear in quite different shapes when they are written in these 

different styles [14]. 

2.4.3.1 The Naskh script 

In the tenth century, this style became the generally used style for writing the Quran. 

Because of its legibility, it was adapted as the preferred typesetting and printing style, 

and became the most popular used script. In Naskh script, character shapes appear 
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quite round and the characters are connected with thin lines. Figure 2.3 shows a 

sample of Naskh script [15]. 

 

Figure 2.3: A sample of Naskh script 

2.4.3.2 The Ruqq’a script 

The Ruqq‟a is the simplest writing script in Arabic. That makes it very popular for 

handwriting since it is usually written without using diacritical marks except in few 

necessary cases. Figure 2.4 shows a sample of Ruqq‟a script [15]. 

 

 

Figure 2.4: A sample of Ruqq‟a script 

2.4.3.3 The Kufic script 

Kufic script grew with the beginning of Islam when it was used to write the Quran, It 

is called by the name Kufic since it was first established in the land of Kufa in Iraq. 

The Kufic script is characterized by two main features: the short vertical characters 

and long horizontal characters. It is usually used to write titles and as decoration arts. 

Figure 2.5 shows a sample of Kufic script [17]. 

 

 

Figure 2.5: A sample of Kufic script 
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2.4.3.4 The Thuluth script  

This large and elegant cursive script is widely used for mosques decorations. In this 

script, the forms of characters are many and varied and the forms are not restricted to 

any particular style. Thus, one sentence can be written in several shapes. Figure 2.6 

shows a sample of Thuluth script [18]. 

 

 

Figure 2.6: A sample of Thuluth script 

2.4.3.5 The Farisi script 

The Farisi script was developed in Iran in the thirteenth century AD. It is a legible, 

clear script where characters seem to have descended in one direction, and the 

beauties of the characters are enhanced by soft and rounded lines. It is widely used for 

Persian and Urdu scripts. Figure 2.7 shows a sample of Farisi script [19]. 

 

 

Figure 2.7: A sample of Farisi script 

2.4.3.6 The Diwani script 

The Diwani script is a cursive script of Arabic calligraphy. It was developed in the 

sixteenth century AD by Turks calligraphers during the reign of the Ottoman Empire, 

where it was used to write royal orders. It appears in beautiful and overlapping lines, 

which cause some difficulties to distinguish some of the characters. Nowadays, it is 

only used for decoration arts. Figure 2.8 shows a sample of Diwani script [17]. 
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Figure 2.8: A sample of Diwani script 

 

Although, there are several styles of Arabic writing, but only two of them are 

widely used by ordinary people in handwriting, these two styles are Naskh and 

Ruqq‟a styles. The rest of the styles are used only by calligraphers in decorations and 

calligraphy arts. Each Naskh and Ruqq‟a styles has its own rule, which distinguishes 

the way each character should be written and how these characters should be 

connected, however, only few writers know the rules. Consequently, the handwriting 

of ordinary people is a mix of both styles [20].   

2.5 Character Recognition Systems 

Character recognition is one of the pattern recognition sub-fields, such as speech 

recognition, facial recognition, iris recognition and finger-print recognition, where the 

aim is to categorize patterns, based on statistical information extracted from the 

patterns or a priori knowledge. The main task of researchers in character recognition 

field is to develop systems that can convert written documents to machine-encoded 

text. This task has been accomplished with a high accuracy level with printed 

documents mostly, for all different languages, but it is still an open challenge in the 

case of handwritten documents particularly with languages that use cursive 

handwriting such as the Arabic language.  

 

The main reason of low accuracy accomplishment in the case of handwriting is 

the lacking of a priori knowledge of each handwritten character, unlike in the case of 

printed characters, where a single form of each printed character (a priori knowledge) 

is available. The recognition system should classify the tested characters based either 

on statistical information extracted from the character or a priori knowledge. In case 

of handwritten characters, there is no exact shape of the character. Although 
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handwritten and printed characters are similar in general, handwritten characters can 

have more shapes, depending on the multiplicity of writers, their different ways in 

handwriting, and how far they apply the writing rules. Thus, in case of handwritten 

characters, each character should have abstracted form. The accuracy of the system 

will depend on how much the character, which is the object to be recognized, is close 

to the abstracted form.   

 

In terms of input type, handwritten recognition systems are classified into two 

main approaches: On-line and off-line recognition systems. 

2.5.1 Online Recognition systems 

Online character recognition systems, known as real-time or dynamic systems, can 

recognize the characters in real time. The user writes directly on a digital device 

called tablet using a special stylus pen. When the user starts to write, the tablet will 

record the strings of coordinates separated by signs, which indicate when the pen has 

ceased to touch the tablet surface. In this case, the computer recognizes characters as 

they are written [21]. Figure 2.9 shows a sample of the tablet used in on-line 

handwriting recognition. 

 

 

Figure 2.9: An example of on-line handwriting recognition tablets 

 

The main advantage of on-line devices is that they capture the dynamic 

information of the writing which consists of the number of strokes, the order of the 

strokes, the direction of the writing for each stroke, and the speed of the writing 

within each stroke. This information, which facilitates the process of character 

recognition, is not available in off-line recognition systems [20]. 
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Another on-line handwriting recognition advantage is interactivity and adaptation. 

In an editing application, the writing of a symbol can cause the display to change 

appropriately. Recognition errors can also be corrected immediately. On the other 

hand, when some of the written characters are not being accurately recognized, the 

user can alter their drawing to improve recognition. 

 

There are two main disadvantages of on-line handwriting recognition. First, the 

writer is required to use special equipment which is not as comfortable and natural to 

use as pen and paper. Second, the nature of real-time recognition systems limits their 

use in some cases such as historical documents. 

 

The tablet is the main equipment in on-line handwriting recognition systems. 

Tablets can be used for a variety of graphical interaction tasks. Mainly, tablet is used 

for real-time capture of line drawings, such as handwriting, signatures, and flowcharts 

[22]. 

 

On-line handwriting recognition systems can be classified into two distinct 

families of classification approach: formal structural and rule-based approach, and 

statistical classification approaches. The formal structural and rule-based approach 

proposes that characters shape can be described in abstract fashion regardless of the 

shape variations that occur during execution. This approach requires robust and 

reliable rules to be defined but does not require a large amount of training data. 

However, this approach has been rejuvenated recently with the incorporation of fuzzy 

rules and grammars that use statistical information on the frequency of occurrence of 

particular features.  

 

In the statistical approach, the shape is described by a fixed number of features 

defining a multidimensional representation space in which different classes are 

described with multidimensional probability distributions around a centred class. 

There are three groups of methods that use statistical approach: explicit, that uses 

discriminant, principal component and hierarchical analysis, implicit that use artificial 

neural network, and Markov modelling methods [23]. 
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2.5.2 Offline Recognition Systems 

In offline recognition system, the recognition process is performed after the text is 

written. After the document is fed to the system as a gray-scale image, it will be 

converted to a black and white image. In some methods, features can be directly 

extracted from the gray-scale images. To obtain clean and clear image, more 

preprocessing steps can also be applied such as noise reduction, interfering-lines 

removal and smoothing. This cleaned image is then passed to a segmentation stage 

that aims to split a large image into small regions of interest. For example, the first 

algorithm segments the whole page of text into lines of text. Then, lines are 

segmented into words, words into characters or sub-characters. Then, the algorithm 

output will be isolated characters or words depending on the recognition strategy. 

This output will go to the feature extraction stage.  

 

At this stage, the information required to distinguish between classes is extracted. 

In the final stage, the extracted features will be compared to those in the model set. A 

typical off-line character recognition system represented as in a flowchart diagram is 

shown in Figure 2.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: A typical off-line character recognition system 

Original text image 

Scanned image 

Preprocessing  

Segmentation 

Feature extraction 

Classification and 

recognition 

Recognized text  



 23 

Offline recognition systems can be classified into two categories in terms of input 

text: isolated characters input, where the input is one character, and connected 

characters input where the input is one or more word. The main difference between 

them is that in the isolated characters input, the system usually needs segmentation 

stage, where the words should be segmented into isolated characters. The 

segmentation stage needs time to process character segmentation. Therefore, in 

general, the systems that use connected characters as input are more accurate and take 

less time. 

2.5.2.1 Scanning Stage 

As shown in the flowchart diagram, the first step in off-line recognition systems is to 

capture the written text and convert it into digitized form. To do so, optical scanner or 

digital camera is generally used. A scanner with high resolution (600-1200 dots/inch) 

is recommended [24]. Scanners with high resolution result images with less noise, 

which is important to reduce the preprocessing stage. Compared with other devices, 

such as digital cameras, scanners are more convenient to use in character recognition 

systems. 

2.5.2.2 Preprocessing Stage 

After the scanning stage, a digitized raw image is obtained.  Several operations are 

needed to improve the features extraction by minimizing the noise, cleaning and 

thinning the image. 

 

The skew, which is the slant of the text line with respect to a real or imaginary 

baseline, speckles, generally caused by ink spots, and blurring, mainly caused by low 

quality scanners, are the most common optical distortions that affect recognition 

accuracy level [10]. Generally, the accuracy of the system depends on the quality of 

the input image of the text which depends on the efficiency of preprocessing 

operations. A summary of most commonly used preprocessing operations is presented 

herewith. 

i. Binarization 

This process is to convert a gray-scale image into binary image in order to make the 

image clearer and sharper. Figure 2.11 shows samples of three Arabic characters as 
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color image, gray image and binary image. Binarization can be considered as a 

particular case of segmentation since it aims to make two regions, one made by 

objects (information) and another one made by the background. The existing 

binarization methods are generally classified into two categories: global and local 

approaches. In global approaches, a threshold is calculated and applied to all the 

pixels as single threshold. In local methods, a separate threshold for each pixel or a 

group of pixels is computed based on local features of the pixel [25]. However, both 

approaches can be combined for a more robust performance. 

 

 
Figure 2.11: Three Arabic characters as a color image, gray image and binary image 

 

Nikolaos and Dimitrios described algorithms that utilize spatial structure, which is 

the image representation by its pixels value, global and local features or both for 

digital image acquisition of historical documents. The estimated results for each class 

of images and each method are further enhanced by an image refinement technique 

and a formulation of a class proper method by adjusting the binarization method 

according to the category of the image to increase readability of the texture [26].   

ii. Filtering and smoothing: 

This step is aimed at removing unwanted variation from the input image. The input 

image could be filtered and smoothed using mathematical morphology which consist 

two processes: closing process and opening process. The closing process eliminates 

small holes and fills gaps, while the opening process breaks narrow isthmuses, 

eliminates small islands and sharp peaks or caps [27].  

iii. Thinning  

Thinning is the process of minimizing the width of a line in the input image from 

many pixels wide to just one pixel [28]. This process can be performed by algorithms 

based on an edge erosion technique, where a window is moved over the image with a 

set of rules applied to the contents of the window. These algorithms could be 
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performed sequentially (one pixel at a time) or simultaneously (parallel algorithms). 

The parallel algorithms are preferred due to its simplicity and hardware feasibility 

[29]. 

 

Mahmoud et al. have used clustering based skeletonization algorithm for thinning 

of Arabic characters [30]. Ahmed and Ward presented a rule-based system 

implementation for thinning that can be used to thin symbols, characters, or characters 

from different languages. Their system uses twenty rules that are applied in parallel 

on every pixel, where the number of iterations is half the number of pixels in the 

thickest part of the pattern [31].  

 

Zhu and Zhang presented a method of shape-adaptive thinning algorithm which is 

used for obtaining skeletons of binary images. Their algorithm is based on the 

substitution of some pixels on the strokes or curves by using three groups of templates 

designed according to the complexity of these stroke and curve connection. They 

claimed that their algorithm has given good performance with Chinese characters, 

Latin alphabets and numerals [32].  

iv. Normalization 

Normalization is the process of scaling characters to fix the size and to center the 

position. This process is important for handwritten characters as handwritten 

characters from different writers usually come in different sizes. The normalization 

methods can be classified into three main categories: multirate-based normalization 

methods, ratio-based methods and simple-scaling methods. The multi-rate-based 

normalization methods involve image dimension changes, which imply resembling of 

the image pixels by different factors in the orthogonal dimensions. In the ratio-based 

methods, each pixel in the input image is treated as square and each pixel in the 

output image as rectangular. Then, the value of each pixel in the output image is 

calculated as a weighted average of the overlapping pixels in the input image. In 

simple-scaling methods, a bound boxed binary image is taken and scaled 

proportionally to a specified size [33]. 
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Wakahara et al. presented a category-dependent normalization technique for 

Japanese character recognition system that normalizes an input pattern against each 

reference pattern adaptively using global affine transformation. Their technique relies 

on computational procedure, in which the shape of an input 2-D pattern is adapted to 

yield the best match with each normalization criterion [34]. 

 

Maddour et al. presented a normalization method for Arabic handwritten 

characters based on the Fourier Transform of Arabic character contours. It describes 

the boundary of handwritten Arabic characters by Fourier coefficients. Then, it 

applies geometric transformation to reduce handwritten variability within these 

coefficients. They claimed that their method can enhance the performance of the 

character recognition since it increases the distance between the distinct characters 

and reduces the distance between the identical characters [35]. 

v. Slant correction 

Since handwritten words are usually slanted or italicized due to the mechanism of 

handwriting and the writer‟s personality, slants have to be corrected to simplify the 

character segmentation task and to improve the accuracy of the recognition system. 

The slant of a word is the angle between the longest stroke in a word and the vertical 

direction [36]. It can be considered as an obvious measurable factor of different 

handwriting styles. 

 

Several methods for estimating word slant have been proposed such as length 

based method, projection method and extreme analysis method. In the run-length 

based method, the slant is estimated from the average direction of the remaining near 

vertical strokes after removing the horizontal strokes. In the projection method, the 

slant is estimated by the analysis of slanted vertical projections at various angles. The 

average slant is the greatest positive derivative in all of these projections. In the 

extreme analysis method, in order to estimate the word slant, valid correspondences 

between the maximum and minimum points of the word contour are established [37]. 

 

Bertolami et al. investigated the use of a non-uniform slant correction technique 

that lies in the problem that many handwriting styles exhibit a variety of different 
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slant angles within a single line of text or even within individual words. To solve that 

problem, they applied a dynamic programming based algorithm where the local slant 

angles represent the variables to be optimized [38]. 

vi. Base line and skew detection 

In cursive scripts such as Arabic, base line can be defined as the line on which all 

characters lie. Base line provides the needed information about the connection points 

between characters and the text orientation. Figure 2.12 shows the base line with 

Arabic text. 

 

 

 

 

 

Figure 2.12: The base-line with Arabic text 

 

Base line can also be used to detect skew alignment of the text, for lines extraction 

and for word segmentation [10]. Several methods can be used for base line detection 

such as Hough Transform, Projection Histogram, Method of least Squares, and Word 

Centroid Least Squares [39]. 

 

Li et al. used a state-of-the-art image segmentation technique that combines the 

advantages of the bottom up and top-down approaches for text line detection in 

several different languages, such as English, Chinese, and Korean. After converting a 

gray scale image to a binary image, text lines are extracted by evolving an initial 

estimate using the level set method. With the prior knowledge that a text line is a 

horizontally elongated shape, the text line boundary is forced to grow faster in the 

horizontal direction [40]. 

 

Lu and Tan presented detection and categorization technique of detecting the 

orientation of document images and categorizing documents according to the 

underlying languages. In their method, each document image is converted into a 

document vector through the exploitation of the density and distribution of vertical 
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component runs. First, a pair of vector templates is constructed through a training 

process for each objected language. Then, orientation and category of the query image 

are determined based on distance between the query document vector and the 

constructed vector templates. They reported that their method is more suitable with 

documents containing a large number of characters [41]. 

 

Al-Shatnawi and Omar presented a brief comparison between the methods of 

Arabic base line detection and a list of clarified challenges facing base line detection 

with Arabic text. The methods used for Arabic base line detection are based on 

horizontal projection, word skeleton and principal component analysis, while the 

cursive nature of Arabic words, diacritics, such as dots and zigzag, word slope and the 

existence of sub words in Arabic text are the most affected issues in detection of base 

line in Arabic text [42]. 

2.5.2.3 Segmentation Stage 

Segmentation stage is a crucial step especially in Arabic handwriting recognition 

system due to the cursive nature of the handwriting. Therefore, this stage consumes a 

large portion of the recognition process time in most Arabic handwriting recognition 

systems. After performing the preprocessing stage, the segmentation stage starts with 

page segmentation which involves two processes, page decomposition, which aims to 

separate different page elements such as text, graphs, background and text 

segmentation where text will be progressively segmented into text lines, then into 

words, and finally, in some systems, into characters [24]. Several techniques have 

been used for page decomposition. These techniques can be classified into three 

categories, top-down, bottom-up, and hybrid solutions. The horizontal projection 

where minimum value (appears as a gap) represents a line-break in the text is the most 

used technique in text segmentation. This technique is not suitable in cases of 

overlapping characters such as Arabic handwritten text. Therefore, several techniques 

have been developed for handwritten Arabic text. Some researchers used a method 

that identifies the different sub-words by tracing their contours and then shifting them 

a part by inserting a blank column between them [43] others chose to trace the word 

skeleton [44]. 
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Segmentation methods can be classified into three classes: holistic methods, 

image-based methods and recognition-based methods. In holistic methods, the system 

is designed to recognize words as a whole, avoiding the need to segment into 

characters. Since they do not deal directly with characters but only with words, 

predefined lexicon is usually used with these methods. Thus, this method is more 

suitable for those applications where the lexicon is statically defined such as check 

recognition and name recognition of cities. Dynamic programming with optimization 

criteria based either on distance measurements or on a probabilistic framework and 

Markov or hidden Markov chains are the most used techniques with these 

segmentation methods [45]. 

 

In Image-based methods, decomposition of the image into a sequence of sub-

images using general features is used. That decomposition can be achieved by two 

ways: 

a) Directly into characters using several techniques such as usage of white space 

and pitch, usage of vertical histogram, usage of connected components. 

b) With contextual post-processing, where the segmentation obtained by 

decomposition is later subjected to evaluation based on linguistic context. This 

can be achieved by Markov model or by spell-checker technique. 

 

In recognition-based methods, image is divided systematically into many 

overlapping pieces without regard to content. These methods could be performed by a 

serial windowing optimization scheme where recognition is done iteratively in a left-

to-right scan of words, searching for the best recognition result, or by a parallel 

optimization scheme that generates a lattice of all possible feature-to-character 

combinations. The final decision is found by choosing an optimal path through the 

lattice. The windowing process can operate directly on the image pixels, or it can be 

applied in the form of weightings or groupings of positional feature measurements 

made on the images [45]. The scan direction is determined according to technical 

considerations regardless of alphabet writing direction.  However, many researchers 

have chosen to combine more than one method in order to get more accurate results of 

segmentation stage. 
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Wang et al. presented a multi-branch HMM modelling method and HMM based 

two -pass modelling approach. First, three models are built for each character: one to 

model the feature vector sequence created with the normal sliding window zone 

coding method, and two auxiliary models to model the feature vector sequence 

assuming a down-shift and up-shift of the two base lines and applying the same zone 

dividing method Then, to enhance the segmentation ability in case of  too large base 

line fluctuation, an HMM based two-pass is used by using the set of HMMs for 

vertical features trained in the first pass (V-HMMs) for segmentation. Then, another 

set of HMMs for horizontal features (H-HMMs) is created for use in the second 

recognition pass to verify the result of the first pass [46].  

 

Marti and Bunke presented a system for recognizing unconstrained English 

handwritten text based on a large vocabulary. In their system, text lines are segmented 

into single words by measuring distances between connected components. Then, 

using a threshold, the distances are divided into distances within a word and distances 

between different words. A line of text is segmented at positions where the distances 

are larger than the chosen threshold. The threshold that separates intra- and inter-word 

distances from each other varies: if the threshold is small, many errors are caused by 

over-segmenting, while for large thresholds under-segmentation errors occur [47].  

 

Tay et al. presented off-line handwriting recognition system using a hybrid of 

neural networks and Hidden Markov Models. In this system, the recognizer does not 

make hard decision at the character segmentation process. Instead, it delays the 

character segmentation to the recognition stage. In the segmentation process, all 

possible ways for cutting a word image into characters are proposed. By using 

character recognition results on each segmentation candidate character by the neural 

networks, the Hidden Markov Models decide the best segmentation path based on the 

word similarity computation [48].  

 

Tripathy and Pal proposed a water reservoir concept based scheme for the 

segmentation of unconstrained Oriya handwritten text into individual characters. At 

first, the document is divided into vertical stripes. Then, the width of a stripe is 

calculated by analyzing the heights of the water reservoirs obtained from different 
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components of the document and computed stripe-wise horizontal histograms, and the 

relationship of the peak-valley points of the histograms is used for line segment. Next, 

text lines are segmented into words based on vertical projection profile and structural 

features of Oriya characters. To segment words into character, isolated and connected 

characters in a word are detected. Then, structural, topological and water-reservoir-

concept based features are used to segment connected characters [49]. 

 

Sas and Markowska-Kaczmar presented a semi-supervised word segmentation 

approach that can be used when character sequence constituting a word presented on 

the image is known, but the character boundaries are not given. Their approach is 

suitable for analytic writer dependent handwriting recognition, where the training set 

for personalized character classifier must be created for each writer from the text 

corpus consisting of text samples of an individual writer. First, the word images are 

over-segments into sequence of graphemes. The grapheme sequences subdivision 

results in the hypothetical character images sets maximizing average similarity in 

subsets corresponding to characters from the alphabet. Then, by using evolutionary 

algorithm, the sample character images extracted in this way is used to train the 

character classifiers [50]. 

 

Lee and Verma proposed an over-segmentation and validation strategy for off-line 

cursive handwriting recognition that is performed based on pixel density between 

base lines to find all possible character boundaries. Then, the incorrect segmentation 

points from over-segmenting module are removed by validating process. First, hole 

detection algorithm detects and deletes segmentation point with holes. Then second 

algorithm scans through all over-segmentation points recursively to compare total 

foreground pixel between two neighbouring segmentation points to a threshold value. 

The third validation step is achieved by neural network classifier trained on pre-

segmented characters. Finally, the oversized segment validation process checks if 

there is any missing segmentation point between neighbouring characters [51]. 

 

Later, Lee and Verma proposed a binary segmentation with neural validation 

approach for off-line handwriting recognition that contains over-segmentation based 

on suspicious segmentation point generator, binary segmentation and neural 
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validation modules. For over-segmentation based on point generator, parameters of 

stroke width and base lines are calculated from each word image. Then, over 

segmentation between baselines is performed to produce over-segmentation points 

which are passed through multiple validation modules to decide the final suspicious 

segmentation points. Then, foreground pixel contour tracing algorithm is used to find 

a segmentation path to be used for dividing the image into two parts which will be 

tested under specific conditions to determine the segmentation points. Then, neural 

validation is performed by a neural character classifier trained on pre-segmented 

characters to resolve the three segments to determine if each segment (defined as left, 

right and joined segment) is a legitimate character or not [52]. 

 

The segmentation step is more difficult in case of Arabic handwriting because of 

the connectivity of the Arabic characters and the different styles of handwriting. The 

segmentation process can be skipped using holistic word recognition where words are 

not to be segmented into characters, but such approaches are limited to available 

training words. The most general handwriting recognition techniques should handle 

character segmentation ambiguity by means of over-segmentation and sophisticated 

recognition algorithms [53]. Although some algorithms designed for Latin cursive 

word segmentation might be used for Arabic word, they are not adequate for that task, 

due to the different nature between Latin and Arabic alphabets [24]. 

 

Sari et al. presented Arabic character segmentation method, based on 

morphological analysis of word contours. To extract morphological rules, topological 

characteristics of Arabic text were exploited, and then these rules were used to 

identify ideal segmentation points. In order to determine segmentation points based on 

identified features, the outer contour of Arabic words is analyzed by filtering 

primitive [54].  

 

Lorigo and Govindaraju proposed an algorithm for the segmentation and pre-

recognition of off-line handwritten Arabic text. Their method over-segments each 

word and removes extra breakpoints using knowledge of character shapes. After 

obtaining an intuitive description of character shapes, which facilitates analysis and 

prediction in new scenarios to get a strong understanding of character and ligature 
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shapes, the proposed algorithm scans across the image for horizontal edges near the 

base line that is related to the contour trace, but restricted to a smaller area and 

required base line information. They claimed that this strategy works well for the 

Arabic script in which most strokes are connected but visually distinct [55]. 

 

Natarajan et al. presented a framework for stochastic segment modelling as a part 

of their HMM based recognition system. The stochastic segment modelling 

framework starts with generating a set of recognition hypotheses using the HMM 

system trained on short-span features. Then, for each hypothesis, stochastic segments 

are extracted using the character segmentation provided by the HMM. For the 

segmental classifier, structural features that represent shape characteristics of the 

characters are extracted. Then, a score for each character in the hypothesis is 

computed using a classifier trained on the stochastic segments from the training data. 

Finally, score from HMM and segmental model are combined to generate the best 

hypothesis [56]. 

 

Wshah, et al. proposed segmentation algorithm for off-line handwritten Arabic 

words. The algorithm segments the connected characters into smaller segments, each 

of which contains no more than three characters and each character is segmented into 

five pieces at most. After preprocessing steps that include noise removal and 

smoothing, a chain code generation converts the binary image input into a chain code 

representation by coding the boundary contours of components in the image, while 

preserving the positional and directional information of adjacent pixels. Then, a 

skeleton algorithm will find one pixel thick representation, showing the center lines of 

the text by compressing the data and retaining significant features of the pattern [57].  

2.5.2.4 Feature Extraction Stage 

After the segmentation stage, the feature extraction process will take place, where the 

character or primitive being produced in the segmentation stage will be used to extract 

features that will be passed for the classification stage. Features that can be extracted 

from an image can be categorized into three classes: spectral features such as color, 

tone, and ratio, geometric features such as edges, and lineaments, and textural features 

such as pattern, homogeneity, and spatial frequency [58].  
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To choose a suitable method for character recognition system, the requirement of 

the classifier should be considered as well as the nature and output of the 

preprocessing stage, since some methods can work only on gray level sub-images of 

single characters while others work on solid binary image, skeletons or contours. 

Some methods can work on more than one type of preprocessing output. According to 

Trier, et al, the main feature extraction methods can be summarized as follows [39]: 

 

i. Template matching:  

In this method there is no real extraction of any features, instead, the character image 

itself is used as a feature vector to be compared with the template by measuring the 

similarities between them. The template that has the highest similarities with the 

character image will be used to define it. This method suffers from many limitations 

since one template is only capable of recognizing characters of the same rotation, 

illumination, and size and it is very sensitive to noise and variations. Thus, it is not 

suitable to be used with handwritten characters. 

 

ii. Unitary Image Transforms 

Instead of using all the pixels of the gray scale image as features, as the template 

matching method, unitary transform is used here to reduce the number of features. 

Since the pixels in the transformed space are ordered by their variance, thus, only the 

pixels with the highest variance are used as features. Several transforms can be 

applied to train the set to obtain estimated space such as Haar, Fourier, Cosine, and 

Slant transforms. The input image has to be exactly the same size and should be 

rotated to standard orientation since the features extracted from unitary transforms are 

not rotation-invariant. 

 

iii. Zoning 

In this method, the character image (or its skeleton) is divided into zones, then, the 

average of gray level is computed for each zone, which is used as a feature. This 

method is sensitive to variation of illumination. 

 

iv. Geometric Moment Invariants 

Moment invariants are used in this method as features since they are invariant to 

shifts, to changes of scale and to rotations, or to shifts and to general linear 
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transformations of the image. Features invariant to illumination can be developed for 

these features to be more useful for gray level character images. 

 

v. Projection histogram 

In this method, features can be extracted by using a fixed number of bins on each axis 

by merging neighbouring bins and dividing by the total number of print pixels in the 

character image. This method is also sensitive to rotation and variability in writing 

style. 

 

vi. Contour profiles 

In this method, each half of the contour is approximated by a discrete function of one 

of the spatial variables; then, features are extracted from the discrete function. Both 

vertical and horizontal profiles can be used and each of them can be either outer or 

inner profile. 

 

vii. Fourier descriptors 

Fourier descriptors offer a shape description using its spatial frequency content such 

as representing the boundary of the shape as a periodic function to obtain a set of 

coefficients that capture shape information which can be used as features [59]. 

2.5.2.5 Classification Stage 

This is the main stage in the character recognition systems where the features 

extracted from previous stages are compared to those of the model set. Generally, 

classification methods can be categorized in three types: structural methods, statistical 

methods and using of mathematical formalisms. In statistical methods, template 

matching is one of the most used techniques, where individual image pixel is used as 

feature. Thus, classification is processed by comparing the input character image with 

a set of templates from the class of each character. Each comparison shows a 

similarity measure between the image character and the template. The amount of 

similarity increases when the pixels in the image character match to the same pixels in 

the template image. The character will be recognized as the most similar template.  
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In structural methods, structural features such as character strokes, holes, or 

concavities are used as well as decision rules to recognize the characters. Structural 

methods are trainable, where having a good feature set and a good rule-base will 

result in higher accuracy and less consumed time. The most mathematical formalisms 

used are discriminant function, Bayesian classifiers, and Artificial Neural Networks 

(ANNs). In Discriminant function, hyper-surfaces are used to distinguish the features 

of characters from different semantic classes to reduce the mean-squared error. 

 

 Bayesian methods aim to reduce the loss function with misclassification through 

the use of probability theory. In ANNs, a back-propagation network is trained on the 

character images. Then a full character set is run through the network. The output is 

the identification information for all characters contained in the set [60]. 

2.5.2.6 Post-processing Stage 

This stage is needed if the classification stage does not produce a unique solution but 

a set of possible solutions, thus, specific roles are used at this stage to select the right 

solution. For this purpose, word lexicons and Hidden Markov Models are mostly used 

[31]. 

2.6 Arabic Optical Text Recognition (AOTR) System 

Arabic Optical Text Recognition (AOTR) is a sub-field of the Optical Character 

Recognition. In 1975, the first work on AOTR was developed. It was a system for 

recognizing printed Arabic characters based on stroke extraction. The research in 

AOTR did not start until the early 1980s, then, in the 1990s AOTR started receiving a 

great amount of interest among researchers, but it is still considered as an open 

problem [10]. AOTR systems include both online and offline systems, however, this 

review focuses particularly on off-line system, in line with the scope of this research. 
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2.6.1 Competitions in AOTR 

The first international Arabic handwriting recognition competition was held in 2005 

by the group at the Institute of Communications Technology (IFN) of the Technical 

University of Braunschweig, Germany. Six systems: ICRA, SHOCRAN, TH-OCR, 

UOB, ARAB-IFN, and REAM competed to win the competition using IFN/ENIT 

database, developed by the Institute for Communications Technology (IFN) at 

Technical University Braunschweig, Germany, and the Ecole Nationale d'Ingénieurs 

de Tunis (ENIT), Tunisia, for training and testing. UOB system, developed at the 

University of Balamand, Lebanon by Chafic Mokbel, which is a pure HMM system 

scored the highest accuracy with 90.88% [61]. 

 

The second competition, organized by the same organizer, was held in 2007. 14 

systems competed using the same IFN/ENIT database after adding more names. The 

competition results showed remarkable progress in Arabic handwriting recognition 

systems. Most of the participating systems showed a very high accuracy and some 

even demonstrated a very high speed .The system HMR-A submitted by Alary et al. 

from SIEMENS Industrial Solutions and Services, Konstanz, Germany, was the 

winner with an accuracy of 94.58%. The script word recognizer (HMR-A) is the 

result of experiments with the standard HMM based script, where a feature vector 

sequence was created by a sliding window, followed by a HMM Viterbi decoding 

[62]. 

 

The third competition was held in 2009 by the same organizer. Using the same 

IFN/ENIT database, 17 systems competed this time. The competition results showed 

that Arabic handwriting recognition systems, in this third competition had made 

further progress. Again, most of the participating systems showed a very high 

accuracy and some also with a very high speed. The winner in this competition was 

MDLSTM submitted by Alex Graves from Technical University of Munich, 

Germany, with 93.37% accuracy. This multilingual handwriting recognition system is 

based on a hierarchy of multidimensional recurrent neural networks which can accept 

either on-line or off-line handwriting data, and in both cases works directly on the raw 

input without any preprocessing or feature extraction. It uses the multidimensional 
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long short-term memory network architecture, an extension of long short-term 

memory to data with more than one spatio temporal dimension [63]. 

2.6.2 AOTR Softwares 

Currently, several software packages are commercially available for recognizing 

Arabic script such as TextPert 3.7 Arabic produced by CTA, ICRA 4.0 produced by 

Arab Scientific Software & Engineering Technologies, OmniPage produced by Caere 

Corporation, Al-Qari‟ al-Ali 2.0 produced by the alAlamiah Software Company, and 

IQRAA produced by Arab Scientific Software and Engineering Technology which 

runs on IBM-P. All these packages are only used for recognizing typeset and 

typewritten Arabic script [64].   

 

However, commercial Arabic OCR systems are still not efficient enough to deal 

with multi-typewritten and unconstrained handwritten fonts. One reason behind this is 

that not all new proposed techniques are implemented into real working 

environments. Researchers blame this on the absence of an Arabic text database, 

which can be used for evaluation purposes [64]. 

2.6.3 AOTR Databases 

Datasets of printed or handwritten words play a significant role in any recognition 

system design. Although, research in Arabic recognition systems has started in 1980s, 

only small, private datasets, are used, which make comparison of methods nearly 

impossible. Only a few datasets have been published, such as Al-Isra, CENPARMI, 

AHD, CEDARAB, and Arabic-Handwriting-1.0. Unfortunately, most of these 

databases are not available anymore since they were used for a very specific research 

purpose [65]. 

 

IFN/ENIT was presented at the CIFED Conference in 2002 by the Institute for 

Communications Technology (IFN) at Technical University Braunschweig, Germany, 

and IFN/ENIT is the most widely used database with more than 54 research teams in 

more than 27 countries the Ecole Nationale d'Ingénieurs de Tunis (ENIT), Tunisia, 
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with handwritten Tunisian town names on specially designed forms to make the 

labelling procedure as simple as possible. The database in version 2.0 consisted of 

32492 handwritten Arabic names by more than 1000 writers. 937 Tunisian town/ 

village names ware written. Each writer filled some forms with pre-selected 

town/village names and the corresponding post code [63]. 

2.6.4 Previous Work on AOTR 

During the past four decades, considerable development have been achieved in AOTR 

systems that can be observed in the increasing number of related articles, papers and 

technical reports that have appeared in leading conference proceedings and journals.  

 

Competitions such as ICDAR 2005, 2007, and 2009 also show that AORT 

systems have made a remarkable progress judging by the increasing number of 

participating systems, from 5 systems in 2005 to 17 systems in 2009. This shows that 

more researchers are working in this field.  

 

Several researchers surveyed the work done on AOTR by classifying the methods 

used in different classification ways, some of them surveyed the work on both online 

and offline systems, others focused on either online or offline systems. In this section, 

the previous work on AORT systems will be summarized. 

 

There are several published reviews and evaluations of work that was achieved in 

AOTR systems. Khorsheed classified the AOTR systems according to the recognition 

steps [66]. In the segmentation stage, he classified them into two categories: 

segmentation-base system and segmentation-free system. Then, in the feature 

extraction stage, he categorized the AOTR systems into four categories according to 

the extracted features, whether they are structural features, statistical features or 

global transformation.  

 

Finally, in the classification stage, he categorized the AOTR systems according to 

the classification technique: minimum distance classifier, decision tree classifier, 

statistical classifier and neural network classifier. 
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Lorigo and Govindaraju classified AOTR systems, first, according to the 

representation of the character image in the system, whether it is a skeleton, pixels or 

list of contours; second according to the segmentation of words into characters, 

strokes, or other units; third, according to the extracted features such as pixels, shape 

data, or mathematical properties, and finally, according to the recognition engine, 

ANN, HMM, or hybrid [67].  

 

Assma compared the performance of holistic and segmentation-based approaches 

in AOTR systems. He concluded that the best results were achieved with HMM based 

systems and with Neural Network approaches [68]. 

 

Some researchers surveyed the methods used in a particular part of the AOTR 

systems. Al-Shatnawi and Omar surveyed the methods used in Arabic base line 

detection. They categorized these methods into four categories: based on horizontal 

projection methods, based on word skeleton method, based on contour tracing 

method, and based on principle component analysis method. Then, they highlighted 

the difficulty in detecting Arabic base line such as overlapping, ligatures, word slope 

and the existence of sub words [69]. 

 

We present an up to date review of the work done in AOTR systems by following 

these rules: 

a. With respect to this research work, only off-line systems will be presented.  

b. Only complete systems that contain preprocessing, segmentation, feature 

extraction and classification stages will be presented. Works on only 

preprocessing or segmentation stages will not be considered in this review.  

c. If the researcher(s) has more than one published work, the latest will be 

presented. 

d. If results are reported for more than one dataset, the average will be taken. 

e. To show the progress in OCR systems, the systems will be arranged according 

to publishing date.  

  

A comparison review, consisting of a summary of used techniques in both feature 

extraction and classification stages, and the accuracy achieved, is presented in Table 

2.5.  
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Table 2.5: Comparison review of previous work in AOTR 

Author 

name 
     Year Technique Accuracy 

Almuallim 

and 

Yamaguchi 

 [70]. 

(1987( Used the skeleton representation and 

structural features for word recognition. 

After segmenting words into strokes, which 

are combined into characters according to the 

features, a set of classification rules are used 

for recognition. 

91 % of 400 

words 

written by 

two writers. 

Al-Yousefi 

and Udpa 

[71]. 

(1992( Used quadratic Bayesian classifier to classify 

nine measurements of kurtosis, skew, and 

relationships of moments. 

98.79% of 

10 

handwritten 

samples 

Goraine et 

al. [72]. 

(1992( Used estimated points from skeletons, 

structural features and a rule-based 

recognizer to identify each character. Then, a 

dictionary was used to confirm or correct the 

results. 

90 % of 180 

words 

consisting 

of about 

600 

characters. 

 

Fahmy and 

Al Ali [73]. 

(2001( Used features were detected from skeletons 

and then, fed into a neural network classifier. 

 

69.7 % of 

600 words 

written by 

one writer. 

Dehghan et 

al. 

[74]. 

(2001( Used an HMM-based system, which features 

were histograms of Freeman chain code 

directions in regions of vertical frames. 

65% of 

17,000 

images of 

198 words. 

Snoussi et 

al. 

)[75]. 

(2002) Used a four-layer neural network on 

primitives, characters, sub words, and words 

images from bank checks. Then, global 

features and local Fourier descriptors were 

fed to the neural network. 

97 % of 

2,070 

images with 

a lexicon of 

70 words. 

Haraty and 

Ghaddar 

[76]. 

 

(2003) Used a skeleton representation and structural 

and quantitative features such as the number 

and density of black pixels, and the numbers 

of endpoints, loops, corner points, and 

branch points from previously segmented 

characters to feed two neural networks 

classifier. 

 

73% of 

2,132 

characters. 

Amin 

[77]. 

(2001) Used Freeman code representation to detect 

structural features including open curves in 

several directions from the skeleton of each 

character, then, determined the relationships 

with Inductive Logic Programming (ILP) 

 

86.65% of 

10 

characters 

written by 

different 

writers. 
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Table 2.5 Cont’d: Comparison review of previous work in AOTR 

Author 

name 
    Year    Technique Accuracy 

Pechwitz 

and 

Maärgner 

[78]. 

(2003) Used 160 semi-continuous HMMs 

representing the characters or shapes, then, the 

models were combined into a word model. 

 

89 % using 

IFN/ENIT 

database. 

Khorsheed 

[79]. 

(2003) Used structural features with HMM 

recognizer constructed from 32 individual 

character HMMs, each with unrestricted jump 

margin. 

87 % of 405 

character 

samples of a 

single font. 

Alma‟adeed 

et al 

[80]. 

(2004) Used a combination of a rule-based recognizer 

that used ascenders, descenders, and other 

structural features to separate the data into 

word groups (reduce the lexicon) with a set of 

HMMs which have 55 possible states, 

corresponding to the characters or sub-

characters in the data set. 

60% of 

4,700 words 

written by 

100 writers. 

Souici-

Meslati and 

Sellami 

[81]. 

(2004) Used Freeman chain code representation of 

the text contour, and structural features such 

as loops, dots, connected components, 

ascenders, and descenders with three 

classifiers running in parallel: neural network, 

k-nearest-neighbour, and fuzzy k-nearest-

neighbour. 

96% of 

3,600 

words.  

El-Hajj et 

al. 

[82]. 

(2005) Used features based on upper and lower 

baselines, within the context of frame-based 

features with an HMM recognizer. 

86.40% 

using 

IFN/ENIT 

database. 

Mozaffari 

et al. [83]. 

(2005) Used structural and statistical features such as 

end points and intersection points detected on 

a skeleton then, used primitive code to 

partition it into primitives. Nearest-neighbour 

was used for classification. 

94.44% of 

200 images 

of 9 digits 

written by 

200 writers. 

Safabakhsh 

and Adibi 

[84]. 

(2005) Used eight features, computed for each 

pseudo-character with a continuous-density 

variable-duration path-discriminant hidden 

Markov model. The model included 25 

character states, each of which was divided 

into up to four sub-states to indicate position-

dependent shapes. 

91 % of two 

50-word 

scripts from 

two 

different 

writers. 

El-Melegy 

and 

Abdelbaset 

 [85]. 

 

(2007) Compared the performance of using structural 

holistic features with four different classifiers 

independently: k-nearest neighbour classifier, 

Bayesian classifier, decision tree classifier and 

neural network classifier. The highest 

performance of the system was achieved with 

neural network classifier. 

86.5% of 

4970 words 

of 50 literal 

amount 

written by 

100 writers. 
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Table 2.5 Cont’d: Comparison review of previous work in AOTR 

Author 

name 
Year Technique Accuracy 

AbdulKader 

 [86]. 

(2008) Used a two neural network based classifier, 

the first classifier is used to recognize parts 

of a word, the second is based on features 

extracted from the directional codes of the 

connected-components constituting parts of 

the word. Then, Beam search algorithm is 

used to find the best matching word to an 

image, using the output of PAW recognizer 

as a search heuristic. 

89% of 

6,735 words 

from 

IFN/ENIT 

database. 

R. 

Mohamad 

et al. [87]. 

(2009) Used features based on foreground pixel 

densities and concavity features, and stroke 

directions that were extracted within three 

sliding windows of different orientations, 

each orientation is associated to one of 

three HMM-based classifiers. Each 

classifier produces a list of word 

candidates, which are fused at the decision 

level. 

92.78% 

using 

IFN/ENIT 

database. 

 

Al-Alaoui 

et al. [88]. 

 

(2009) Used structural features such as loops, and 

lines, with neighbouring pixel statistical 

features, then neural network is used to 

classify between several shapes including 

loops and lines. 

95% of 60 

samples of 

only one 

character. 

Mahmoud 

and Awaida 

[89]. 

(2009) Used structural features, to measure short 

stroke and certain concavities that can span 

across the image; statistical features to 

measure the edge curvature in the 

neighbourhood of a pixel with Support 

Vector Machines classifier. 

99.83% of 

21120 

samples of 

Indian 

numeral 

digits. 

 

2.7 Discussion: 

To make fair informative comparison between different approaches used in Arabic 

recognition systems, these different methods should be tested on identical datasets. 

This seems to be not an easy task as different and usually non publicly available 

datasets where used with these different methods. On the other hand, method 

objective should be considered when the methods are evaluated. For example, holistic 

based method, where the word is recognized as a whole and the segmentation stage is 

not required, is a good choice when the goal is to develop a system for sorting mail 
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codes in a particular country, even if the system has limitations for use in general text 

recognition. 

The time consumed during recognition process is a significant factor in evaluating 

a system, especially if the system is designed for applications where speed of delivery 

is an important factor, such as mail sorting. In this survey, it is noted that most of the 

researchers did not include the time consumed in their test results. 

 

In the three competitions ICDAR 2005, 2007 and 2009, the competing systems 

were tested using one database (IFN/ENIT), which made the competition fair and 

informative. Consumed time was considered in the final result in ICDAR 2007 and 

2009 where the winning system, in the concept of accuracy, failed to be the faster 

system. This highlighted the trade-off between accuracy and the time consumed 

during the recognition process, where in order to increase the accuracy more 

complicated models that consume more time are needed. 

 

The general frame of the reviewed system contains three main stages: 

preprocessing, features extraction and classification. The segmentation stage is used 

only in segmentation-based systems, while the techniques used in preprocessing stage 

are the same regardless of the language of the alphabet. The nature of Arabic 

alphabet, especially, cursiveness, overlapping, ligatures, and word slope, are forcing 

designers to develop systems with more complex feature extraction and classification 

stages. The matching approach, where classification is achieved by a set of rules, was 

used in the early AOTR systems [70 -72]. The HMM and ANN, which are the most 

widely used classifiers, started to be used as pure, simple model [73-74], then, multi 

layers or hybrid models emerged [75-81]. The HMM and ANN are still used in the 

latest designed systems [85-87], even with the usage of other classifiers such as Beam 

search algorithm [85] and Support Vector Machines classifier [89]. HMM and ANNs 

suffer from the trade-off between accuracy and processing time. In order to obtain 

high accuracy, many features that can provide enough information are needed. In this 

case, a complex model that needs longer processing time should be used. In case of 

using a simple model, the processing time will be reduced but the accuracy will be 

reduced as well. Table 2.6 shows the trade-off between accuracy and processing time 

of HMM and ANN models. 
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Table 2.6: Trade-off between accuracy and processing time  

 
Simple model “less 

computations but low 

intelligence” 

Complex model “large 

computations but high 

intelligence” 

Many features “provide 

enough information, but 

spend long time 

Low speed 

Low accuracy 

Low speed 

High accuracy 

Few features “insufficient 

information, but 

accelerate process” 

High speed 

Low accuracy 

Low speed 

Low accuracy 

In general, the current challenge in OCR system is achieving high accuracy level 

within short time. Compared to other languages, the nature of Arabic handwriting 

requires more complex models. This is an important stimulus for thinking about non-

traditional ways to achieve the recognition task with a high accuracy while consuming 

less processing time. This will be discussed in chapter 5. 

2.8 Summary 

This chapter provided a comprehensive background about the field and the subject of 

this research. As this research is about Arabic handwriting recognition, an overview 

of Arabic alphabet, history of its development, the nature of Arabic characters, and 

the different Arabic handwriting styles, has been presented followed by an overview 

of handwriting recognition field. After defining the two main approaches in 

handwriting recognition, the online and offline approaches, the main stages in 

handwriting recognition system was discussed followed by a discussion on Arabic 

Optical Text Recognition (AOTR) systems. In order to have a good view of AOTR 

systems, AOTR software, AOTR competitions, and AOTR available databases were 

briefly discussed. Finally, by applying some rules that reflect this research scope, an 

up to date review was presented to show the development and the latest state of 

AOTR systems. 

 

 

 

Classifier 

Extracted 

features 
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CHAPTER 3 

PREPROCESSING 

3.1 Chapter Overview 

This chapter presents the first stage in the proposed system which is the preprocessing 

stage. It starts with an introduction that explains what preprocessing is and the 

importance of this stage for the system. This is followed with discussion about the 

data that will be used in this research in terms of acquisition, collection, and analyses 

which were presented. Then some of the necessary operations in preprocessing stage 

such as binarization, smoothing and normalization are discussed. Finally, the 

proposed methods for the main preprocessing operations which are skew correction, 

slant correction, and thinning are presented.     

3.2 Introduction 

The preprocessing stage is a group of operation that aims to convert the raw image 

into output skeleton ready for segmentation. The input to off-line recognition systems 

is a document manually obtained either by optical scanners or by cameras. In many 

cases, the non-proper position of the document in the scanner or non proper position 

of the camera to the captured document causes page skew. On the other hand, 

documents of bad quality papers, especially old and historical documents, or non 

correct setting of scanner or camera can cause different levels and kinds of noises on 

the documents. The preprocessing stage yields a clean document by increasing shape 

information and reducing noise.  

 

The preprocessing stage gain added significance in the case of handwriting 

recognition. As the text is handwritten, it usually has a number of unwanted defects 
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such as line skew, word skew, and word slant. These defects adversely affect the 

segmentation stage, which in turn affects the accuracy of the system as a whole. 

 

The preprocessing stage is more significant in the case of Arabic handwriting 

recognition. In Arabic, dots play important rule to differentiate between characters. 

Adding or removing a dot from some character bodies might change the shape from a 

character to another. Thus, it is important, in Arabic handwriting recognition systems, 

to have a reliable and efficient preprocessing operation that are capable to remove 

only noise dots from the row image and avoid removing dots that are a part of the 

characters.  

    

The segmentation stage, as well as the whole system will be greatly influenced by 

the preprocessing stage. The main parts of preprocessing stage are: data acquisition, 

binarization, smoothing, normalization and thinning (skeletonization).  

3.3 Data Acquisition 

Data collection is the first stage in any pattern recognition system. In OCR systems, 

the data collection starts with converting the document, which is handwritten text in 

this case, into numerical representation written in basic units of storage made up of a 

fixed number of consecutive bits. This process can be physically achieved either by a 

camera or a scanner. By using either one, a binary or gray-scale image with varying 

number of bits per pixel can be obtained. Unlike on-line system, no timing 

information will be available for off-line systems. 

 

Traditionally, the scanner is more preferable than the camera for capturing the text 

image. With a camera, it is more difficult to control the imaging environment than it 

with a scanner. Even though it is much easier to use, camera images often suffer from 

several problems. Firstly, it is difficult to obtain a uniform brightness on camera 

images because of uneven lighting or aberration of the camera lens. Secondly, the 

gray level surface of the camera image is smoother than the one of the scanner image, 

which means that the edge of the character is not as clear as that of the scanned image, 



 49 

and therefore, the difference in intensity between the foreground and the background 

is obscure in many camera images [90]. 

 

Even though a scanner is able to produce clearer text image with the proper level 

of brightness, and more clear character edges, but it is more suitable for office work. 

In terms of size and mobility, cameras are fast, versatile, and mobile. Moreover, they 

do not touch the photographed object, which is sometimes very convenient especially 

for engraved text and applications such as car plate recognition [91]. However, the 

massive and rapid development in the performance of digital camera narrows the gap 

between the performance of the digital camera and the scanner, which leads to 

development of mobile OCR systems. Currently, the application that enables mobile 

phone users to take a picture of contact card and then saving the written information is 

an example of mobile OCR systems. 

 

Recently, pen-scanner, which works as a small mobile scanner, is the main 

hardware part of some OCR systems. It is used the same way as a highlighter marker 

used by taking the pen scanner across the text. Then, the pen scanner will scan, store 

and send text to the computer. 

 

For experimental work, data, which is handwritten text and isolated handwritten 

characters, were collected by asking the writers to re-write a printed text in blank 

papers and characters in four positions in table cells drawn on blank papers. Then, the 

full written text and character tables were digitized by scanner and saved as BMP 

files, known as Bitmap files. BMP format was selected because in this format each 

pixel is usually independently available for any alteration or modification, and 

repeated use does not normally degrade the image [92]. This is a significant feature in 

the proposed system as some kind of modifications will be processed in most of the 

system operations and images will be used repeatedly in the recognition stage. On the 

other hand, Bitmap files can easily be created from existing pixel data stored in an 

array in the memory. These files will be used in Matlab environment with a computer 

at 1.86GHz and with 1 GB of memory. 
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3.4 Raw Data Collection 

The data, collected from writers of different ages and educational backgrounds, are 

divided into two categories: full text images which will be used in preprocessing and 

segmentation experiments, and isolated character images, which will be used to build 

the system’s codebook. Figure 3.1 shows two samples of both categories. 

 

 

Figure 3.1: Two examples of both data categories 

 

For the full text image data, 61 different writers from different native Arabic 

speaking countries, were asked to re-write a text which consist of more than 100 

Arabic words which have been intellectually selected to cover all Arabic characters in 

all their four positions (isolated characters and connected at the beginning, middle or 

end of a word) as shown in Table 2.2, with ten Indian digits, used in Eastern part of 

Arabic countries, commas, mathematical symbols, question mark, and brackets. The 

selected text includes the two styles of Arabic written words, connected and with sub-

words as shown in Table 2.4. The writers were asked to re-write the printed text in A4 

blank paper purposely to get the direction and degree of slant and skew, heights of 

ascenders and descenders, spacing between lines, size of characters, and average 

density of each handwritten text. 

 

For the isolated characters data, each character was written by 48 different writers, 

in 4 different positions, isolated, at the beginning, middle, and end. The size of each 

character is 40x40 pixels, 8 colours per pixel. 
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3.4.1 Data Analysis 

The main problem in handwriting recognition task is the variation between 

handwritten characters written by different writers. This variation is caused by basic 

differences in the observance of the handwriting and diction rules by each writer. 

Most of the time, people tend to write the way that they are accustomed to regardless 

of whether it obeys the rules of dictation, or not. Sometimes, there will be variations 

in handwritten text written by the same person as the handwriting will appear clearer 

and more correct if it is written slowly. The collected data obviously show a wide 

range of handwriting variation. It also confirms what has been previously mentioned 

in chapter 2, that the handwriting of ordinary people is a mix of different styles, and 

the rules of any styles are not followed by most of the writer, for instance, some 

writers write the same character in different shapes, each shape belonging to different 

styles. Figure 3.2 shows how the same character can be written in two different 

shapes. 

  

 

Figure 3.2: An example of a character (Seen) written in two different shapes 

 

The collected data vary in terms of direction and degree of slant and skew, heights 

of ascenders and descenders, spacing between lines, size of characters, and average 

density. In this section, we will illustrate some extreme variations in the handwriting 

of different writers  

 

3.4.1.1 Level of Legibility 

The legibility or quality of handwriting here refers, generally, to the level of 

commitment to dictation rules, parity between the size of characters, spaces between 

words and lines. Figure 3.3 show two samples of the handwritten text. 
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Figure 3.3: Two different samples with low legibility (above) and high legibility 

(below) 

 

Unlike the low legibility sample (Fig 3.3 above), the words of the high legibility 

sample (Fig 3.3 below) appears well spaced, horizontally and vertically. The average 

character size is obviously different between the two samples. In the low legibility 

sample, the character (ـه) appears without dots three times and with dots another three 

times. The dots distinguish between the character (ت) and the character (ه) when both 

are placed at the end of a word.      

3.4.1.2 Direction and Degree of Skew 

The good quality handwritten text should be with lesser degree of skew. One of the 

problems in handwriting recognition is the skew of the text line. Much worse if there 

is more than one direction of skew in the same text as shown in Figure 3.4. 

   

 

Figure 3.4: A text with two skew directions 

3.4.1.2 Density Average  

The average text density varies due to different hardness of pencils and pen tips used 

by the writers. To digitize all the forms in the database regardless of the contrast 

between handwriting information and form background, static scanner was used. 

Figure 3.5 shows two samples with different densities. 
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Firure3.5: Two samples with different densities 

3.5 Binarization 

As mentioned previously, MATLAB environment will be used in the experiments, 

thus, from now on, MATLAB identifications will be used. Generally, there are four 

types of images that determine the way MATLAB interprets data matrix elements as 

pixel intensity values: binary, indexed, gray scale, and true-colour. Following, is a 

short definition for each of them: 

 

i. Binary Image: In a binary image, each pixel is represented as one of only two 

discrete values: 1 or 0. It is stored as a logical array.  

ii. Indexed Image: It is also known as a pseudo-colour image which consists of 

an array and a colour map matrix. The pixel values in the array are direct 

indices into a colour-map. The colour-map matrix is an m-by-3 array of class 

double containing floating-point values in the range [0, 1]. Each row of the 

map specifies the red, green, and blue components of a single colour.  

iii. Gray-scale Image: It is a data matrix which values represent intensities within 

some range. If single or double arrays are used to represent the image, the 

values range from 0, which represents black colour, to 1, which represents 

white color. 

iv. True-colour Image: It is an image in which each pixel is specified by three 

values: one each for the red, blue, and green components of the pixel colour. 

MATLAB stores true-colour images as data array that defines red, green, and 

blue colour components for each individual pixel. The colour of each pixel is 
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represented by a combination of the red, green, and blue intensities stored in 

each colour plane at the pixel location [93]. 

 

During the binarization stage, important information is extracted from a gray-

scale image. In this case, the writing is in the foreground, while the background is 

ignored. This can be achieved by marking the pixels that belong to foreground as on-

pixels and those who belong to background as off-pixels by using thresholding 

methods. The thresholding methods can be classified into two types: global methods, 

where only one thresholding value is chosen for the whole image, and local methods, 

where a different thresholding value is chosen for a small block or even for every 

pixel. Most of these methods only take into account the gray scale of the pixel [93]. 

 

In this research, after text forms are scanned, true-colour images will be obtained, 

since a colour scanner is used. Each text image will be stored as a Bitmap image file 

which is represented as 288x288x3 unit8 array occupying 248832 Bytes of memory. 

 

The first step in binarization in the proposed system is to convert the true-colour 

image into gray scale image. However, using MATLAB simplifies the process of 

converting the true-colour image into gray scale image. In MATLAB, this step can be 

achieved by rgb2gray function, which converts RGB images to gray scale by 

eliminating the hue and saturation information while retaining the luminance [93]. So 

this function will be used in the algorithm to get the gray-scale images. Figure 3.6 

shows the true-colour image and the gray image for a sample of collected dataset.  

 

 

Figure 3.6:  The true-colour image (left) and the gray image (right) for a sample 

of collected dataset 



 55 

The gray image will be represented in bitmap format as 288x288 array that 

occupies 82944 bytes of the memory. After obtaining the gray image, the next step is 

to convert it into binary image using im2bw function by thresholding process. The 

function graythresh, which is global image threshold, automatically computes an 

appropriate threshold for use to convert the gray-scale image to binary. The 

graythresh function uses Otsu’s method, which chooses the threshold to minimize the 

intra-class variance of the black and white pixels [93]. 

 

Otsu’s method is a very popular global automatic thresholding technique that can 

be applied to many applications such as noise reduction in preprocessing stage where 

the image to be thresholded contains two classes of pixels:  foreground pixels and 

background pixels. The method, then calculates the optimum threshold separating 

those two classes so that their combined spread is minimal [95]. The threshold that 

minimizes the intra-class variance, defined as a weighted sum of variances of the two 

classes is expressed mathematically as follows: 
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2 ttqttqtw                                                  (3.1) 

 

where, 

q1 and q2 are the probabilities of two classes separated by a threshold t and  

 variances of the two classes. 

 

The binary image will be represented as (288x288) logical array that occupies 

82944 bit of memory. Figure 3.7 shows a binary image of a sample dataset.  

 

http://en.wikipedia.org/w/index.php?title=Foreground&action=edit&redlink=1
http://en.wikipedia.org/wiki/Background
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Figure 3.7: A binary image of a sample dataset 

3.6 Smoothing 

The Arabic text is more sensitive to speckle noise than Latin alphabet based 

languages because some Arabic characters have the same body but are differentiated 

by the dots. Thus, any speckle noise may be considered as dots and attributed to 

characters, or conversely, dots may be mistakenly removed as a noise. In both cases, 

the system will be adversely affected. For that reason, a smoothing step is essential for 

accurate recognition of text image with moderate to high levels of noise.  

 

In MATLAB, smoothing is one of filtering operation which is a neighbourhood 

operation such as sharpening and edge enhancement where the value of any given 

pixel in the output image is calculated by using an algorithm on the values of the 

pixels in the neighbourhood of the corresponding input pixel. A pixel neighbourhood 

is some set of pixels, defined by their locations relative to that pixel [93]. 

 

In smoothing algorithm, the image pixels can be treated as logical value, since the 

system deals with a binary image where each pixel value should be 0 or 1. Using 

averaging window, the tested pixel will have, mostly, eight neighbours as shown in 

Figure 3.8. 
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Figure 3.8: The tested pixel with eight neighbours 

 

Logical smoothing of the pixel Pt is given as: 

                       (3.2) 

where, 

P(ones)=p1,p2,p3,p4,p5,p6,p7,p8                             (3.3) 

and, 

 P(zeros)=p1+p2+p3+p4+p5+p6+p7+p8                                      (3.4) 

 

The value of the tested pixel will change from 0 to 1 only if all its neighbours are 

1. This operation will fill up any holes, or white pixels in the body of the character 

which represented as black pixels.  Similarly, the value of the tested pixel will change 

from 1 to 0 only if all its neighbours are 0. This operation will remove any small dots, 

or black pixels. In MATLAB, smoothing can be achieved using three types of filter: 

Linear Filter, Median Filter or Adaptive Filter. 

 

In Linear filter, convolution operation is used where each output pixel is the 

weighted sum of neighbouring input pixels. The matrix of weights is called the 

convolution kernel, or filter. A convolution kernel is a correlation kernel that has been 

rotated 180 degrees. Linear filtering, such as averaging or Gaussian filters can be used 

to remove certain types of noise like grain noise from a photograph where each pixel 

is set to the average of the pixels in its neighbourhood. 

 

In Median filters, nonlinear operation is used to reduce "salt and pepper" noise. 

The median filters are more effective than convolution for reducing noise and 

preserving edges simultaneously. Similar to averaging filters, in Median filters each 

output pixel is set to an average of the pixel values in the neighbourhood of the 
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corresponding input pixel. The value of an output pixel is determined by the median 

of the neighbourhood pixels, rather than the mean. Median filtering has more ability 

to remove the extreme values, which are known as outliers; without reducing the 

sharpness of the image because it is much less sensitive than the mean to the extreme 

values.  

 

In adaptive filters, the function will be transferred  according to an optimizing 

algorithm. In case of large variance, little smoothing is performed, while in case of 

small variance, more smoothing is performed. The adaptive filter is more selective 

than a comparable linear filter, preserving edges and other high-frequency parts of an 

image. The wiener2 function implements adaptive filtering [93]. Figure 3.9 shows a 

sample of a character image before (left) and after (right) applying Median filter. 

 

 

Figure 3.9: A sample of a character image before (left) and after (right) applying 

Median filtering 

 

In this example, median filtering is performed on the character binary image using 

the medfilt2 function that can be expressed as: 

B = medfilt2 (A, [m n])                                                                       (3.5) 

 

This function performs median filtering of the matrix A in two dimensions (which 

represents the binary image). Each output pixel contains the median value in the m-

by-n neighbourhood around the corresponding pixel in the input image. The m-by-n 

neighbourhood should carefully be chosen to remove only noise not dots, thus, the 

size of the dots should be assumed before the smoothing step is implemented. In the 

previous example, the m-by-n neighbourhood was determined as 3-by-3. 

http://en.wikipedia.org/wiki/Transfer_function
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3.7 Normalization 

Arabic handwriting varies in many different aspects such as peculiarities of 

writing in different situations, and the peculiarities of writer’s distinctiveness, thus, 

some handwriting can be recognized more easily than others. For recognition task, all 

those variations are crucial and may adversely affect the recognition level. These 

variations are useful in other applications such as author verification or signature 

recognition. Figure 3.10 shows the same word written by different writers. 

 

 

Figure 3.10: An example of same word written by different writers 

 

As a crucial step in the preprocessing stage, normalization aims to reduce the 

variations of same handwritten words written by different writers. One method to 

perform normalization is to observe specific parameters of handwriting that may 

cause the different appearance of a word, then, each of these parameter values should 

be estimated to remove the effects of variation from the word. The followings are, the 

most frequently observed variations: 

3.7.1 The width of characters 

The variation in character width is mainly, because of using different pens. 

Sometimes, different width can be observed among characters in the same text, 

written by the same pen; this is caused by different degree of pressing while writing 

or even caused by using bad quality pen with weak ink stream control. The character 

width should be considered in word-to-character segmentation step. 

3.7.2 The height of characters 

The height of characters varies from one writer to another and, sometimes, from the 

same which might be due to the available space for writing. Although there are rules 

that determine the height of each Arabic character according to different styles, but 

these rules are not usually adhered to strictly. 
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3.7.3 The slant of words 

The slant can be defined as the deviation of average near-vertical strokes from the 

vertical direction [95]. Slant correction is an important normalization step in 

processing handwritings where careful estimation and correction of the slant lead to 

simplify the segmentation process and increases the recognition accuracy [96].  

3.7.4 The slope of words 

The slope of a word can be defined as the angle of base line of a word with respect to 

0-angle horizontal line. Some writers fail to write horizontally even if a horizontal 

guide line is given.  

3.7.5 The skew of page  

The page skew is a machine dependent variation caused by the oblique position of the 

document while it was being scanned. Thus, it can be eliminated automatically by 

using skew-correction algorithm or manually by correcting the document position in 

the scanner. It is important to note that normalization aims to remove only the 

variations which do not affect the identity of the word.  

3.8 Base-line Detection 

Skewed output page can be avoided by proper scanning of text document. The 

horizontal projection is the most common method used to detect Arabic base line. In 

this method, the 2D data is reduced to1D based on the pixels of the text image, and 

the longest peak in the horizontal line will be the text baseline [69]. Figure 3.11 shows 

the horizontal projection of an Arabic text. 

 

 

Figure 3.11: The horizontal projection of an Arabic text 
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3.9 Skew Corrections 

Skew can be defined as the deviation of the text base line from the horizontal 

direction. Mostly, skew is caused by inappropriate document position during scanning 

[97]. For handwritten text, especially on a blank paper, line skew can be caused by the 

writer himself. In this research, a fast algorithm that used Radon transform method for 

skew correction is developed which can be used in document skew correction as well 

as base-line correction.  

3.9.1 Radon Transform 

The Radon transform is the description of a function in terms of its integral 

projections. When Radon transform is applied on an image, multiple, parallel-beam 

projections of the image from different angles are taken by rotating the source around 

the centre of the image [94]. Figure 3.12 shows a single projection at a specified 

rotation angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: A single projection at a specified rotation angle 

 

Generally, the Radon transform of function f(x, y) is the line integral of f parallel 

to y’-axis as following: 
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                                     (3.6) 

where, 

                       

                                                                                     (3.7) 

Figure 3.13 shows the geometry of the Radon transform. 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: The geometry of the Radon transform 

 

The Radon transform has been used for skew correction. Kapoor et al. [98] used 

two algorithms to detect and correct word skew. Their algorithm was designed for 

Devanagari script where characters are connected with straight lines, thus, their 

algorithm does not work with words with non-uniform Shiro-Rekha or characters 

without Shiro-Rekha, and thus, their algorithm is not suitable for Arabic words. 

 

Dong et al. also used two algorithms for skew and slant correction. For the skew 

correction, a global measure which is defined by Radon transform of image and its 

gradient is maximized to estimate the slope. For the slant correction, Radon transform 

is used to estimate the long strokes and a word slant is measured by the average angle 

of these long strokes [99].  

 

Ganapathy and Lui used Radon transform as a part of their system for Malaysian 

Vehicle License Plate Localization and Recognition. However, since the plate image 
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will have vertical lines as the plate edges, it will be easy to apply the Radon transform 

[100]. 

3.9.2 Proposed method for text and words skew correction 

The challenge is how to apply the Radon transform with handwritten text where no 

clear vertical lines, such as Arabic handwritten text. Thus, a simple method for Arabic 

handwritten text and words skew correction is proposed. The idea in this method is to 

convert the word, line, or text image into a structuring element, then apply Radon 

transform on this structuring element to correct its skew. Once the skew is corrected, 

the word, line, or text image is reconstructed. The reason for creating the structuring 

element is that the Radon transform can easily be applied on images, where the shape 

will be represented as f(x, y) function, and the rotation angle is calculated according to 

the central point of that shape. It is difficult to apply the Radon transform directly on a 

word image that contains a group of curves and strokes and no central point can be 

located. These curves and strokes can be converted into a shape by filling up the 

empty space between them which can be done by creating the structuring element of 

the word image. 

3.9.2.1 The structuring element   

The structuring element is a part of the dilation and erosion operations which are used 

to probe the input image. A structuring element can be represented as a matrix 

consisting of only zeroes and ones that can have any arbitrary shape and size. The 

centre pixel of the structuring element, called the origin, identifies the pixel being 

processed. The pixels in the structuring element containing ones define the 

neighbourhood of the structuring element. These pixels are also considered in dilation 

or erosion processing [93]. Figure 3.14 shows a structuring element of an Arabic 

word. 

 

 

Figure 3.14: A structuring element of an Arabic word 
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As shown in Figure 3.13, converting the word into structuring element will create 

a shape that can be easily represented as a function where it can be used with Radon 

transform. Figure 3.15 shows Radon Transform applied on the structuring element of 

an Arabic word. 

 

 

Figure 3.15: Radon Transform applied on the structuring element  

 

3.9.2.2 The proposed algorithm 

The proposed algorithm consists of three steps: conversion of word or line image into 

structuring element, applying Radon transform on the structuring element, and finally, 

reconstruction of the word or line image. 

 

i. Conversion of  line image into structuring element 

First, the line image is converted to a gray scale image. Figure 3.16 shows the gray 

scale image of a skewed text line. Then, the gray scale image is used to create the 

structuring element. Figure 3.17 shows the structuring element of the skewed line. 

 

 

Figure 3.16: Gray scale image of a skewed line 
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Figure 3.17: The structuring element of the skewed line 

 

ii. Applying the Radon transform 

The Radon transform projections will be applied along 180 degrees, so each column 

of the Radon transform array shows the image profile along corresponding angle.  The 

negative angles correspond to clockwise directions, while positive angles correspond 

to counter clockwise directions around the centre point, which is the center pixel of 

the structuring element. Then, a Hough-like search is performed to find maximum 

value of the Radon transform over all angles in the range of 50 to -50 degree. After 

detecting the angle that indicates the slope of the upper bond of the image, Maximum 

Radon transform value over all angles is calculated to indicate the corresponding 

angle of that Radon, and then this angle is corrected according to the horizontal x- 

axis. Figure 3.18 shows the structuring element after being corrected. 

 

 

Figure 3.18: The structuring element after correction 

iii. Image reconstruction  

Using morphological reconstruction operation, the image is reconstructed by 

repeating dilations of the image. Figure 3.19 shows the reconstructed line image. 

  

 

Figure 3.19: The reconstructed line image 

 

The proposed algorithm has shown good performance with skew page correction 

included. Although the collected dataset do not have skewed pages, the proposed 



 66 

method was tested with skewed pages to see the robustness of the method. The result 

was good as shown in Figure 3.20. 

    

 

Figure 3.20: The page image before and after skew correction 

3.10 Slant Correction 

Slant correction is one of the significant operations in preprocessing stage. Slant 

words may affect the performance of the segmentation stage, hence, slant correction is 

mostly done before the segmentation stage. The most commonly method being used 

for slant estimation is based on the calculation of average angle of vertical word 

stroke. Vertical projection profile and chain code of the entire border pixels technique 

has been used for slant correction [16]. Some methods such as the combination of 

Wigner-Ville Distribution and the projection profile can be used in skew correction, 

as well as in slant correction [101]. 

3.10.1 Slant words in Arabic handwriting 

From the collected dataset, it was found that Arabic word might be slanted in both 

directions. Thus, slant angle, which is the angle between the vertical stroke and the 

baseline, might be bigger or smaller than 90°. Even though the Arabic handwriting 

rules require vertical strokes in the word to be free of slant, some writers follow this 
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rule and write non-slant word or at least with a small degree of slant angle, but there 

are many who do not. 

 

Unlike Latin, the left side slant, where the slant angle is more than 90°, is more 

common in Arabic writing and more obvious as well, while the right side slant is less 

common and less obvious. Figure 3.21 show two Arabic words: with left and right 

slant. 

 

 
Figure 3.21: Two Arabic words with left (left) and right (right) slant 

3.10.2 Proposed technique for slant correction 

Since the slant angle is varying, the first step in any slant correction method is to 

estimate the slant angle. In order to estimate this angle, the vertical stroke should be 

detected. This slant correction technique consist of three steps: vertical stroke 

detection using Hough Transform, slant angle measuring using boundary tracing 

routine and slant correction using transform technique. Each of the steps is discussed 

in the followings: 

1) Vertical stroke detection using Hough Transform 

The Hough transform can be used to detect lines, using the parametric representation 

of a line as following: 

D=x*cos θ+ y*sin θ                                                          (3.8) 

where,                      

D is the distance of the origin line along a vector perpendicular.  

θ is the angle between the x-axis and this vector.  

 

Matlab Toolbox function Hough was used to generate a parameter space matrix 

which rows and columns correspond to these D and θ value respectively. In this step, 
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two lines should be extracted, the vertical slant stroke, which is the object to be 

corrected and the horizontal stroke which represent the base line. 

 

2) Measurement of slant angle using boundary tracing routine 

In order to maximize the accuracy of the angle measurement, Boundary tracing 

routine can be used to trace the two lines, which have been extracted in the previous 

step. In this technique, nonzero pixels are considered as object and zero pixels 

constitute the background. The row and column coordinates of the point on the object 

boundary, where the tracing begins is represented as a two-element vector. The initial 

search direction for the next object pixel connected to the starting point should be 

specified.  

 

After the two lines have been traced, vector based on the line equation should be 

created for each line. 

                                                         (3.9) 

                                                     (3.10) 

                                                        (3.11) 

where,  

ab1 and ab2  can be obtained by using polyfit function from Matlab Toolbox. 

Then, the lengths of the two vectors can be obtained as: 

                                                            (3.12) 

                 (3.13) 

Finally, the angle between the two lines can be obtained as: 

               (3.14) 

Experimentally, it was found that the value of slant angle θ  usually fall in a range 

between 80° to 100°. As mentioned earlier, a majority of the collected dataset have 

slant angle bigger than 90°. 

 

3) Correction of slant angle using spatial transformation 
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A spatial transformation of an image can be defined as an alteration that changes the 

image orientation in the spatial domain. Spatial transformations change the position of 

intensity information but do not change the actual information content. It can be used 

to move an image up or down, or left or right, relative to some reference point. 

Alternatively, it might be rotated, changed in size, or distorted in some ways that 

changes the shape of objects in the image [102]. 

 

For slant angle correction, affine transformation is used. The affine transformation 

is a transformation for which parallel lines remain parallel and squares are changed 

into parallelograms. In other words, only the vertical lines will be changed into skew 

lines. A 3-by-3 matrix is used to specify the affine transformations.  

 

                                                     (3.15) 

where, 

shy: specifies the shear factor along the y axis. 

shx: specifies the shear factor along the x axis. 

 

In our case, shx represents the value which should be added to shear the image in 

order to correct the slant angle. Figure 3.22 shows the affine transformation on a 

square image. 

 

Figure 3.22: The affine transformation on a square image 

 

The shx value should be set according to the slant angle θ value. If θ is bigger than 

90°, the word has left slant then shx should be detected from θ value in order to 

correct the slant, if θ is smaller than 90° the word has right slant then shx should be 
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added to θ  value. Figure 3.23 shows a slant word before and after correction using the 

proposed method. 

 

 

Figure 3.23: A slant word before (left) and after (right) correction using the proposed 

method 

3.11 Thinning 

Thinning, sometimes known as skeletonization, has an important role in OCR 

systems, even though; few researchers have considered the thinning process for 

Arabic OCR systems. Since handwritten words usually have different widths, thinning 

aims to equalize the width of the text line. In order to equalize the line width, thinning 

method removes layers or points from the outline until the line has a width of 1 pixel. 

The result of word thinning is called the skeleton of the word. Generally, the thinning 

process is achieved by skeletonization algorithms which can be categorized into two 

approaches, the iterative approaches and non-iterative approaches. In iterative 

approaches, the algorithm first checks the boundary pixels, then progressively delete 

them, until one pixel width is obtained. In the non-iterative approaches, a medial line 

of original word image is produced directly without checking all the pixels. Both 

approaches can be achieved sequentially or in parallel. In sequential algorithms, result 

from the previous iteration is used in the current iteration to process the current pixel. 

In parallel algorithms, the result from the previous iteration affects the decision to 

remove a point in the current iteration. For handwritten Arabic text, it is hard to find a 

robust skeleton algorithm that retains the significant features of the pattern due to the 

variety of writing styles of Arabic handwriting [103]. 

 

In this research, a morphological method is used for thinning that utilizes a 

parallel algorithm proposed by Zhang and Wang [104], with some modifications in 

order to be more suitable for Arabic text image. 
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3.11.1 Morphological Operations 

Morphology is an image processing operation that processes image based on its 

shape. It applies a structuring element to an input image, creating an output image of 

the same size. In a morphological operation, the value of each pixel in the output 

image is based on a comparison of the corresponding pixel in the input image with its 

neighbours. 

  

The basic morphological operations are dilation and erosion. In dilation, pixels are 

added to the boundaries of objects in an image, while in erosion, which is used for 

thinning, pixels are removed from object boundaries. By applying different rules to 

the corresponding pixel and its neighbours in the input image, morphological 

operation is determined to be dilation or erosion. In erosion, the value of the output 

pixel is the minimum value of all the pixels in the input pixel neighbourhood. In a 

binary image, any 0 pixel in the input will be 0 pixel in the output [93]. 

 

One example of erosion applications is to make a text written with a pen that is 

bleeding looks clearer. Erosion process will allow thicker lines to get skinny and to 

detect the hole inside the character "o". As dilation is the opposite of erosion, it can be 

used with figures that are very lightly drawn to get thicker. 

 

Zhang and Wang [104] proposed a two sub-iteration parallel thinning algorithm 

with template matching that preserves image connectivity, produces thinner results, in 

short time, and generates one-pixel-wide skeletons. To achieve the thinning task, G1, 

G2, G3 and G4 conditions are proposed [93]. 

 

Condition G1  

                                                                 (3.16) 

where, 

                (3.17) 

            (3.18) 
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Otherwise                                                    (3.19) 

X1, X2… X8 are the values of eight neighbours of p starting with the east neighbour 

and numbered in counter-clockwise order as shown in Figure 3.24.  

 

 

Figure 3.24: The eight neighbours of pixel  

 

Condition G2 

                                                     (3.20) 

where, 

                    (3.21) 

                                                       (3.22) 

Condition G3 

( ) ^ =0                                                                      (3.23) 

The algorithm achieves the thinning task by checking the G1, G2, and G3 

conditions as follow: 

 

i. Divide the image into two distinct subfields in a checkerboard pattern. 

ii. In the first sub-iteration, delete pixel p from the first subfield if and only if the 

conditions G1, G2, and G3 are all satisfied. 

iii. In the second sub-iteration, delete pixel p from the second subfield if and only 

if the conditions G1, G2, and G3 are all satisfied [93]. 

 

However, Zhang and Wang algorithm was designed for general thinning purposes, 

and images containing only straight lines were used in their experiments. In order to 
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make it more suitable to achieve thinning task for cursive lines such as Arabic text, 

the algorithm should be used with some additional steps and conditions as follow: 

 

iv. Read the text image. 

v. Convert the image into binary image. 

vi. Consider white pixels as 0 and black pixels as 1. 

vii. Identify the isolated pixels: these pixels will be considered as noise and will be 

deleted. Two kinds of pixel will be considered as isolated pixel: 1 pixel 

surrounded by eight 0 pixels or 1 pixel surrounded by five 0 pixels as shown 

in Figure 3.25. The dots that are a part of the character body should not be 

considered as noise as the size of those dots should be bigger than 1 pixel. 

 

 

Figure 3.25: Two cases of 1 pixel considered as noise 

 

viii. Check possible pixels which may be changed to 0: In this step, all pixels in the 

image boundary should be considered to be deleted for image thinning. 

Supposing Pc is a pixel being checked, P1, P2...P8 is eight neighbour pixels of 

Pc as shown in Figure 3.26. 

 

 

Figure3.26: The checked pixels with neighbouring pixels 

 

Pc will be considered as a boundary pixel if: 

 {(P6=1) & (P2=0) or, 

  (P8=1) & (P4=0) or, 

  (P6=0) & (P2=1) or, 

  (P8=0) & (P4=1)}. 
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That means, Pc will be considered as a boundary pixel and will be deleted if it 

is connected to at least two other black pixels.  

 

1) Check pixel locations in the original image. 

2) If a pixel is adjacent to an isolated pixel, and it does not also have 

another neighbour, apply Zhang and Wang algorithm. 

 

The output of the supposed algorithm is the thinned text image. Figure 3.27 

shows an example of Arabic text before and after thinning using our algorithm.  

 

 

Figure 3.27: Arabic text before (left) and after (right) thinning 

3.12 Summary 

Preprocessing is a significant stage in any OCR system. The quality of the output 

from this stage will affect the segmentation stage and the accuracy of the whole 

system as well. In this chapter, the main parts of preprocessing stage: data acquisition, 

binarization, smoothing, normalization and thinning are discussed. Since Matlab 

environment is used for the experimental work, some Matlab Toolbox functions are 

used for some preprocessing operations such as binarization, and smoothing.  

 

For normalization, a fast algorithm which uses Radon transform method for skew 

correction is proposed. The new proposed algorithm can also be used for page skew 

correction as well as base line correction. For slant correction, a three-step technique 

is proposed; detection of vertical strokes using Hough Transform, measurement of 

angle using boundary tracing routine, and slant correction using transform technique. 

For thinning, an algorithm that utilizes the algorithm proposed by Zhang and Wang is 
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proposed. All of these operations are able to yield a clean document that can be used 

for the segmentation stage which will be discussed in Chapter 4. 

 

For skew detection and correction, the proposed algorithm consists of three steps: 

conversion of word or line image into structuring element, applying Radon transform 

on the structuring element, and finally, reconstruction of the word or line image. The 

proposed algorithm has shown good performance for page, line and word skew 

detection and correction.  
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CHAPTER 4 

 SEGMENTATION 

4.1 Chapter Overview 

This chapter presents the second stage of the proposed system, the segmentation 

stage. First, some rules that reflect Arabic handwriting characteristics are presented. 

Then, characters width estimation is discussed as it is needed in the proposed 

segmentation method. The next stage of proposed segmentation model: text-to-lines, 

line-to-words and word-to-characters and the proposed algorithm to achieve the 

segmentation task at each stage are presented. In word-to-characters stage, an 

additional algorithm for segmentation of overlapping characters is presented.   

4.2 Introduction 

Segmentation is a significant sensitive stage in OCR systems. If a system fails to 

segment a handwritten word correctly, it will fail to recognize that word regardless 

how robust the recognition method is. For that reason, a considerable amount of work 

has been carried out in order to develop segmentation process for different languages. 

 

The segmentation process of handwritten Arabic is a challenging task due to the 

cursive nature of Arabic characters. In addition, the large number of Arabic characters 

shapes and many different writing styles are other factors that make segmentation 

stage more difficult, and could possibly cause character over-segmentation since the 

majority of Arabic characters can be connected from both right and left sides. 

 

Most of the segmentation methods start with page segmentation which involves 

two processes: page decomposition and text segmentation. Page decomposition aims 
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to separate different page elements such as text, graphs, background, pictures, 

photographs, and drawing. In text segmentation, text will be progressively segmented 

into text lines, then into words, then, in some systems, into characters [24]. 

 

As mentioned earlier (in Section 2.4.1.3), several methods have been proposed for 

Arabic handwriting segmentation. Some algorithms designed for Latin cursive word 

segmentation might be used for Arabic word after some modifications. Generally, 

most segmentation methods for segmenting a handwritten text use similar technique. 

The first step is to determine a number of cut paths through the text line image using 

connected pixels method, where connected component is segmented as words, or 

vertical histogram method, where the minimum value of the vertical histogram 

indicates gaps between words. The output of this step should be a large number of 

subsets of foreground pixels, supposed to be words or sub-words. In the second step, 

the subsets of foreground pixels are segmented again into isolated characters, which 

can be used in the recognition stage. The segmentation in both stages depends on 

hypotheses. In the first step, where text line should be segmented into words, each 

non-pixel zone through the hypothesis graph represents a possible segmentation of the 

output. In the second step, character hypothesis, that represent all possible segmented 

characters, are arranged into a hypotheses graph using the constraint that the 

foreground pixels of different character hypothesis should not be overlapping [45]. 

4.3 Segmentation Rules for Arabic Handwritten Text 

In order to perform an accurate segmentation for Arabic handwritten text, it is 

important to highlight some characteristics of Arabic handwriting that make 

segmentation more difficult.  Some rules, those that reflect the nature of Arabic 

characters and writing styles, which have been discussed before in Section 2.3.2 will 

be considered before designing the segmentation method in the proposed OCR 

system.    

 

i. Arabic  is written cursively from right to left, some writers use to connect 

characters to each other by horizontal strokes, the length of those strokes varies 

depending on the writer style, but this stroke is usually longer than the strokes of 
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the character itself. These strokes are assumed to be segmentation points, thus, 

they make segmentation task easier, but, unfortunately, are seldom used. Figure 

4.1 shows some of these strokes.  

 

 

Figure 4.1: Some horizontal connection strokes 

 

ii. Arabic characters have 4 basic shapes, according to the character position in the 

word, beginning, middle or end, as shown previously in Table 2.2. The shape of 

some characters is totally different when it is located at the end of a word such 

as (ه), while it is slightly different for other characters such as (ل). These features 

can be useful for segmentation since the existence of these characters, in the end 

shape, indicates the end of the current word and a new word is beginning. Table 

4.1 shows an example of the different shapes of two Arabic characters.  

 

Table 4.1: The different shapes of two Arabic characters 

Character Shape 

Beginning Middle End 

 ـه ـهـ هـ ه

 ـــــل ــلـــ لـ ل
 

iii. Some Arabic characters (  (ا -ذ  –د  –ر  –ز  –و are connected to others only from 

the right side. The existence of these characters indicates the end of a word or 

dividing the word into two or more sub-words.   

 

iv. In the case of sub-word, the space between sub-words is smaller than the space 

between different words. Figure 4.2 shows the spaces between sub-words (as 

pointed by lower arrows) and between different words (as pointed by upper 

arrows). 
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Figure 4.2: The spaces between sub-words (pointed by lower arrows) and 

between different words (pointed by upper arrows) 

 

v. In many cases, Arabic characters may overlap each other. Therefore, 

segmentation cannot be successfully achieved using vertical histogram. Figure 

4.3 shows a case of overlapping characters.  

 

 

Figure 4.3: Overlapping characters 

 

vi. Dots make the difference between some characters that have the same shape 

such as ( ش -س  –ذ  –د  –ت  – ب ).  Dots appear in three forms: single dot, two 

dots, or three dots. Most writers draw the two dots as a horizontal stroke (-) the 

three dots as a small triangle (^). The position of the dots should be right up or 

below the character, but some writers draw them slightly far (to the right or left 

side) from the right position. As shown in Figure 4.4.  

 

 

Figure 4.4: A misplaced dot under the letter Dal (ـد) which should be under the 

character Baa (بـ) 

4.3.1 Character Width Estimation 

It is important to estimate the character width in order to determine the candidate 

points of segmentation. Word-to-characters segmentation depends on an accurate 

estimation of character width. In handwritten words, both too long and too short 
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characters will cause an error in determination of the segmentation point. If the 

character is too wide in width, the segmentation might produce only parts of it, if it 

too short, segmentation might produce character with parts of other adjacent 

character.  Like other alphabets, Arabic characters are different in terms of width as 

shown in Figure 4.5. Character width estimation is not a simple task for handwritten 

words in any languages.  

 

 

Figure 4.5: The width of Arabic printed characters 

 

Figure 4.5 shows a comparison of width of isolated Arabic printed characters at 

font 12pt. However, in case of handwritten characters, character width might be 

scaled up or down depending on the writer‟s style, but the character Alif is the 

smallest and the characters Saad and Thad are the largest in terms of width. 

 

There are three approaches for character width estimation: using the word width 

with the average number of characters, using statistical measurement, and using a 

character height as a reference. The first method is to use the width of the word with 

the average number of characters in Arabic words. Since the number of character in 

Arabic words varies, from 2 to 10 characters, the result of using this method might be 

inaccurate in the case of words having far from the average number of characters. In 

the second method, statistical measurement is performed on the Arabic text to get 

approximate average width of the characters. This method requires using characters of 

the same size in the dataset which limits its use for characters of different sizes. The 

third method is to locally estimate the character width by considering the average 

height of one character as a reference.  
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4.4 Proposed Segmentation Module 

Documents, especially printed, may contain text, images, graphs, table, etc; text 

extraction is the first step in the segmentation stage. Since the scope of this research is 

handwriting recognition, the handwritten document, which is the input to the 

proposed OCR system, is assumed to contain text only.  

 

In this thesis, the segmentation process contains three main stages: text to text 

lines stage, text line-to-words stage, and word-to-characters stage.   In text to text 

lines stage, text lines should be extracted from the handwritten text. In text line-to-

words stage, words should be extracted from the lines. Finally, in word-to-characters 

stage, words should be segmented into individual characters to be recognized. Figure 

4.6 shows a flow chart of the segmentation process.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: A flow chart of the segmentation stage 

4.4.1 Text-to-text lines Segmentation Stage 

Text line can be defined as an imaginary line that is used by people when they are 

writing. For Arabic text, the text line contains the most vertical strokes of the words. 

Text lines are separated from each other by white spaces. Thus, for line segmentation, 

the boundaries of each text line are located by finding the horizontal gaps between 

text lines. Text line extraction of handwritten text can be categorized into six 

The Input: 

Document page 

Text to Lines Stage 

 Line to Words Stage 

Word to Characters 
Stage 

The Output: 

Individual characters 
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approaches: projection based, smearing, grouping, Hough-based, graph-based, and cut 

text minimization approach [105]. 

 

In projection based approach, the pixel values along the horizontal axis for each y 

value is summed to obtain the vertical projection profile used to determine the vertical 

gaps between the text lines. In smearing approach, consecutive black pixels along the 

horizontal direction are smeared to fill all distance between the white space that is 

within a predefined threshold. The bounding boxes of the connected components in 

the smeared image are considered as text lines. In grouping approach, alignments are 

built by aggregating units in a bottom-up approach. Units such as pixels, connected 

components, or blocks are joined together to form alignments used to construct the 

text line [105]. 

 

In the Hough-based approach, Hough transform is used to locate straight lines in 

text images. Some researchers [106] used a block-based Hough transform to detect 

the text lines. The graph-based approach assumes that the distance between the words 

in a text line is less than the distance between two adjacent text lines. In this approach, 

a graph of the main strokes of the document image is built to obtain the shortest 

spanning tree of this graph. The cut text minimization approach aims to find a path or 

cut line between the text lines to be separated. The method attempts to track around 

ascenders or descenders to avoid cutting them. If the deviation is too great, the 

segmentation line aborts and continues its forward path [105]. 

4.4.1.1: Proposed Method for Text-to-lines Stage 

In this research, Hough transform approach has been adopted for text to lines 

segmentation stage. The Hough transform is a global method used to find straight 

lines in a binary image, where each point in Hough space corresponds to a line at 

angle and distance from the origin in the original data space. The point density along a 

line in the data space is given by the value of a function in Hough space [107]. 

 

Beside text line extraction, Hough-based methods are widely used in pattern 

detection such as, curve detection [108], hatched pattern detection [109], straight line 

segment extraction in complex images [110], road detection [111] and lane boundary 

detection [107].  
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For text line extraction, Hough-based methods are used to solve some problems 

including: line proximity, overlapping or even touching strokes, fluctuating close 

lines, and shape fragmentation occurrences [112]. Shapiro et al. [113] used Hough 

transform to search for the global orientation (skew angle) of a handwritten page. 

Then, projections are achieved along this angle. The number of maxima of the profile 

is used to obtain the number of lines.  Likforman-Sulem et al. used the Hough domain 

and the image domain in combination for detecting text lines in unconstrained 

handwritten texts. The Hough transform is coupled with a validation procedure which 

enables the rejection of alignments of components occurring in a context which 

inhibits their perception [114]. 

 

Pu and Shi applied the Hough transform to minimum points (units) in a vertical 

strip on the left of the image. By grouping cells in an exhaustive search in six 

directions, due to the shape of each non-zero group, the alignments in the Hough 

domain are searched starting from a main direction. Then, the remaining units are 

assigned to alignments by moving window, associated with a clustering scheme in the 

image domain [115].  

 

Hough transform was chosen in this research due to two factors: first, the main 

advantage of using the Hough transform is that the pixels lying on one line need not 

all be contiguous. This can be very useful when trying to detect lines with short 

breaks in them due to noise [116] as the case of cursive handwritten text lines. 

Second, the Hough transform was already chosen as a method for slant correction in 

the preprocessing stage. Using the same method for line extraction makes the system 

easier to be implemented.   

4.4.1.2: Hough-Based Algorithm for Text-to-Lines Segmentation 

For text-to-line segmentation, an algorithm that receives the text image as an input 

and produces a group of individual text line images as output has been developed. 

Each extracted text line will be separately stored in a new file. The proposed 

algorithm consists of the following steps: 

 

a) The text image is converted into a binary image in order to find the edges of 

the text. Canny, which is the most powerful edge-detection method has been 
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used, since it uses two different thresholds (to detect strong and weak edges), 

and includes the weak edges in the output only if they are connected to strong 

edges. Therefore, Canny method is less likely to be fooled by noise than the 

other edge detection methods and more likely to detect true weak edges [93]. 

These features are more important in this system case, where the input is a 

cursive handwritten text. Using this method, a clear edged binary image of the 

handwritten text can be obtained. Figure 4.7 shows the input text image and 

Figure 4.8 shows its edged image.  

 

 

Figure 4.7: The text image input  

 

 

Figure 4.8: Edged image of the text image input  

 

b) The Standard Hough Transform (SHT) is used to compute the Hough 

transform of the edged image in order to detect the lines in the image using the 

parametric representation of a line as appeared by eq (4.1): 

 

                                                                        (4.1) 

where rho is the distance of the origin along a vector perpendicular and θ is the angle 

between the x-axis and the vector.  

 

Figure 4.9 shows the detected lines using Hough Transform, some lines might be 

cut into more than one part due to the low pixel density. This will not affect the text 

line extraction as the text line position is detected by all the detected line parts. 
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Figure 4.9: The detected lines using Hough Transform  

            

c) In order to extract each line separately, peak values should be found in the 

parameter space which represent potential lines in the input image. Then, peak 

values are used to find the white pixels in the input image that correspond to a 

particular Hough transform. After the corresponding white pixel line is found, 

it will be stored in a new file called line-text-image. Figure 4.10 shows the 

corresponding white pixel line. The bin in this case represents a text line, thus, 

it is set according to text line number in the text image.  

 

 

Figure 4.10: The corresponding white pixel line of one text line 

 

d) Finally, the corresponding white pixel line is used to determine the location of 

each text line in the original text image. The height of text line is determined 

by calculating the mean of X axis of the corresponding white pixel line Xmean 

as the following: 

 

                                                      (4.2) 

where 

 [x, y] is a vector that represents the corresponding white pixels and 

Image2 is the new image that contains only the corresponding white 

pixels.  

 

                                                                              (4.3) 

where 

 X is the x axis of the corresponding white pixels line. 
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e) Experimentally, it was found that all the text lines in the used dataset are 

located within 100 pixels, above and below, the corresponding white pixels. 

The top border of the extracted image, image2, is found by adding 45 pixels to 

the mean of the corresponding white pixels, while the bottom border is found 

by deducting 55 pixels from the mean of the corresponding white pixels. The 

width of the text line is limited to the width of A4 form since A4 size is used 

in the dataset. It was found that the range from 5 pixels to 2500 pixels can 

cover the width of any text line in the dataset. Therefore, the location of the 

text line can be determined as follows:  

 

Xtop=Xmen+45                                                                    (4.4) 

Xbottom=Xbottom-55                                                 (4.5) 

where,  

Xtop: is the top border of the extracted text line in the file image2. 

Xbottom: is the bottom border of the extracted text line in the file.  

 

Image2=Image1 (Xbottom: Xtop, 5:2500)                                                  (4.6) 

where, 

Image1: The original text image. 

Image2: The extracted line image.  

5:2500: The width of the extracted line image. 

 

As the width of the text line varies from one writer to another, an empty space 

might be found at the beginning or the end of the extracted line image. This empty 

space will not adversely affect the segmentation process. Figure 4.11 shows the 

second extracted line. 

 

 

   

Figure 4.11: An example of an extracted line 

 

To ensure that this algorithm is capable to extract lines from any text page, the 

width and height of extracted line image (Image2) can be calculated using the vertical 

and horizontal projection of the binary original image (Image1). 
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The width of the extracted line image (Image2) can be equal to the original full 

text image (Image1). The height of the extracted line image (Image2) can be 

determined by calculating the sum of the rows in the array that represents the binary 

image of (Image1) after exchanging the one pixels with zero pixels.  

 

In case of empty spaces between text lines, the empty space will be determined as 

rows with a sum of zero, above and below the corresponding white pixels which will 

be presented as the row with maximum value of sum. 

 

In many cases, text lines are quite close to each other which make them vertically 

overlapping. In such cases, there will not be any rows with sum of zero. Instead, rows 

with minimum value of sum will represent the space between text lines. Thus, the 

height of extracted lines can be determined by calculating the distance between the 

row with maximum value of sum, which represents the corresponded white pixels, 

and the first row with minimum value above and below the corresponding white 

pixels as follows: 

                                                     (4.7) 

where,  

rowsum: a matrix that contains the sum of each row in the binary image array. 

Image1_rows: a row number n in the array. 

rowmax=max[rowsum]                                                                                   (4.8) 

rowmin1=min [rowsum]                                                               (4.9) 

rowmin2=min [rowsum]                                                                  (4.10) 

where,  

rowmax: the row with maximum value. 

rowmin1: the row with the minimum value above rowmax. 

rowmin2: the row with the minimum value below rowmax. 

Then the extracted image can be: 

                                      (4.11) 
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4.4.2: Text line-to-Words Segmentation Stage 

Text line to words segmentation is a critical stage before the final segmentation stage, 

where the isolated characters are obtained. In this stage, the segmented lines obtained 

from the previous stage are segmented into words and sub-words. In general, 

segmentation methods can be categorized into three categories: text line segmentation 

methods, word segmentation methods and both text line and word segmentation 

methods [117].  

 

In most of text line-to-word segmentation methods, the words are defined as 

connected components. Thus, the distances between adjacent connected components 

are measured using a metric such as the Euclidean distance, the bounding box 

distance or the convex hull metric [118-120]. To distinguish between words and sub-

words, a threshold is used to determine whether the calculated distance separates 

words or characters. 

 

For Arabic handwritten text line, connected components method can produce 

good results only if there is enough distance between words. Wherever words are 

close to each other, connected components will be overlapping. Figure 4.12 shows an 

example of connected components. 

 

 

Figure 4.12: Connected components of Arabic handwritten text line 

 

In handwritten text lines, there are two main problems which should be overcome. 

First, the overlapping words, which make text line to word segmentation a difficult 

task. Second, the non-constant distances between different words and characters in the 

same word with non-constant character width. Following, is a brief explanation about 

both problems. 
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i. Overlapping words 

For languages written cursively, such as Arabic, characters, in many cases, might be 

vertically overlapping, as a part of one character is located below or above other 

adjacent characters. This will cause one of the overlapped characters to be cut off into 

two parts if vertical segmentation algorithm is used. On the other hand, the 

overlapping characters will cause the two sub-words to be considered as one 

connected word. In the case of characters from different words, two different words 

will be considered as one word. Figure 4.13 shows an example of overlapping 

characters, from different words (a) and within the same word (b).  

 

 

Figure 4.13: Vertical overlapping characters, from different words (a) and within the 

same word (b) 

 

ii. The non-constant distances with non-constant character width 

As mentioned earlier in Section 3.2.1, the width of Arabic characters varies. In 

addition, the same character might have different width when it is written by different 

people. This makes it important to have character width estimation technique in order 

to avoid the character from being cut, in case it is too long, or being segmented as a 

part of an adjacent character, if it is too short. Furthermore, spaces between words, 

and between different parts of sub-words, are important for accurate segmentation. 

The spacing between words are supposed to be larger than those between characters. 

However, in some cases there will be no difference between the spacing that separates 

words than the spacing separating characters due to the lack of a standard definition 

for spacing width. In Figure 4.14, the spacing „a‟, located between two different 

words, should be larger than spacing „b‟, which separates characters in the same word. 
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Figure 4.14: An example of spacing between words smaller than spacing between 

characters. 

4.4.2.1: Proposed Algorithm for Text line-to-Words Stage 

The proposed algorithm uses statistical method for text line-to-words segmentation. 

The idea behind it is that, after the text line image is converted into binary image, the 

value of each pixel in the image will be either one, which appears as background in 

white color, or zero, which appears as foreground in black colour. After switching the 

pixels ones into zeros, the foreground will appear in white, and the background will 

appear in black. This will make detection of empty spaces between words easier. 

Figure 4.15 shows a binary image of text line after switching pixels ones into zeros.   

 

 

Figure 4.15: A binary image of text line 

 

As the whole binary image is a mathematical two-dimensional array each column 

in this array represents a space between words or characters. The proposed algorithm 

also uses empty columns to measure the space between words and characters, and to 

measure the width of words and characters. This measurement is used to determine 

whether the segmented component is a word or a character. Figure 4.16 shows empty 

columns between words and characters. 
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Figure 4.16: The empty columns between words and characters 

 

Upon the completion of segmentation, the output will be segmented components, 

which might be words, sub-words or characters. Figure 4.17 shows the diagram of 

line-to-words segmentation algorithm. The entire line is segmented into isolated 

connected components. Then, each component is tested to determine whether it is a 

word or sub-word, before sending to the next segmentation algorithm, or if it is a 

character, it will be sent directly to the recognizer. 

   

 

Figure 4.17: Flowchart of the proposed segmentation algorithm  
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As shown in Figure 4.17, the output will be tested according to two factors: first, 

the connected component width, then the distance between this segmented component 

and the two adjacent segmented components. The test is done according to the 

following steps: 

 

Step1: All segmented components width and the distances between each two adjacent 

segmented components are measured, in pixels, and the mean will be calculated for 

both. If the minimum width found is less than 4 pixels, that indicates that the 

minimum width is referring to the character Alif ا)  (which is the smallest character. 

While the largest character in Arabic is Saad ص)  (. As shown in Figure 4.5, for 

printed characters width of Saad is eight times larger than the width of Alif. In this 

proposed algorithm, the width of Saad is estimated to be ten times larger than the 

width of Alif. Two pixels are added to the width of the character Saad considering 

that handwritten Alif in some cases might be slanted.  At this point, the first reference 

for character width for this particular writer is made. 

 

Step 2: If the segmented component width is smaller than the width of Saad and the 

distance between this segmented component and its adjacent segmented components 

is shorter than the mean distance, it will be considered as character. Characters will be 

passed to the recognition stage. 

 

Step 3: If the segmented component width is larger than the width of Saad, according 

to the mean measured in step1, and the distance between this segmented component 

and its adjacent segmented components is longer than the mean distance, this 

segmented component is considered as a word. Words will be passed to the word-to-

characters segmentation algorithm. 

 

Step 4: If the segmented component width is large according to the mean measured in 

step1, and the distance between this segmented component and its adjacent segmented 

components is short, this segmented component is a sub-word. Sub-words will be 

considered as words and will be passed to the word-to-characters segmentation 

algorithm.  
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In some uncommon cases, the character Alif does not exist in the text line. This 

can be detected when the minimum width is larger than 4 pixels. In such cases, the 

width of the character Alif will be immediately estimated as 3 pixels. The 

segmentation algorithm is accomplished according to the following steps:    

 

a) The text line image will be received from the previous stage (line extraction) and 

will be converted into a gray-scale image then to binary image. 

b) Exchange between 1s and 0s in the binary image to represent the background of 

the binary image as zero pixels and the words (foreground) as one pixels. The 

binary image now is a two-dimensional array with specific number of rows as 

height, and specific number of columns as width. 

c) Search for the empty columns (wherever the sum of the 100 rows=zero). 

Wherever an empty column (Ec) is found, a segmentation point is determined. 

This will produce empty segmented images, when the segmentation is done 

between two empty columns. Only the segmented components will be sent to the 

next segmentation stage.  

d) The number of empty columns indicates the distance between components 

(words, sub-words or characters). The number of non-empty columns (NEc) 

indicates the width of components. Both, distance between all components and 

width of them will be measured. 

       

                                                                                                              (4.12) 

where, 

D: the distance between two adjacent components. 

n, m: the first and the last empty columns in the space between two adjacent      

components. 

Ec: the empty column. 

After the distance D of all empty spaces are measured, the mean of D (meanD) is 

calculated. The distances before and after the segmented component D1, D2 will be 

considered as large if they are bigger than meanD 

                                                                                                           (4.13) 
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where, 

W: the width of one component. 

n, m: the first and the last non-empty columns before the next empty space. 

NEc: the non-empty column.   

 

If the minimum width of a component is less than 4, that minimum indicates the 

character Alif (Walif); the larger character is estimated to be 10 times larger than the 

width of Alif. Otherwise, the width of Alif is estimated as 3 pixels.  

 

If min (W) <4                                                         

Walif = min (W)                                                                       (4.14) 

Wsaad=10*(Walif)                                                      (4.15) 

 

Otherwise  

Walif = 3                                                                                (4.16) 

Wsaad=30                                                                                        (4.17) 

 

e) Testing the segmented components. 

If (Ws < Wsaad)  

The segmented component is a character. 

If  (Ws > Wsaad) and (Ds1 or Ds2 > meanD)  

The segmented component is a word. 

If (Ws > Wsaad) and (Ds1 or Ds2 < meanD)  

The segmented component is a sub-word. 

 

where, 

Ws: the width of segmented component. 

Ds1 and Ds2: the distance before and after that segmented component. 

 

The main goal of testing the segmented component is to determine whether the 

segmented component is a character or not. If it is a character, it should be sent 

directly to the recognizer. In some rare cases, a word with only two characters might 

have a width less than the width of Saad. In this case, the recognizer will send the 
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segmented component back to the word segmentation algorithm after it failed to be 

recognized. At this point it is not important to determine whether a segmented 

component is a word or sub-word as both will be sent to the next segmentation stage. 

  

The algorithm deals with overlapping characters as connected component. Since 

no empty column will be found between them, they will be passed to the final 

segmentation stage, where words will be segmented into individual characters. The 

proposed solution for overlapping characters will be discussed in the next section.  

4.4.3 Word-to-Characters Segmentation Stage 

The word “Segmentation” in character recognition, usually, refers to the process of 

segmenting a word into individual characters. As mentioned earlier, in Section 

2.4.1.3, segmentation methods can be classified into three classes: holistic methods, 

image-based methods and recognition-based methods [45]. In holistic methods, the 

system is designed to recognize words as a whole, avoiding the need to segment into 

characters.  

 

In Image-based methods, decomposition of the word image into a sequence of 

sub-images using general features is used. The word image can be decomposed, 

directly, into characters. The decomposition can be achieved by contextual post-

processing, where the segmentation obtained by decomposition is later subjected to 

evaluation based on linguistic context. 

 

In recognition-based methods, word image is divided systematically into many 

overlapping pieces without regard to content. These methods could be performed by a 

serial windowing optimization scheme, where recognition is done iteratively in a left-

to-right scan of words, searching for the best recognition result, or by a parallel 

optimization scheme that generates a lattice of all possible feature-to- character 

combinations [45]. 

4.4.3.1: Proposed Method for Word-to-Characters Segmentation 

In preprocessing stage Section 2.4.1.2, two operations that are related to the proposed 

method for word segmentation have been presented. The first operation is 
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binarization, where the coloured image obtained from scanning stage is converted into 

a grayscale image, which is then converted into a binary image in order to make the 

image clearer and sharper. When binarization has been completed, the word image is 

segmented into two regions: one made by word (information), appearing as black 

pixels, and another one made by the background, appearing as white pixels. The 

second operation is thinning, which is the process of minimizing the width of a line in 

the input image from many pixels wide to just one pixel.  

 

The input of word for the segmentation stage will be the output of the previous 

stage, which are connected components that might be connected word, sub-word, or 

more than one sub-word that failed to be segmented into isolated sub-word due to 

overlapping problem. The isolated characters will be directly sent to the recognition 

stage. Figure 4.18 shows an example of segmentation stage input. 

 

 

Figure 4.18: An example of segmentation stage input 

 

Once the connected component image passed binarization and thinning operation, 

binary thin image is obtained. Figure 4.19 show an example of binary thin image of a 

connected word. 

 

 

Figure 4.19: Binary thin image of a connected word 

 

In order to detect the word strokes as column with sum equal to one, the value of 

the white pixels, which is 1, is exchanged with the value of the black pixels, which is 

0. Thus, each white pixel will become black and vice versa. Figure 4.20 shows the 

word image after exchanging the pixel values. 
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Figure 4.20: The word image after inversion pixels 1 and 0  

 

At this point, each stroke between characters will be represented as a row of white 

pixels. On the other hand, the whole image is mathematically represented as a logical 

array. In order to detect the position of the strokes that separate characters, the sum of 

each column of this array is calculated. Whenever the sum of a column is equal to 1 

that indicates the position of a stroke. Figure 4.21 shows part of the previous image, 

where the characters Saad is positioned between two strokes. 

 

 

Figure4.21: The character Saad positioned between two strokes 

 

In Figure 4.21, the sum of each column in the spaces S1 and S2 is equal to 1, 

indicating that these two spaces are strokes. From the first column in the space L1 till 

the last column in that space, the sum of each column is bigger than 1. That means 

there is a character located in that space. 

 

The proposed algorithm for word-to-characters segmentation can be summarized 

as follows:   

 

a) The input image is converted into a binary image, then thinned to obtain binary 

thin image of the connected component that is mathematically represented as 

logical array A with specific number of columns and rows. 

 



 99 

b) The values of the A elements are exchanged. The exchange is performed by the 

logical NOT of input array A, the elements of the output array is set to 1 if A 

contains a zero value element at that same array location.  Otherwise, that element 

is set to 0. 

 

c) Search for empty columns (whenever the sum of the rows=zero) to find the 

beginning and end of the word. Then, search for the columns where the sum=1. 

Wherever those columns are found, the position of that column will be taken as 

segmentation point. 

 

                                                                                                  (4.18) 

where, 

Cs: the sum of a column elements value. 

m, n : the first and the last row in the logic array. 

R: the elements in that row.  

d) Since some characters located within a word have two horizontal strokes, before 

and after the character body, therefore some space before the character at the 

beginning of a word, as well as space after the character at the end of a word is 

needed. In such cases, the segmentation point will be one column before, and after 

Sp.  

 

If (Cs=0),     then C+1 or C-1 position is segmentation point Sp (to obtain space).  

If (Cs=1),     then C+1 or C-1 position is segmentation point Sp (to obtain 

strokes).  

As an example, in Figure 4.22, the array A contains 26 columns C1, C2…C26 and 

the sum of each of columns, C1, C2…C9 is equal to 1, as each column contains only 

one white pixel. That indicates that the space from C1 to C9 is a stroke. Starting from 

column C10 till column C17, the sum of each column is larger than 1, as each column 

contains more than 1 white pixel. That indicates that there is a character located in the 

space between C9 and C18. The space between C18 and C26 indicates a stroke. To 

obtain horizontal strokes before and after the character, segmentation points will be at 
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columns C8 and C19. In case of characters at the end or at the beginning of a word, 

instead of strokes, having some empty space is required in order to have clear shape 

of the segmented character. 

 

 

Figure 4.22: Graph of the array A 

 

e) After segmenting according to the adaptive points, some segmented parts of the 

word will have only part of a stroke. That will happen when two segmentation 

points are adjacent. Thus, segmented-part size will be tested, if the size is small, 

that part is a stroke, and it will not be saved. The size of stroke in segmented 

image, experimentally is estimated to be 3 pixels, smaller than the size of Alif 

which is the smallest character in terms of width.  

W=Width(S)                                                          (4.19) 

If W> 3,  

 Save S. 

else, 

Do not save S. 

where, 

W: The width of the segmented part. 

S: The segmented part. 

 

There will be 3 cases of segmented characters, according to Cs value. 

 

Case 1: Zero- more than one – one: 

This indicates a character at the end of a word or sub-word. As shown in Figure 4.23, 

the segmented character occupies the columns between column 5 and column 10 

where Cs=0 and Cs=1, respectively. Thus segmentation will be at column 4, and 

column 11 to obtain empty space and stroke respectively.  
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Figure 4.23: An example of first case of segmented character 

 

Case 2: One- more than one- one: 

This indicates a character within a word. As shown in Figure 4.24, the segmented 

character occupies the columns between column 5 and column 10 where Cs =1 in 

both. Thus segmentation will be at column 4, and column 11 to obtain strokes in both 

sides. 

 

 

Figure 4.24: An example of second case of segmented character 

 

Case 3: One- more than one- zero:  

This indicates a character at the beginning of a word. As shown in Figure 4.25, the 

segmented character occupies the columns between column 5 and column 10, where 

Cs=1 and Cs=0, respectively. Thus, segmentation will be at column 4, and column 11 

to obtain stroke and empty space respectively. 

 

 

Figure 4.25: An example of third case of segmented character 
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4.4.3.2 The over-segmentation problem 

There are two types of possible errors that might occur in the segmentation process: 

over-segmentation and under-segmentation. Over-segmentation occurs when one 

character is segmented into two or more pieces, while the under-segmentation occurs 

when the segmentation algorithm produces two or more characters as one segmented 

character. In the algorithm, as strokes between characters are used to determine 

segmentation points, there is no possibility of under-segmentation, unless if the two 

characters are overlapping. The proposed algorithm, in some cases, suffers from over-

segmentation problem. In this section, the cases of over-segmentation and proposed 

solutions to overcome them are discussed. 

 

First case: The small tip at the end of a word 

Some Arabic characters such as ( ب – ت – ف)  have a small tip at the end of the 

character shape. When one of these characters is located at the end of a word, this 

word will have a small tip at the end of it such as (كيف). As the proposed algorithm 

will scan the binary image of the word from left to right in search of a column with 

the sum of more than one, this tip might be considered as a character as shown in 

Figure 4.26. 

 

 

Figure 4.26: An example of first case of over-segmentation 

 

In Figure 4.26, the correct segmentation should be achieved between C3 and C12 

where the entire character shape is located. Since C4 also has a sum of more than one, 

the character will be over-segmented into two pieces: from C3 to C5 and from C8 to 

C12. 

 

Solution: This case happens only when the character is located at the end of a 

word which we call: Zero- more than one - one. To overcome this case of over-

segmentation, additional condition has been added to the proposed algorithm, where 
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the column having a sum of more than one will be considered as a character only in 

(one- more than one- one) and (one- more than one- zero) cases. This condition will 

enable the algorithm to segment character with shape of small tip in the middle and 

beginning of a word such as (بيت (. 

 

Second case: The dots above or under the horizontal stroke 

In some cases, the dots of some characters such as (  are not located ( ـقـ - ـفـ - ـتـ - بــ

exactly above the character body. Instead, those dots are located before or after the 

character body. This might cause an over-segmentation as shown in Figure 4.27.   

 

 

Figure 4.27: An example of second case of over-segmentation 

 

In Figure 4.27, over-segmentation might happen as the sum of C5 is more than 

one even though no character is present there. The case of misplacement of character 

dots was discussed earlier in Section 4.2. 

 

Solution: To avoid this case of over-segmentation, the segmented characters will 

be tested. If the segmented character has a column with a sum of only two pixels, this 

segmented character will be considered only if these two pixels are connected. This 

will make the algorithm able to segment characters such as ( ـتـ - بــ   ( even with a short 

tip. When non-connected two pixels are found, it will be added into the closes 

segmented character. Testing of pixels connectivity is done by labelling technique. 

 

Third case: The stroke at the end of some characters 

Some characters end with horizontal or curved strokes such as (  The .(  و – ر – ذ – د

existence of these stokes might cause an over-segmentation as shown in Figure 4.28. 
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Figure 4.28: An example of third case of over-segmentation 

 

In Figure 4.28, the correct segmentation should be from C4 to C10 (zero- more 

than one – one) where the whole body of the character (ر) is located. Instead, the 

segmentation is from C8 to C10 as one- more than one- one segmentation case, even 

when this character is located at the end of a word (or sub-word).  

 

Solution: To avoid this case of over-segmentation, the proposed algorithm, in the 

case of one- more than one- one segmentation will check all columns before the 

segmented character until the column with a sum of 1 is found. If the sum of each 

column is one, this indicates a stroke belonging to that character. Therefore, the 

segmentation will be from the column with zero sum until the first column with sum 

of one located immediately after the column with sum of more than one. Two 

columns will be added before C4 and after C10 to obtain the space and the small 

stroke on both sides of the character.   

4.4.3.3 The overlapping characters  

Overlapping characters is one of the main difficulties in handwritten Arabic words 

segmentation as characters can be vertically overlapping in both printed and 

handwritten Arabic words. The vertical overlapping characters are those that cannot 

be separated be a vertical line. Unfortunately, according to some of the previous 

reviewed work, there is no reliable way to detect the overlapping characters. Thus, the 

recognizer itself is used as overlapping characters detector. In other words, characters 

that fail to be recognized in the recognition stage will be fed to the overlapping 

character algorithm. This part of the proposed system is shown in Figure 4.29. 
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Figure 4.29: The overlapping character algorithm 

4.4.3.4 Segmentation algorithm for overlapping characters 

Experimentally, it was found that overlapping characters in Arabic can be classified 

into three classes: non-connected overlapping characters, connected overlapping 

characters, and the special case of Lamalif. Different solutions for each class is 

proposed. 

 

a) Non-connected overlapping characters 

In this type of overlap, two characters will be vertically overlapping but still not 

connected. This happens when one or both of the two adjacent characters are non-

connected characters such as ( د -أ -و – ر ). The difference between connected and non-

connected has been discussed in Section 2.3.2. Figure 4.30 shows an example of two 

overlapping characters. 

 

Figure 4.30: An example of two overlapping characters 
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In segmentation, using the proposed algorithm, the non-connected overlapping 

characters are segmented in two cases: 

 

Case 1: Both overlapping characters are located in one segmented block. The body of 

each character is complete or almost complete (the segmented part of the character 

body is enough to be recognized) as shown in Figure 4.31. 

 

 

Figure 4.31: The first case of non-connected overlapping characters 

 

In this case, each character will be labelled then segmented, as the full shape of 

each character appears at different connected component.  

 

Case 2: The segmentation algorithm will cut small parts of one of the two overlapping 

characters and locate each of them in different blocks; one block will contain the first 

complete character with small part of the second character (Figure 4.31-a). The 

second block will contain the second character after losing a small part of its body as 

shown in Figure 4.32-b. 

 

Figure 4.32: An example of the second case of non-connected overlapping 

characters 
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In this case, the small part in block (a) will be considered as noise, thus, it will be 

removed. To avoid removing dots, which are needed to distinguish between 

characters that share the same body shape, both blocks, first, will be sent to the 

recognizer. If one or both of them failed to be recognized, the small part will be 

removed. 

     

b) Connected overlapping characters 

In this kind of overlap, two characters will be vertically overlapping and connected. In 

Arabic, the writing direction for both words in line and characters in the same word is 

always from right to left. Thus, horizontal lines or strokes are used to connect between 

characters as shown in Figure 4.33. These strokes are not used for some characters as 

explained before in Section2.3.2.  

 

 

Figure 4.33: The horizontal strokes between characters 

 

In some writing styles, two characters might be connected to each other vertically. 

In this case, the first character is located above the baseline while the adjacent second 

character is located under the first character on the baseline. This usually happens 

when character that appears as small vertical stroke such as ( ت – ب  - - ت  ) are 

connected to ( خ  ج – ح ). Figure 4.34 shows some examples. 

 

 

Figure 4.34: An example of overlapping characters 
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In the case of vertical overlap, the two overlapping characters will be connected 

without strokes between them. As shown in Figure 4.29, the first character is located 

above the baseline. This is the first feature that can be used for segmentation. Second, 

due to the shape of both characters, the connection point will appear as an angle 

between two sloping strokes. Figure 4.35 shows the two overlapping characters in the 

input word (a) and the segmented output (b) using the proposed algorithm. 

 

 

Figure 4.35: The two overlapping characters before (a) and after (b) segmentation 

 

Since thinning is one of the steps in the proposed algorithm steps, the body width 

of the overlapping characters will be 1 pixel. Figure 4.35 (b) shows the two sloping 

strokes. The arrows show the direction of writing.  

 

The connection point is located in the middle between the top of the two 

overlapping characters and the baseline, as shown in Figure 4.35. The proposed 

algorithm uses this point to segment the overlapping characters. In this case, as shown 

in Figure 4.35, segmentation path will be taken horizontally after calculating the 

height of the connection point. To calculate the height of the connection point, the 

algorithm will scan the overlapping characters image from left to right, searching for 

the first point where the sum of the column is more than 1 pixel. Figure 4.36 

illustrates how the connection point is detected.  
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Figure 4.36: Detection of connection point 

 

In Figure 4.35, columns 1, 2, and 3 are empty and the sum of column 4 is 1. There 

might be few columns which have the sum of 1 depending on how long the stroke is. 

The first column that has the sum of more than 1 is column 5. By scanning the 

elements of column 5 vertically, the connection point Cp should be the first white 

pixel in that column, thus, the row where that pixel is located will be taken as a 

horizontal segmentation path. Then, the bottom point Bp, where the lower stroke of 

the lower character should be located, and the top point Tp where the upper part of the 

upper character is located, can be detected. The white pixel in Cp will be considered 

as a part of both segmented characters to avoid any cut from the body of each 

character. 

 

The proposed algorithm for overlapping characters is as follows, 

 

i. The overlapping characters will fail to be recognized as output by the recognizer. 

Thus, thin binary version will be obtained from the previous segmentation 

algorithm. 

ii. The image will be labelled. If more than one block is found, that means the 

overlapping characters are non-connected; in that case both blocks size Bs1, Bs2 

are measured, and then the small block will be deleted. 

 

If Bn >1,  

Calculate the Bs1 and Bs2. 

Remove Bs2. 
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Save the image. 

 

where, 

Bn: the number of blocks in the image. 

Bs1: the labelled block with bigger size. 

Bs2: the labelled block with smaller size. 

Size calculation is done by (size) Matlab command. 

 

iii. In case of one block is found, that means the overlapping characters are 

connected. In this case, the sum of columns in the array A, that represents the 

binary image of the overlapping characters, is calculated from left to right to find 

a column with the sum of more than one. 

 

                                                                                        (4.20) 

 

where, 

Cs: the sum of a column elements value. 

m, n : the first and last row in the A array. 

E: the elements in that row.  

 

If Cs>1,  

Find the first pixel=1 in that column which represents the connection point Cp. 

 

iv. Segment the overlapping characters horizontally according to Cp. 

 

c) The special case of Lamalif  

The Lamalif is a combination of two characters: Alif (ا) and Lam (ل). It is usually 

written in this form: (لا). This makes the shape of these two characters as a special 

case of overlapping. There are two ways to write the Lamalif as shown in Figure 4.37. 

 

 

Figure 4.37: The two ways to write the Lamalif 
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As the case of overlapping is found only with these two characters, thus, these two 

characters are added to the system dataset. This solution is better than designing a 

new algorithm for only this case as the aim is to achieve the segmentation task with 

minimum number of algorithms in order to avoid complexity and to reduce processing 

time. Figure 4.38 shows the dataset of the Lamalif that will be used for training and 

testing the system. 

 

 

Figure 4.38: The dataset of the Lamalif 

4.5 Summary 

In this chapter, an essential stage of most OCR systems has been discussed and a 

proposed approach for the precise case of Arabic handwritten recognition has been 

presented. Segmentation is a process of preparing the input (words/characters) for the 

recognition stage. The segmentation, as a concept, starts early in the preprocessing 

stage, practically in binarization where the image is segmented into background and 

foreground. On the other hand, during the stage, a kind of pre-recognition starts when 

the system starts to recognize some features of the characters, such as the difference 

between isolated characters and words/sub-words according to the segmented block 

size.  

 

Some OCR systems skip the segmentation stage as the recognizer is dealing with 

words as a whole. The input of the system in this case is only individual words which 

simplifies the system, but limits the usage. Others have only one level of 

segmentation, such as word segmentation. Although the input of the system is a 
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handwritten text but the segmentation can only be performed up to word level as the 

recognizer is dealing with only individual words, which limits the usage as well. The 

full set of segmentation, as in the proposed system, should include the segmentation 

of page into lines, sometimes known as line extraction, then, line to words, and, 

finally, word to character. This makes the system able to receive any form of 

handwriting input. In order to design a segmentation algorithm more suitable for 

Arabic handwriting segmentation, some Arabic handwriting characteristics that make 

segmentation more difficult compared to other languages have been highlighted. For 

the proposed segmentation model, several algorithms for various parts of the 

segmentation are proposed. 

 

The proposed algorithm for text to line segmentation adopts Hough transform 

approach which is a global method for finding straight lines in a binary image. In the 

proposed algorithm for text-line-to-words segmentation, a mathematical 

representation of the text line binary image is used, where spacing between words can 

be seen as black pixels with zero value in the array. Using this method, the width of 

the connected components and distance between each of two adjacent components 

can be measured. The width of the connected components and the distance between 

them are used to determine whether that component is an isolated character, which 

can be sent to the recognizer, or a word/sub-word, that needs more segmentation.  

 

For word-to-character segmentation, the algorithm makes use of the thinning 

operation that limits the width of the word strokes into only one pixel. This is used to 

find possible segmentation points. Finally, for overlapping character segmentation, 

the connection point between two overlapping characters is used. In this part, some 

solutions for the most common challenge in Arabic word segmentation are suggested. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 5 

RECOGNITION 

5.1 Chapter Overview 

This chapter presents the final stage of the proposed system, which is the recognition 

stage. First, a brief overview of the mechanism of natural object recognition is 

presented to highlight the similarity between the proposed recognition model and the 

mechanism of object recognition in human. Then, the proposed model theory and 

construction are presented. Finally, the factors that affect recognition accuracy are 

discussed as well as several proposed techniques to increase the accuracy according to 

each factor.  

5.2 Introduction 

The recognition stage is the core of any OCR system. The main purpose of the 

previous stages, preprocessing and segmentation, is to prepare the character image 

(the word image in some cases) to be sent to this stage.  The efficiency of the OCR 

system depends significantly on this stage since it is the final stage in any OCR 

system, where all previous stages are designed to serve this stage by preparing its 

input. Usually, the recognition stage consists of two steps: feature extraction and 

classification. Extracted features can be categorized into three categories: spectral, 

geometric or textural features. Spectral features are features in frequency domain, 

such as colour, tone, and ratio. Geometric features describe basic properties such as 

size, edges, and lineaments. Textural features refers to a visual pattern that has 

properties of homogeneity that do not result from the presence of only a single colour 

or intensity such as pattern, homogeneity, and spatial frequency [121]. During the 

classification stage, the extracted features are compared to those of the model set 
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using three methods: structural method, statistical method or mathematical formalism 

as explained earlier in section 2.4.1.4. 

 

The main disadvantage of extracting and classifying features is that the system 

will suffer from the trade-off between accuracy and processing time. In order to 

obtain a high accuracy, many features that can provide enough information are 

needed. In this case, a complex model that needs longer processing time, should be 

used. In the case of using a simple model, not only the processing time will be 

reduced, but the accuracy is affected as well. 

 

In the proposed system, a new strategy for the recognition stage is adopted, where 

features extraction and classification are not involved. Instead, the character image 

will be decomposed using wavelets transform, then, the output of the decomposition 

operation, which will be represented as a coefficient, will be used to recognize the 

character. This strategy can be considered as a simulation of human recognition 

mechanism of objects and patterns. 

5.3 Human Recognition Mechanism  

Although remarkable progress have been achieved in the image processing field, the 

design of optical devices for processing and recognizing patterns, are yet to reach the 

sophistication and flexibility of the human recognition system [122]. Thus, it would 

be important to find out how human being recognizes patterns especially handwriting, 

in order to develop a more robust and efficient recognition systems.  

 

Until the 1960s, the research on human visual system was a part of 

neurophysiology and psychophysics. A big achievement in this field was made by a 

breakthrough of cognitive science in 1970s. Recently, knowledge about visual 

information processing of human visual system has been found with a medical science 

and engineering. Many researchers are trying to maximize the performance of current 

developed computer vision through modelling. There is more than one research 

focusing on creating artificial vision for blind people [123]. 



 115 

Generally, there are three theories about how human recognizes words, regardless 

of either handwritten or printed words. The first theory, which is the oldest in the 

psychological literature, says that words are recognized as complete units. The 

general idea is that we see words as a complete patterns rather than the sum of 

character parts. The word patterns are recognizable to us as an image because we have 

seen each of the patterns many times before. However, this cannot explain why we 

can recognize new words easily [124].  

 

The second theory of word recognition is that words are read character-by-

character serially from left to right, right to left or up to down depending on the 

language nature. In essence, recognizing a word in the mental lexicon is analogous to 

looking up a word in a dictionary starting off by finding the first character, then the 

second, and so on until the word is recognized. Finally, the theory that most 

psychologists currently accept as most accurate is the parallel character recognition 

theory which says that the characters within a word are recognized simultaneously, 

and the character information is used to recognize the words [124]. 

 

As the word recognition starts with the recognition of the characters within the 

word or the whole word image, it is important to understand the way human vision 

works, beginning from the sight of something up to its storage in the brain. 

 

As shown in Figure 5.1, a light beam is converted into a shadow with a reversed 

shape in the retina where the image shape is turned into a neural signal, and the 

sampling image is transmitted to primary visual cortex of the brain through optic 

nerve of the retina. After neural signals are transferred to the brain, they are stored in 

a part of the brain called forebrain, which is the most evolved and largest portion of 

the brain [123].  
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Figure 5.1: The human visual system 

 

Much is still unknown about how the brain processes information. To facilitate 

the retrieval process, some researchers [125, 126] suggested that the images are saved 

in human memory in different abstraction levels. The similar images are grouped 

together to form a cluster. The image in cluster at a certain level should have its 

similarity to the centre (representative) of the cluster higher than a threshold value for 

that level. The levels structure is built based on similarity measures, not feature 

measures. When a new image of an object is formed, it will be compared with all 

images (full and abstraction versions) in the memory starting from the highest level. If 

there is any stored image very similar to the new image then the image is recognized, 

otherwise it is considered as a strange one and will be separately saved. 

 

The proposed system emulates the human visual system and recognition 

mechanisms, according to this theory. After the character image is scanned, within the 

text image, it will be converted into a coefficient vector using Fast Wavelet 

Transform. For each character, the system will store a group of coefficient vectors in 

the training stage. Each group will have one representative, which is the mean of all 

coefficient vectors in that group. The recognition process will be achieved by 

measuring the similarity of the character to be recognized with all representatives of 

the coefficient vectors groups using Euclidian Distance. The character will be 

recognized as the representative that has the shortest Euclidian distance to the 

character to be recognized. Table 5.1 and Figure 5.2 show a comparison between the 

proposed system and human visual system, and recognition mechanism. 
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Table 5.1: Comparison between proposed system and human visual system 

 Image 

capturing 

Image encoding Store Recognition 

Human 

system 

Using eyes Encode into 

neural signal 

using optic 

nerve 

Brain Compare 

with groups 

of similar 

images 

proposed 

system 

Using scanner Encode into 

coefficient 

vector using 

wavelet 

transform 

Computer 

memory 

Compare 

with  

groups of 

similar 

images 

 

 

Figure 5.2: Similarity between the proposed system, and human visual system and 

recognition mechanism 

5.4 Fourier and Wavelet Transform  

The most well known signal analysis is the Fourier analysis. Fourier analysis breaks 

down a signal into constituent sinusoids of different frequencies. It can be defined as a 

mathematical technique for transforming the signal from time-based, where the signal 

amplitude is analysed according to time, to frequency-based where signal amplitude is 

analysed according to frequency [128]. 
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Figure 5.3: Fourier and wavelet analysis 

 

The main weakness of Fourier analysis is that there is no time information. In 

order to get time information, Wavelet analysis allows the use of long time intervals 

where more precise low-frequency information is wanted and shorter regions where 

high-frequency information is wanted [128]. Figure 5.3 shows a comparison between 

Fourier and Wavelet analysis.  

 

Wavelet analysis affords a different view of data so it can often compress or de-

noise a signal without appreciable degradation. This is an important feature in 

handwriting recognition where data should be de-noised before being used. On the 

other hand, wavelet analysis could reveal aspects of data like trends, breakdown 

points, discontinuities in higher derivatives, and self-similarity [128]. 

5.5 Signal Decomposition  

In wavelet analysis, when a signal, or image, is passed through two complementary 

filters, it will be decomposed, or analyzed into two kinds of components: the high-

scale, low-frequency components of the signal, known as approximations and the 

high-frequency components of the signal, known as details. The process of signal 

decomposition is illustrated as in Figure 5.4. 
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Figure 5.4: Signal decomposition 

 

As the signal will be passed through two filters and will come out from each filter 

with the same size (the amount of data), so the size will be duplicated. In order to 

keep the signal in the same size, down-sampling operation, which obtains 

representative coefficients, should be performed. Figure 5.5 shows decomposition 

before and after adding down-sampling operation in case of having 100 samples as 

signal size. 

 

 

Figure 5.5: Decomposition before and after adding down-sampling operation 

 

The decomposition process can be repeated. The approximations of each level can 

be decomposed again, so that one signal is broken down into many lower resolution 

components.  

Signal 

Low-pass 

filter 

High-

pass 

filter 

Approximations  Details 
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5.6 Signal Reconstruction 

After the signal has been decomposed, two kinds of component are obtained, 

approximations and details. These components contain all information about the 

signal, thus, they can be used to build the original signal without any loss of 

information. This process is known as reconstruction, or synthesis [93]. Figure 5.6 

shows a diagram of decomposition and reconstruction process. 

 

 

Figure 5.6: Decomposition and reconstruction process 

 

As only decomposition process is needed to convert the character images into 

coefficient vector, the reconstruction part is excluded from our work. The 

decomposition process is achieved using Fast Wavelet Transform.     

5.7 Discrete Wavelet Transform 

One of wavelet transform implementations is discrete wavelet transform (DWT) that 

uses a discrete set of the wavelet scales and translations following some defined rules. 

This transform decomposes a signal into mutually orthogonal set of wavelets. [127]. 

5.8 Fast Wavelet Transform 

In this research, Fast Wavelet Transform (FWT) is used as a tool to achieve the 

decomposition process. FWT is a mathematical algorithm designed to turn a 

waveform or signal in the time domain into a sequence of coefficients. The transform 

http://klapetek.cz/wavelets.html
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can be easily extended to multidimensional signals, such as images, where the time 

domain is replaced with space domain [128]. That could be done by generalizing the 

complex wavelet transform to higher dimensions using a multidimensional transform 

Then, using the resulting hyper-complex wavelet transform (HWT) as a building 

block for generating new classes of nearly shift-invariant wavelet frames that are 

oriented along lower-dimensional subspaces [129].  

 

Considering an image for which a function f(x, y) of size M x N, which forward 

discrete transform T (u, v…etc) can be expressed as: 

                                                (5.1) 

where, 

x and y are spatial variables.  

u, v are transform domain variables. 

 is a forward kernel. 

 

The kernels can be represented as 3 separable 2-D (horizontal, vertical, and 

diagonal) wavelets: 

 

                                                   (5.2) 

                                       (5.3) 

                                                  (5.4) 

 

where,  

 and  are known as horizontal, vertical and diagonal 

wavelets respectively. 

Ψ(x) and φ(x) and can be expressed as linear combinations of double-resolution 

copies of themselves:  

 

                             (5.5) 

                                                                              (5.6) 

 

where, 
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 hφ and hψ are known as scaling and wavelet vectors. These vectors are the filter 

coefficients of FWT. They can be considered as an iterative computational approach 

to DWT as shown in Figure 5.7.  

 

 

Figure 5.7: The 2-D FWT filter bank 

 

In Figure 5.7, the outputs  , , , and 

 are the DWT coefficients at scale j. The  is a low-pass 

decomposition filter and  is a high-pass decomposition filter. 

Mathematically, the  can be calculated as follows: 

                     (5.7) 

 

where, 

 is known as approximation coefficients as it is created using two low-pass 

filters [93].  

 

In Figure 5.7, each pass through the filter bank decomposes the input (the 

character image in our case) into four lower scale components. coefficients are 

called approximation coefficients as low-pass filters are used to create them. The 

 are the horizontal, the vertical and the diagonal coefficients 

respectively.  
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The image for which a function f(x, y) is represented as  is the 

input for the first iteration. The decomposition result of 2-D FWT in Figure 5.7 can be 

displayed as in Figure 5.8, where the green box indicates the horizontal coefficients, 

the purple box indicates the vertical coefficients, and the blue box indicates the 

diagonal coefficients. 

 

 

Figure 5.8: The decomposition result of 2-D FWT 

 

In Figure 5.8, (a) is the original image, (b) is the decomposition result of (a) using 

one-scale FWT, (c) is the decomposition result of (a) using two-scale FWT. The result 

of the decomposition process is not clear when it is visually displayed as in Figure 

5.9. 

 

 

Figure 5.9: An example of decomposition result 
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Figure 5.9 shows the decomposition result of the Arabic character image (Saad). 

The representation of the image by the diagonal coefficients (bottom right) is the most 

unclear decomposition result compared with the representation of the image using 

horizontal and vertical coefficients details.    

5.9 Previous Work on Wavelet Transforms 

The wavelet transform is widely used in many applications in image processing and 

signal analyses. In medical applications, DWT is used for heart contractions 

frequency analysis [130], mathematical modelling of blood flow in peripheral vessels 

[131], encephalograms analysis [132], Medical image fusion [133] and segmentation 

gene expression data [134].  In image processing, wavelet transform is used for face 

recognition, edge detection, character recognition, search in image database, and 

image compression. 

 

Xiemei used wavelet transform to reduce the image dimension. They calculated 

the gradient and tangent angle of the image pixels in order to extract the image edge. 

Using wavelet function, the system could detect the circular object through improved 

algorithm of improved Hough transform [136]. 

 

Ebrahimi and Kunt proposed a fast wavelet transform for image compression 

applications. They used a set of biorthogonal filters with coefficients in powers-of-

two and a good localization in the spatial and frequency domain as filter bank 

associated with the proposed wavelet. The relation between the low and high pass 

filters allows a polyphase implementation of these filters. They claimed that this 

transformation is very suitable for all applications which require more often or 

exclusively the decoding [137]. 

 

Tian and Ha, presented a review of some applications in medical image with 

wavelet transform. They reported that wavelet transform is currently used in 

electrocardiogram signal processing as electrocardiogram contain plenty of 

information of human heart, which level of recognition has great value in clinical 
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diagnosis. They presented the usage of wavelet transform in electroencephalograph 

signal processing, medical image compression, medical image reinforcing and edge 

detection, and medical image register [138].  

 

Je et al. developed an image recognition model based on retinal ganglion cell. 

They had experimented upon recognition and compression processing of information 

such as retinal ganglion cell by handwritten character database of National Institute of 

Standards and Technology (MNIST), which contains handwritten digit 0-9. In their 

model, wavelet transform was used in a compression process of the visual information 

by calculating the low-frequency and high-frequency filter of wavelet. Neural 

network was used for recognition [139]. 

 

Sun and Bow developed generalized algorithm of fast wavelet transform for the 

compression of monochrome and colour images. They used Haar wavelet transform to 

pact the image energy to a few transform domain samples. Using their algorithm, no 

significant distortions are noticed in the reconstructed images [140]. 

 

Dimov used Complex Fourier Transform to design a fast method to access images 

in a conventional database. The method uses two dimensional wavelet transform of 

images preliminarily normalized by size, orientation and intensity. The image content 

for search considers the normalized image graphics that should be well localizable 

into the input query picture. The most essential image data are represented as a key of 

fixed length, on which the fast access is performed using the index access methods of 

a conventional database management system. The proposed method can be applied as 

image search engine for instance in information and image retrieval systems for 

marks, hallmarks, trademarks, postmarks, etc. [141]. 

 

For handwriting recognition, wavelet transform is still not widely used. Generally, 

wavelet transform is used to extract features that need to be classified usually using 

neural network. 

 

Correia et al. used wavelet transform for handwritten numerals recognition. They 

used biorthogonal spline wavelets as a feature extractor, and a multilayer cluster 
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neural network as a classifier. Wavelet decomposition is applied on handwritten 

numeral images and the resulting sub-images constitute the feature vector. 

Classification is performed using a multilayer cluster neural network trained with the 

back-propagation momentum algorithm [142]. 

 

Zhang used wavelet transform for handwritten digits recognition. He proposed a 

two dimensional complex wavelet transformation and a two dimensional real wavelet 

transformation for hybrid feature extractions. For classification, ensemble classifier 

scheme, which consists of artificial neural networks and gating networks, was used 

[143]. 

 

Aburas and Rehiel used wavelet compression for handwriting recognition. Their 

proposed technique is based on the property that the wavelet compressed image is a 

decomposition vector which can represent the input image to be correctly 

reconstructed later at decompression stage. This property can be used to recognize the 

character image [144].  

5.10 Tool to Build the System 

MATLAB environment was selected as the tool to build the recognition system. 

Matlab is a numerical computing environment and fourth-generation programming 

language. Developed by The MathWorks, MATLAB allows plotting of functions and 

data, matrix manipulations, creation of user interfaces, implementation of algorithms, 

and interfacing with programs of other languages such as C, C++, and Fortran[145]. 

The choice of MATLAB was based on several reasons:  

 

1. Matlab is able to perform intensive tasks faster than other programming 

languages such as C, C++, and FORTRAN. 

2. In the preprocessing and segmentation stages in the proposed system, images 

are represented as arrays. Since all variables in MATLAB are arrays, thus, 

MATLAB is the preferable choice because it makes dealing with images, in 

the form of arrays more easily. 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/The_MathWorks
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
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3. MATLAB provides a collection of functions in Wavelet Toolbox software, 

which provides tools for the analysis and synthesis of signals and images. It 

also provides tools for statistical applications, using wavelets and wavelet 

packets within the framework of MATLAB [93]. This is a very helpful feature 

since wavelet transform is used in the recognition stage.  

All experiments were accomplished using MATLAB 7.6.0 (R2008a) version. 

5.11 Proposed Recognition Model 

Using FWT, the input image f(x, y) will be decomposed into four lower resolution 

(scale) components: approximations coefficients (created via low-pass filters) and 

horizontal, vertical, and diagonal details (which is the highest resolution 

representation of the image being transformed). These components contain all 

information needed to reconstruct the decomposed image into the original image, 

thus, these components are used to recognize the character image. 

 

Gonzales et al. [146] developed Matlab functions (wavefast and wavefilter) that 

could generate wavelet decomposition and reconstruction filters. These two functions 

were modified for use in the proposed model to decompose the character image for 

creating a coefficient vector that will be used to recognize the character. The 

decomposition coefficient vector will be denoted from now on as DCV.  

5.11.1 Model Construction 

The proposed model will be a combination of four Matlab functions; wave.m, filter.m, 

train.m, and test.m. Each function will be responsible to achieve a specific part of the 

recognition stage while they are working together.  

 

To create the system codebook, the train.m will read the images of the 48 different 

characters, and then divide each character image into 38 sub-images. For each sub-

image, the train.m will call wave.m to create DCVs.   

 



 128 

The wave.m will call filter.m to choose the filter that will be used for FWT. Thus, 

we call these two functions: DCV creator. Once the DCVs are created, the mean of 

each character will be calculated and stored as representative of that character in the 

sub-codebook. 

  

To compare the DCVs with the codebook, the test.m will read 10 sub-images and 

call wave.m, and filter.m to create DCVs for each of them. Then, each DCV will be 

compared with all representatives using Euclidian distance. The character will be 

recognized according to its shortest Euclidian distance to the representatives. The 

character will be recognized as the representative that has the shortest Euclidian 

distance to the character image.  

 

Two MATLAB functions (tranin.m and test.m) are designed to work with two 

modified function (wave.m and filter.m). To create the system codebook, tranin.m 

function calls wave.m function to create DCV for each character image.  

 

The wave.m function calls filter.m function for to determine the used filter. To 

compare the DCVs with the codebook, test.m function is used instead of tranin.m 

function. Each of the four MATLAB functions is briefly introduced in the subsequent 

subsections. 

 

The codebook is the memory location, which stores the representatives of all 

characters. To facilitate the comparison process later, four sub-codebooks are created 

for each codebook and they are customized for a particular case of characters. The 

shape of Arabic characters, when connected with other characters, changes depending 

on their position in the word (beginning, middle or end); all of which are different 

from their shapes when isolated. Hence, in general, there are four different shapes for 

each character. Thus, the codebook will contain four sub-codebooks. The first sub-

codebook is used to store the characters in isolated case. The second sub-codebook is 

used to store the characters in the beginning of a word and so on. Figure 5.10 shows a 

diagram of the model construction. 
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Figure 5.10: The proposed model construction 

5.11.1.1 The train.m function 

The main job of this function is to prepare the character image to be converted to 

DCV in decomposition operation. To facilitate the data collection, for isolated 

characters, tables of 49 cells were used. Each writer was asked to write each character 

one time in one of the table cells.  The train.m function (in appendix H) divides the 

table image into 48 character images. Then, it will call wave.m to be applied for 24 

characters out of the 48 characters, as training dataset, in order to get the DCV of each 

character. After applying wave.m, 28 groups of DCVs are obtained. Each group 

contains 24 DCVs. Then, the mean of each group will be calculated in order to have 

one representative for each character, which is then stored in the codebook. The 

representatives of all characters will be stored in the codebook. 

 

As mentioned earlier in Section 3.3, the dataset is divided into two categories: full 

text images which will be used in preprocessing and segmentation experiments, and 

isolated characters images, which will be used to build the system codebook. Each 

character was written by 48 different writers, in four different shapes (isolated, at the 

beginning, middle, and at the end). The size of each character is 40x40 pixels, 8-bit 
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pixel. For training stage, 38 images of each character, in every shape will be used.  

Figure 5.11 shows the data of four sub-codebooks of the character Ain. 

 

 

Figure 5.11: The dataset of four sub-codebooks of the character Ain 

5.11.1.2 The test.m function 

To test the system, test.m function (in appendix H) will read another 24 characters 

from the table image. Then wave.m will be called to create 24 DCVs which will be 

sent to train.m, one by one, to be compared with the 24 representatives using 

Euclidean distance. The minimum value of Euclidean distance indicates to which 

representative this character belongs.   

If r and v are two vectors  

where, 

                                                  (5.8) 

                                                     (5.9) 

The distance between r and v can be measured as: 

                                                                                             (5.10) 

 

where   

r, v are two vectors and E is the distance between r and v.   
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5.11.1.3 The wave.m function 

The wave.m function is a modification of wavefast.m proposed by Gonzalez [147], 

used to perform multi-level 2-dimensional fast wavelet transform. It will call filter.m 

to fetch filters LP and HP to be used in the decomposition operation. The output of 

wave.m function is the matrix C, which represents the DCV of the input image. 

                                    (5.11) 

where, 

a: approximation coefficient  matrices. 

h: horizontal coefficient  matrices. 

v: vertical coefficient  matrices. 

d: diagonal coefficient  matrices. 

n: number of wavelet decompositions.  

5.11.1.4 The filter.m function 

The filter.m function is a modification of wavefilter.m proposed by Gonzalez [146] to 

create wavelet decomposition filters. For each type of filters, at each level of 

decomposition, it will create two filters: high-pass filter and low-pass filter. When the 

character image passes through the two filters, the high-pass filter extracts horizontal, 

vertical, and diagonal details from the character image. On the other hand, the low-

pass filter extracts the approximation coefficients. The filter.m function provides five 

different types of filter that will be examined and the filter with the highest 

performance will be selected. The five filters are listed below: 

 

1. Haar  

2. 4th order Daubechies 

3. 4th order Symlets  

4. Cohen-Daubechies-Feauveau biorthogonal  

5. Antonini-Barlaud-Mathieu-Daubechies 
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5.12 Factors That Affect Recognition Stage 

The recognition stage is the core of any OCR system. Although the accuracy level is 

significantly dependent on preprocessing and segmentation steps, there are several 

factors, in the recognition stage of the proposed model which clearly affect the 

recognition efficiency. A study on these factors is important to be able to choose the 

best setting of the recognition stage model in order to allow the system, as a whole, to 

perform at maximum level of accuracy. The decomposition process is used to create 

the DCV, which is used to recognize the character images. The accuracy of the 

proposed model is depending on the filter type, the decomposition level, the codebook 

size, and the size of the created DCV. Each of those factors is discussed in the 

following subsection: 

5.12.1 Filter Type    

In image processing, filtering is a technique for modifying or enhancing an image. 

Image filtering can be used to emphasize necessary features or remove unnecessary 

features. Image filtering is used in many operations include smoothing, sharpening, 

and edge enhancement. Filtering is known as a neighbourhood operation as the value 

of pixels in the output image depend on the values of the pixels in the neighbourhood 

of the corresponding input pixel after applying some algorithms. If the value of the 

output pixel is a linear combination of the values of the pixels in the input pixel 

neighbourhood, the filtering operation is known as linear filtering [93].  

 

According to Fourier transforms theory, the linear convolution of two sequences 

in the time domain is the same as the multiplication of two corresponding spectral 

sequences in the frequency domain. Filtering is the multiplication of the signal 

spectrum by the frequency domain impulse response of the filter [146]. 

 

Generally, there are two basic types of digital filters, Finite Impulse Response 

(FIR) and Infinite Impulse Response (IIR) filters. The FIR filter has a linear phase 

response when the filter coefficients are symmetric, as it is the case in most standard 

filtering applications. The noise characteristics of FIR implementation are easy to 

model, especially if no intermediate truncation is used [147]. 
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In image processing, filtering concept refers to two concepts: spatial filtering and 

frequency domain filtering.  However, the name filter comes from frequency domain 

processing and it refers to accepting or rejecting certain frequency components. As 

decomposition process is used in recognition stage, we are focusing on frequency 

domain filtering. The words filter and filtering are referring to this concept from now 

on.  

 

Filters are involved in many applications such as speech recognition [148], signal 

restoration [149] and many image processing applications including iris recognition 

[150], image compression [151], and characters recognition. 

 

For character recognition, different filtering techniques have been used in all the 

OCR system stages. For preprocessing stage, filters are widely used for noise 

reduction such as Morphological filters [152], low-pass Wiener filter based on local 

statistics [153], spatial filters [154] and Kalman [155]. For segmentation stage, 

filtering techniques have been used by computing stroke filter response of each pixel 

in the source image [156]. For feature extraction stage, linear filters [157] and 2D 

Gabor filters [158] have been used as feature extractor. Finally, filters have been used 

in classification stage. Bayesian filter [159] and Gabor filter [160] have been used as 

pattern classifier.   

 

Filtering in frequency domain consists of modifying the Fourier transform of the 

image and then computing the inverse transform to obtain the processed result [161]. 

The basic filtering equation of the image represented by a function f(x, y) with M x N 

size can be expressed as: 

                                                          (5.12) 

 

where, 

 is the inverse discrete Fourier transform of the image f(x, y). 

F (u, v) is the discrete Fourier transform of the image f(x, y). 

H (u, v)  is the filter function. 

g(x, y)  is the filtered output image.  
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Functions F, H and g are arrays of M x N size which is the same as the input 

image size. Array multiplication is used to form H (u, v) and F (u, v). The input image 

is multiplied by prior to compute its transform in order to simplify the 

specification of H (u, v).  

 

According to Gonzalez [146], the filtering in frequency domain can be performed 

as in the following steps:  

 

1. The image for which a function f(x, y) of size M x N is padded, by adding 

rows and columns of zeroes to the image array to ensure that the edge of the 

image will not be out of the filtering.  

2. The padded image is formed as fp(x,y) of size P x Q where Q=2N and P=2M. 

3. The padded image fp(x,y)  is multiplied by  to center its transform. 

4. The discrete Fourier transform F (u, v) of the image f(x, y) is computed. 

5. The real symmetric filter function H (u, v) of size P x Q is generated.  

6. Array multiplication is used to form the product G (u, v) = H (u, v) F (u, v) 

to get: 

G (i, k) = H (i, k) F (i, k)                                                        (5.13) 

where i, k, u, and v are domain variables.  

7. To ignore parasitic complex component resulting from computational 

inaccuracies, the real part of the processed image gp(x, y) is selected. The 

subscript p indicates that padded array is used. 

                  (5.14) 

8. Extract the M x N region from top, left quadrant of  gp(x, y) in order to 

obtain the final processed result g (x, y). 

In the proposed model, filters are playing a significant role as they are the main 

tool of the decomposition process. Thus, five different types of filters will be 

examined to compare their performance in the proposed system. At the end, the filter 

with the highest performance will be selected. The filters are briefly described below. 

5.12.1.1 Haar filter 

Haar filter represents a special case of Daubechies filter family of order 1.Daubechies 

wavelets are a family of orthogonal wavelets defining a discrete wavelet transform 
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and characterized by a maximal number of vanishing moments for some given 

support [163]. The decomposition in the Haar basis eliminates high frequency terms 

when the input sequence is constant. That is why Haar function is often used for 

images with high contrast of black and white [164]. 

5.12.1.2 Db4 filter 

Db4 or D4 is a Daubechies filter with four wavelet and scaling function coefficients.  

The scaling functions can be expressed as: 

 

                                  (5.16) 

                        (5.17) 

                     (5.18) 

                                            (5.15) 

where, 

h0, h1, h2, and h3 are scaling function coefficients. 

 

Scaling function is applied to the data input at each step of the wavelet transform. 

If the input data set has N values, the scaling function will be applied in the wavelet 

transform step to calculate N/2 smoothed values.  

 

In the ordered wavelet transform, the smoothed values are stored in the lower half 

of the N element input vector [165]. The wavelet function coefficient values are:  

g0=h3 

g1=-h2 

g2=h1 

g3 = -h0 

where, 

g0,g1,g2, and g3 are the values  of wavelet function coefficient.  
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By taking the inner product of the coefficients and the four values of the input 

dataset, the scaling and wavelet functions can be calculated. Thus, the Db4 scaling 

function can be expressed as:  

Si=h0Si+ h1Si+1+ h2Si+2+ h3Si+3                                                                        (5.19) 

The Db4 wavelet function can be expressed as:  

Si+1=g0Si+g1Si+1+g2Si+2+ g3Si+3                                                                        (5.19) 

where 

Si is the scaling wavelet functions. 

Si+1 the wavelet functions. 

The index i is incremented by two with each iteration 

 

5.12.1.3 Sym4 filter 

Sym4 is one of the symlet filter families. The symlets are nearly symmetrical wavelets 

proposed as modifications to the Daubechies family. The properties of the two 

wavelet families are similar [165]. 

5.12.1.4 Bior6.8 filter 

Bior6.8 filter belongs to Cohen-Daubechies-Feauveau biorthogonal family, which is 

the first family of biorthogonal wavelets. A biorthogonal wavelet is a wavelet, where 

the associated wavelet transform is invertible but not necessarily orthogonal. The 

design of biorthogonal wavelets provides higher degrees of freedom than orthogonal 

wavelets. With biorthogonal wavelets, it is more possible to construct symmetric 

wavelet functions [166]. 

 

5.12.1.5 Jpeg9.7 filter 

JPEG (Joint Photographic Experts Group) is an organization responsible for 

developing an international standard for compression of colour image data. While the 

JPEG format uses the discrete cosine transform, the new JPEG 2000 standard is 

entirely wavelet-based; it incorporates many of the recent advances that have been 

made in the field.   

 

http://en.wikipedia.org/wiki/Biorthogonal_wavelet
http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Invertible
http://en.wikipedia.org/wiki/Orthogonality
http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Biorthogonal_wavelet
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The jpeg9.7 filter is a result of the factorization of the same polynomial as 

Daubechies filter family. The main difference is that the jpeg9.7 filters are symmetric. 

On the other hand, unlike the biorthogonal splines of Cohen-Daubechies-Feauveau, 

the non-regular part of the polynomial has been divided among both sides, and as 

evenly as possible [167]. 

 

To select a suitable filter, several parameters should be considered such as the 

type of function, the order of decomposition, order of filter, kind of multi-resolution 

analysis, content of an image, [167].  

 

These parameters are depending on each other. For example, the order of filter 

depends on the type of function and order of decomposition. On the other hand, order 

of decomposition depends on the order of filter and reversal [161]. 

5.12.2 Decomposition Level    

As mentioned earlier in Section 5.1.3, the decomposition process can be repeated and 

the approximations of each level can be decomposed again. Theoretically, the 

decomposition process can be continued indefinitely. However, practically, the 

decomposition can proceed until the individual detail consists of a single sample or 

pixel [168]. Thus, it is important to select a suitable number of levels based on the 

nature of the model input, which are binary images of handwritten characters.  

 

The process of decomposition repeating is known as multiple-level decomposition 

where cAn and cDn are the coefficients approximation and details at the 

decomposition level n, as shown in Figure 5.12. 

 

For the proposed model, the number of decomposition level will be determined 

experimentally by comparing the performance of the system with different 

decomposition levels. The decomposition level with the best performance will be 

chosen.  
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Figure 5.12:  Multiple-level decomposition 

 

5.12.3 Codebook Size 

In the proposed model, the codebook is a folder, where the DCVs of the character 

group representatives are saved to be compared with the DCV of the characters to be 

recognized. The codebook is divided into 4 sub-folders. Each sub-folder is used to 

store 28 characters at different positions: isolated, beginning of word, middle of word, 

and end of word. Experimentally, it was found that the recognition accuracy is 

affected by the size of training data which have been used to create the representative 

of each character. In other words, the created representative will be more successful to 

represent the character group if the group had included more samples of that 

character, hence leading to increase the accuracy level.  

 

As mentioned before, there are only 48 samples of each character. Instead to 

dividing these samples into 24 samples for training and 24 samples for test, a simple 

technique is proposed to use the whole 48 samples for training and test. In this 

technique, the 48 samples will be used to test the system. When each specific sample 

has been used, it will be deleted from the 48 samples that are used to build the 

codebook. This is to avoid having the same sample in the training data set and test 

data set at the same time. For example, when wave.m function is applied on sample 1, 

it will be deleted from the codebook by train.m function which changes codebook 

each time been used. Using this technique, 47 samples instead of 24 samples will be 
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used to build the codebook. The influence of the number of samples used to create the 

character group will be discussed in details in Chapter 6. 

5.12.3.1 Proposed Method to Increase Codebook Size 

The positive influence of increasing the codebook size prompted us to think of a way 

to increase its size in order to increase the accuracy of the system. The proposed 

method, in addition to increasing the codebook size, makes the system more 

interactive and trainable. The proposed method includes an optional validation part. 

After recognizing a character, the system will ask the user to validate the characters 

that have been successfully recognized, and to correct the characters that failed to be 

recognized. The validated characters and corrected characters will be stored in the 

codebook which increases the codebook size each time the system is used. The user 

should be able to stop the validation function when the system reaches the maximum 

level of accuracy to avoid increasing the processing time. Figure 5.13 shows the 

proposed validation algorithm. 

 

 

Figure 5.13: The proposed validation algorithm 



 140 

5.12.4 DCV Size 

In the decomposition process, the character image will be decomposed into a vector 

coefficient as it passes though the set of filters. The main task of the wave.m function 

is to produce the matrix C which represents the coefficient of decomposition vector as 

expressed below: 

    

C = [a (n) h (n) v (n) d (n) h (n-1) ... v (1) d (1)]                         5.21 

 

Where a, h, v, and d are column wise vectors containing approximation, 

horizontal, vertical, and diagonal coefficient matrices. The size of C, basically, 

depends on the size of the input image. After converting the gray image into a binary 

image and dividing the table image into 48 sub-images, each image will be 37x37 

with size of 1369 Bytes. With this input image size, C will be a vector of 2115 

elements due to the size of the character image. The effect of DCV size was examined 

by reducing the DCV size and observing the system performance. To reduce the DCV 

size, the wave.m function has been modified several times to produce only horizontal, 

vertical, or diagonal coefficient matrices each time. The accuracy of the system in 

each case is compared with the case of having all coefficient matrices. Results showed 

that, the accuracy decreased when the DCV size was decreased. The maximum level 

of accuracy was achieved with the maximum size of DCV. This stimulates us to think 

of a way to increase the DCV size. 

5.12.4.1 Proposed Method to Increase DCV Size 

Since the DCV can be used in the reconstruction process to build the same image 

again. Thus, this vector is unique for each character as it contains a unique set of 

approximation, horizontal, vertical, and diagonal coefficients. In order to use this 

uniqueness of this vector for recognition purpose, it is important that this vector 

should have as much approximation and details as possible. Due to the size of the 

character image in the dataset for system training and testing, the DCV size is limited 

to 2115 elements in the C matrix produced by wave.m function. To increase this 

number of elements, two DCVs are proposed to be used for each character in both 

training and testing stages. To ensure that the additional DCV will provide new 

different approximation and details for the same character, we propose to rotate the 
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character image, in order to provide an additional shape for the same character, before 

applying the wave.m function. 

  

The concept of this method is quite similar to the way used to build database of 

human faces. To build human face database, especially for security purposes, two or 

three pictures of each face are captured, one from the face and two others from the 

profiles of the face. The reason is to store as many details as possible as some of the 

face features will not appear clearly such as in the case of using only normal picture 

of the face.  

 

Forms of Arabic characters are very diverse. While some characters, in some 

cases, are simply vertical line such as the character Alif (ا), others are a combination 

of vertical and horizontal strokes in different rates. This makes the shape of each 

character totally different when they are being rotated. Thus, two, or more, DCVs can 

be obtained for each character with different degrees of rotation. The two DCVs will 

be combined in one vector to be used in the recognition process. Figure 5.14 shows a 

diagram of the proposed method to increase the DCV size. 

 

 

Figure 5.14: Proposed method to increase the DCV size 
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5.12.4.2 Rotation Degree Determination 

As our aim is to maximize the uniqueness of each character which subsequently 

contributes toward increasing the probability of recognizing the character, the best 

degree of rotation is 90° regardless of the direction because all vertical strokes in the 

character body shape will be converted into horizontal strokes and vice versa. This 

makes the character shape totally different which provides a “new” and different DCV 

for the same character. The rotation at 180° will produce a horizontally mirror image 

of the character image. The strokes will be in the same vertical or horizontal position 

which makes the DCV of the rotated image almost the same. The same thing will 

happen with 270° which produces a vertically mirror image of the rotated character 

image at 90°. Figure 5.15 shows an Arabic character in its original orientation and in 

three different orientations after rotation. 

 

In the next chapter, the performance of the system using two images for each 

character will be compared with the system performance using only one image. The 

influence of the rotation degree will be studied as well.   

 

 

Figure 5.15: Arabic character in four different orientations 

5.13 Summary  

The recognition stage is the most crucial stage in OCR system. At this stage, the 

system is trained to receive the input image, which is segmented character in some 

approaches or words in other approaches, and apply the recognition method on this 

received input. Usually, the recognition stage is divided into two stages: feature 

extraction and classification. In this research, a system that deals with the character 
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image as a whole using decomposition process is presented. The idea behind the 

proposed system is that using FWT as a decomposition tool, an image can be 

decomposed into high and low scale components known as approximations and 

details as it is passes through a set of filters. All of these components can be combined 

into one vector which can be used to rebuild the same image again, in the 

reconstruction process. Since the vector can be used to reconstruct the image, this 

vector must be unique for each image, and this uniqueness can be used to recognize 

the image itself. 

 

While other recognition systems, such as iris recognition systems, significantly, 

exceed the human ability, the handwriting recognition systems are still struggling to 

reach the human ability of recognizing handwritten text. Thus, this chapter started 

with a brief discussion on human mechanism of objects and patterns recognition. 

Next, the proposed recognition system is presented as a simulation of the human 

mechanism of objects and patterns recognition. This is followed by discussions on 

Fourier analysis as an introduction to decomposition process and the fast wavelet 

transform as a tool to achieve the decomposition process. A review of previous works 

on using FWT in different image processing applications, such as face recognition, 

edge detection, character recognition, search in image database, and image 

compression is included. It is noted that FWT is still not widely used for handwriting 

recognition, however, wavelet transform is used as a feature extraction method. A 

model for recognizing handwritten Arabic characters is then presented. The 

construction of the model is explained by presenting each of its four algorithms. The 

factors that affect the model accuracy are discussed, and the methods to increase the 

model accuracy have been proposed. The performance of the model will be presented 

in the next chapter. 
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CHAPTER 6 

EXPERMENTAL RESULTS AND ANALYSIS 

6.1 Chapter Overview 

This chapter presents test results of the proposed methods at every stage of the OCR 

system. For the preprocessing stage, the results for skew correction (for pages, lines 

and words), slant correction, and thinning are presented. The results for different 

segmentation levels during the segmentation stage and the influence of different 

factors on the recognition accuracy at the recognition stage are presented next. An 

analysis of the results and discussion conclude this chapter.  

6.2 Introduction 

The first goal of our experiments is to improve the theory behind the proposed 

recognition model that the character image can be represented, by decomposition 

process, as a vector. This vector is unique for each different character image, thus, it 

can be used to recognize the character image. As the proposed model is significantly 

similar to the human mechanism for object recognition, as discussed earlier in (5.1.1), 

we believe that this model should be able to perform the recognition task with 

promising performance, not only in handwriting recognition, but with all pattern 

recognition applications. 

  

The main challenge with handwriting recognition is that for a handwritten 

character there is no specific form that can be used as a representative of that 

character. In fingerprint recognition, for example, there is a specific shape of a 

fingerprint, and the system duty is to find which shape in the data set can perfectly 

match this fingerprint shape. However, in handwriting recognition there is no specific 
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shape to compare with, instead, there is a group of similar shapes that represents 

this character. The similarities among character shapes belonging to one character 

increase when the writers obey the handwriting rules. In Arabic, where characters are 

written cursively in different styles, the similarity within each group of shapes is less 

as each character can be written in many different shapes. 

    

The traditional way to achieve handwriting recognition is to extract features from 

the character shape, then classify those features for character recognition purposes. 

Because of the disadvantages of this method, such as complexity and time 

consumption, a different recognition method has been chosen. Instead of extracting 

features from the character image, the new method deals with the character image as a 

whole by using its DCV to recognize it. A group of DCVs will be created at the 

training stage. The representative of each group will be calculated as the mean of the 

group, and the comparison will be done between the DCV of the character image that 

need to be recognized and the DCV of the group representative. 

 

In order to obtain a high accuracy level of recognition, the input character image 

should be as clear as possible. Thus, the second task of our experiments is to improve 

the efficiency of the proposed and selected methods for preprocessing and 

segmentation stages. In this chapter, the experimental results will be presented in 

three parts: the experiments of the preprocessing stage, the experiments of the 

segmentation stage, and the experiments of the recognition stage. 

 

As mentioned before, all experiments were conducted using MATLAB 7.6.0 

(R2008a) version with Microsoft Windows XP, Home Edition, Version 2002, Service 

Pack 3 0.99 of RAM and Intel Core2Duo processor with a speed of 1.86GHz. 

6.3 Preprocessing Stage Experiments 

The task of preprocessing is to convert the raw image into an image ready for 

segmentation by maximizing the shape information and minimizing the noise. The 

recognition accuracy level is greatly influenced by the efficiency of this stage.  Some 
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of the preprocessing operations, such as binarization and smoothing were done with 

MATLAB commands that have been integrated with the proposed algorithms. In this 

part, the results of the proposed algorithms for preprocessing operations including 

skew page correction skew line correction, and slant correction will be presented.   

6.3.1 Skew Page Correction Experiments 

Normally, a skewed page is results from an improper positioning of the page during 

scanning. For page skew detection and correction, Radon transform was used as 

explained in 3.8.1.The proposed algorithm for skew detection consists of two steps 

that start with converting the page image into structuring element, then applying the 

Radon transform on it in order to detect the skew direction and to calculate the skew 

angle.  

 

For page skew correction, the proposed algorithm consists of three steps that start 

with converting the page image into structuring elements, then Radon transform is 

applied on these structuring elements to correct its skew. Finally, the image is 

reconstructed by repeating dilations of the image until the contour of the marker 

image fits under a second image. 

 

As the proposed system is designed to deal with individual characters, the page is 

considered free of skew if the skew angle is less than 3°. Thus, the page will be tested, 

if the skew angle is less than 3°, the page will be sent to the next stage: the line 

extraction. If the skew angle is more than 3°, the page will be considered as skewed 

page and the skew correction algorithm will be applied to it. 

 

As mentioned earlier in Section 3.3, we have 61 different full text images written 

by 61 different writers consisting of more than 100 Arabic words. These words have 

been selected to cover all Arabic characters in all their four positions (isolated, 

beginning, middle, and end). These 61 text images are found free of skew. In order to 

test the page skew detection and correction algorithms, 30 skewed text images were 

created, half of them were clockwise skewed while the rest of them were 

anticlockwise skewed. The skew angle for each text image was randomly chosen 
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between 3° to 45°. Figure 6.1 shows a sample of the skewed images before and after 

skew correction.  

 

 

 

Figure 6.1: The text image before and after skew correction 

 

Using the proposed algorithms for skew detection (in appendix A) and correction 

(in appendix B), all the skew angles were successfully detected and corrected as it 

shown in Table 6.1.  
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Table 6.1: The detection and correction algorithms results 

Sample No Skew direction Skew 

angle 

Corrected 

angle Sample 1 Clockwise  45° 2° 

Sample 2 Clockwise  41° 2° 

Sample 3 Clockwise  37° 1° 

Sample 4 Clockwise  28° 1° 

Sample 5 Clockwise  24° 1° 

Sample 6 Clockwise  19° 1° 

Sample 7 Clockwise  18° 1° 

Sample 8 Clockwise  15° 1° 

Sample 9 Clockwise  10° 0° 

Sample 10 Clockwise  7° 0° 

Sample 11 Clockwise 44° 2° 

Sample 12 Clockwise 39° 2° 

Sample 13 Clockwise 33° 1° 

Sample 14 Clockwise 26° 1° 

Sample 15  Clockwise 21° 1° 

Sample 16  Anticlockwise  20° 1° 

Sample 17  Anticlockwise  17° 1° 

Sample 18 Anticlockwise  12° 0° 

Sample 19 Anticlockwise  7° 0° 

Sample 20 Anticlockwise  5° 0° 

Sample 21 Anticlockwise  44° 2° 

Sample 22 Anticlockwise  38° 2° 

Sample 23 

 

 

 

 

 

Anticlockwise  31° 1° 

Sample 24 Anticlockwise  27° 1° 

1 Sample 25 Anticlockwise  22° 0° 

Sample 26 Anticlockwise 16° 0° 

Sample 27 Anticlockwise 15° 0° 

Sample 28 Anticlockwise 9° 0° 

 Sample 29 Anticlockwise 6° 0° 

Sample 30 Anticlockwise 25° 1° 

  

Table 6.1 shows that the proposed algorithm was totally successful to correct the skew 

angle whenever this skew angle is less than 5°. The proposed algorithm was able to 

reduce the skew angle to 1° when it is in the range of 18° to37°, and to reduce the 

skew angle to 2° when it is in the range of 38° to 45°. However, practically, the skew 

angle is usually less than 20°.  

6.3.2 Skew Line/Word Correction Experiments 

Skew line can be defined as the deviation of the base line of the text from the 

horizontal direction. For handwritten text, especially on a blank paper, line skew can 
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be caused by the writer himself. The skew can be observed either in the whole line or 

in some words. The same algorithms for detection and correction were used for the 

skew in both lines and words, as the line or word image will be converted into 

structuring element before applying Radon transform to detect the skew direction and 

to calculate the skew angle. The results of the line and words detection and correction 

algorithms will be presented here as a part of the preprocessing stage. In the model 

design, the line skew detection and correction algorithms (in appendix C) should take 

place after line extraction and word extraction. Figure 6.2 shows the order of the 

detection and correction algorithms in the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Detection and correction algorithms 

No 

Yes 

Extracted word 

Yes 

Extracted line 

Corrected line 

Free of 

Skew page? 
 

 

Scanned 

page 

Skew correction 

Algorithm  

No 

Corrected page 

Free of 

Skew line? 
 

 

Skew correction 

Algorithm  

No 

Lines extraction 

 

Yes 

Words extraction 

 

Free of 

Skew word? 

 

Skew correction 

Algorithm  

Corrected page Character 

segmentation 



 151 

Unlike page correction algorithm, some parameters of line correction algorithm 

are dependent on the direction of the skew, due to the structuring element shape of the 

line. Thus, after the direction of the line skew has been detected, the parameters for 

line skew correction are set depending on whether the skew is clockwise skewed or 

anticlockwise skewed. 

 

The design of the word skew detection and correction algorithm (in appendix D) 

is similar to the line skew correction with some changes of parameters to make the 

algorithm suitable to be used with word shapes. The parameters that need to be 

changed in case of page, line, or word correction are listed below:  

1. The radius of the disk-shaped structuring element. The disk-shaped structuring 

element is used to preserve the circular nature of the object in order to specify 

the radius. 

2. The range of angles used to find a maximum value of Radon transforms. 

3. The value that should be deducted from the corresponding angle of maximum 

Radon transform value, for all of the angles in that range in order to detect the 

skew angle. 

 

The value of each parameter for page, line and word skew correction algorithms is 

shown in Table 6.2 

 

Table 6.2: The parameters for page, line and word skew correction algorithms 

Algorithm 

Disk-shaped structuring 

element radius Range of 

Radon  

transform 

angle  

Deducted value 

Clockwise 
Anti-

clockwise 
Clockwise 

Anti-

clockwise 

Page skew 

correction 
17 17 50° to -50° 89° 89° 

Line skew 

correction 
01 01 01° to -30° 98° 89° 

Word skew 

correction 
10 17 25° to -25° 99° 70° 
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The test of line skew correction algorithm is achieved after line extraction 

operation, while the test of word skew correction algorithm is achieved after word 

extraction operation. Line and word extractions belong to the segmentation stage. 

This shows that OCR stages are not sequential. The results of skew correction 

algorithms for line and word are presented here as those operations which belong to 

the preprocessing stage. Unlike page skew correction, where the page is considered 

skewed if the skew angle is bigger than 3°, for line and word skew correction, the 

corrected line/word should be totally free of skew. Unlike page skew, for line and 

word, even small skew angle can affect the results. For line skew correction algorithm 

test, 15 full text samples were used to obtain 30 skewed lines, 2 lines, from each 

sample. Then, the line skew correction algorithm was applied to each of those 30 

skewed line. All 30 lines were successfully corrected. The results are summarized in 

Table 6.3. 

 

Table 6.3: Results of line skew correction algorithm test 

Sample No Skewed  lines Skew angle Skew after correction 

Sample 1 

 

Line 1 5° 0°  Successfully corrected 

Line 2 3° 0°  Successfully corrected 

Sample 2 
Line 1 3° 0°  Successfully corrected 

Line 2 2° 0°  Successfully corrected 

Sample 3 

 

Line 1 2° 0°  Successfully corrected 

Line 2 4° 0°  Successfully corrected 

Sample 4 
Line 1 3° 0°  Successfully corrected 

Line 2 5° 0°  Successfully corrected 

Sample 5 

 

Line 1 3° 0°  Successfully corrected 

Line 2 2° 0°  Successfully corrected 

Sample 6 
Line 1 4° 0°  Successfully corrected 

Line 2 4° 0°  Successfully corrected 

Sample 7 

 

Line 1 2° 0°  Successfully corrected 

Line 2 2° 0°  Successfully corrected 

Sample 8 
Line 1 2° 0°  Successfully corrected 

Line 2 2° 0°  Successfully corrected 

Sample 9 

 

Line 1 1° 0°  Successfully corrected 

Line 2 1° 0°  Successfully corrected 

Sample 10 
Line 1 4° 0°  Successfully corrected 

Line 2 4° 0°  Successfully corrected 
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Table 6.3 Cont’d: Results of line skew correction algorithm test 

Sample 11 

 

Line 1 1° 0°  Successfully corrected 

Line 2 2° 0°  Successfully corrected 

Sample 12 
Line 1 3° 0°  Successfully corrected 

Line 2 4° 0°  Successfully corrected 

Sample 13 

 

Line 1 1° 0°  Successfully corrected 

Line 2 2° 0°  Successfully corrected 

Sample 14 
Line 1 3° 0°  Successfully corrected 

Line 2 2° 0°  Successfully corrected 

Sample 15 

 

Line 1 1° 0°  Successfully corrected 

Line 2 3° 0°  Successfully corrected 

 

The lines for skew correction algorithm test were chosen from both skew 

directions: up and down. For line skew correction, the lines skewed anticlockwise are 

known as down skewed lines, while the lines skewed clockwise are known as up 

skewed lines. Figure 6.3 shows two samples of skewed lines in both anticlockwise 

and clockwise cases. 

 

 

 

 

 

Figure 6.3: Anticlockwise and clockwise skewed lines 

 

To test word skew correction algorithm test, the word skew detection algorithm 

was applied on 70 text line that were previously extracted from different pages to 

obtain 30 skewed words. The word skew angle was in the range of 1° to 3° in both 

directions. Using word skew correction algorithm, all 30 words were successfully 

corrected.  

 

Similar to lines for skew correction, word skewed anticlockwise is known as 

down skewed word, while word skewed clockwise is known as up skewed word. 

Table 6.4 shows word skew correction algorithm test results. 
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Table 6.4: Results of word skew correction algorithm test 

Word sample 

No 

Skew angle Skew after correction 

Sample 1 2° 0°  Successfully corrected 

Sample 2 2° 0°  Successfully corrected 

Sample 3 3° 0°  Successfully corrected 

Sample 4 2° 0°  Successfully corrected 

Sample 5 2° 0°  Successfully corrected 

Sample 6 1° 0°  Successfully corrected 

Sample 7 2° 0°  Successfully corrected 

Sample 8 3° 0°  Successfully corrected 

Sample 9 2° 0°  Successfully corrected 

Sample 10 3° 0°  Successfully corrected 

Sample 11 3° 0°  Successfully corrected 

Sample 12 3° 0°  Successfully corrected 

Sample 13 3° 0°  Successfully corrected 

Sample 14 2° 0°  Successfully corrected 

Sample 15 2° 0°  Successfully corrected 

Sample 16 2° 0°  Successfully corrected 

Sample 17 1° 0°  Successfully corrected 

Sample 18 1° 0°  Successfully corrected 

Sample 19 2° 0°  Successfully corrected 

Sample 20 3° 0°  Successfully corrected 

Sample 21 3° 0°  Successfully corrected 

Sample 22 1° 0°  Successfully corrected 

Sample 23 3° 0°  Successfully corrected 

Sample 24 3° 0°  Successfully corrected 

Sample 25 1° 0°  Successfully corrected 

Sample 26 2° 0°  Successfully corrected 

Sample 27 3° 0°  Successfully corrected 

Sample 28 1° 0°  Successfully corrected 

Sample 29 1° 0°  Successfully corrected 

Sample 30 2° 0°  Successfully corrected 
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6.3.3 Slant Correction Experiments 

Arabic word might be slanted in both directions either left or right depending on. the 

slant angle, which is the angle between the vertical stroke and the baseline, and it 

might be larger or smaller than 90°. As mentioned earlier in Section 3.9.2, the slant 

correction algorithm consists of three steps: vertical stroke detection using Hough 

Transform, slant angle measurement using boundary tracing routine, and finally, slant 

correction using transform technique. 

  

Like skew word correction, slant correction should take place after word 

extraction in the segmentation stage. It should be achieved after skew word 

correction. 

 

To test the proposed algorithm, it was applied on the output of the word extraction 

stage. 30 slanted words were chosen as not all of the output word are slanted words. 

The algorithm was successful to detect 83.33 % of slanted words and was able to 

correct 86.66 of the slanted words. The algorithm failed to detect the slant when the 

slant angle is smaller than 3°. However, slant less than 3° could be tolerated as it will 

not affect the segmentation and recognition processes. Table 6.5 shows the results of 

slant word correction test.   

 

Table 6.5: Results of slant word correction test 

Word 

sample No 

Slant detection Slant correction 

Sample 1 Detected Corrected 

Sample 2 Failed to detect - 

Sample 3 Detected Corrected 

Sample 4 Detected Corrected 

Sample 5 Failed to detect - 

Sample 6 Failed to detect - 

Sample 7 Detected Corrected 

Sample 8 Detected Corrected 

Sample 9 Detected Failed to correct 

Sample 10 Failed to detect - 

Sample 11 Detected Corrected 

Sample 12 Detected Corrected 

Sample 13 Detected Corrected 

Sample 14 Detected Failed to correct 

Sample 15 Detected Corrected 
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Table 6.5 Cont’d: Results of slant word correction test 

Word sample 

No 

Slant detection Slant correction 

Sample 16 Detected Corrected 

Sample 17 Detected Corrected 

Sample 18 Detected Failed to correct 

Sample 19 Detected Corrected 

Sample 20 Detected Corrected 

Sample 21 Detected Corrected 

Sample 22 Detected Failed to correct 

Sample 23 Detected Corrected 

Sample 24 detected Corrected 

Sample 25 Failed to detect - 

Sample 26 Detected Corrected 

Sample 27 Detected Corrected 

Sample 28 Detected Corrected 

Sample 29 detected Corrected 

Sample 30 Detected Corrected 

Success rate 83.33 % 86.66 

6.3.4 Thinning Experiments 

For thinning task, the algorithm designed by Zhang and Wang [32] was modified to 

make it more suitable for handwriting text, as their algorithm was designed for 

general thinning purpose. The most important thing when thinning operation is 

performed in the handwritten text especially for Arabic text is to keep the dots, which 

are a part of the characters. In some cases, thinning might delete some dots. However, 

using modified Zhang and Wang algorithm, the text image was successfully thinned 

and no dot was lost. A sample of text before and after thinning using modified Zhang 

and Wang algorithm is shown in Figure 6.4.  

 

 

Figure 6.4: Arabic text before and after thinning using the modified Zhang and Wang 

algorithm 
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6.4 Segmentation Stage Experiments 

In the model, segmentation process contains three main stages, text to lines stage, 

where lines are extracted from the handwritten text, text line-to-words stage, where 

words are extracted from the lines, and word-to-characters stage, where words are 

segmented into individual characters that will be subjected to recognition. Different 

algorithms have been designed to achieve segmentation task in each stage. In this 

chapter, the performance of each algorithm is presented. 

6.4.1 Text-to-Lines Segmentation Experiments 

Text line is the imaginary line that people use when they are writing. For Arabic text, 

the text line contains mostly vertical strokes of the words. Text lines are separated 

from each other by white spaces. Thus, for line segmentation, known as line 

extraction, the boundaries of each text line are located by finding the horizontal gaps 

between text lines. 

 

For the proposed model, Hough transform approach has been adopted for text to 

line segmentation stage. The proposed algorithm for text line segmentation starts with 

the conversion of a text image into a binary image in order to find edges of the text 

image. Then, Standard Hough Transform (SHT) is used to compute the Hough 

transform of the edged image in order to detect the lines in the text image. 

   

As mentioned before, several writers were requested to re-write a text that consist 

more than 100 Arabic words. The writers were free to choose the number of text lines. 

However, the majority of writers chose to re-write the text in 15 lines, as it was in the 

printed version; only few of them re-wrote the text in more than 15 lines. 

  

To test the text-to-lines segmentation algorithm (in appendix E), it was applied on 

30 full text images. The results in Table 6.6 show that the algorithm was successful to 

extract 99.15% of lines in the 30 full text images. The algorithm failed to extract some 

lines in some samples as those lines are shorter than the majority of lines in the text 

sample.   
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Table 6.6: Results of text-to-line algorithm test 

Sample No Extracted line 

number 

Success rate % 

Sample 1 15 of 15 100 

Sample 2 15 of 15 100 

Sample 3 15 of 15 100 

Sample 4 15 of 15 100 

Sample 5 15 of 15 100 

Sample 6 15 of 15 100 

Sample 7 15 of 15 100 

Sample 8 15 of 15 100 

Sample 9 15 of 15 100 

Sample 10 15 of 15 100 

Sample 11 16 of 16 100 

Sample 12 15 of 15 100 

Sample 13 15 of 15 100 

Sample 14 15 of 15 100 

Sample 15 15 of 15 100 

Sample 16 15 of 15 100 

Sample 17 14 of 15 93.33 

Sample 18 15 of 15 100 

Sample 19 15 of 15 100 

Sample 20 15 of 17 88.23 

Sample 21 15 of 15 100 

Sample 22 15 of 15 100 

Sample 23 15 of 15 100 

Sample 24 15 of 15 100 

Sample 25 17 of 17 100 

Sample 26 15 of 15 100 

Sample 27 15 of 15 100 

Sample 28 15 of 15 100 

Sample 29 14 of 15 93.75 

Sample 30 15 of 15 100 

Average 99.77 

 
6.4.1.1 Previous work in Arabic Text-to-lines Segmentation 

To evaluate the performance of proposed algorithm for text-to-lines segmentation, the 

results of previous work in Arabic text-to-lines segmentation are presented. Some of 

the methods were specifically designed for Arabic text line extraction, while others 

were designed for more than one language. Table 6.7 shows some text line extraction 

methods and their accuracy.  
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Table 6.7: Some text line extraction methods and their accuracy 

Author and date Method Accuracy 

Zahour  et al. 2000. 

[169]. 

 

Partial contour following 

based method to detect the 

separating lines. 

Evaluated with 100 

samples but no accuracy 

was reported. 

Lu  et al. 2000. [170]. 

 

Three different types of 

HMMs to model three 

kinds of vertical regions: a 

text line, white space 

between two text lines, and 

a horizontal rule. 

Evaluated with  345 

Arabic zones.17 zones 

had either missed one 

text line or had one extra 

text line. 

Li  et al. 2006. [171]. 

 

Enhancing text line 

structure using a Gaussian 

window, and adopting the 

level set method to evolve 

text line boundaries. 

Evaluated with 100 

handwritten Arabic 

documents. Accuracy of 

85.6% was obtained. 

Zahour  et al. 2007. 

[172]. 

 

Horizontal projection and 

matching adjacent blocks 

within two successive 

strips using spatial 

relationship. 

Evaluated with100 

historical documents. 

Accuracy of 96% was 

obtained. 

Arivazhagan  et al. 

2007. [173]. 

 

Projection-based 

algorithm. 

 

Evaluated with 720 

documents including 

English, Arabic and 

children's handwriting. 

97.31% of the lines were 

correctly segmented. 

Shi  et al. 2009. [174]. 

 

Generalized adaptive local 

connectivity map using a 

steerable directional filter. 

 

Evaluated with 45 

handwritten Arabic 

document images. Only 

two lines were 

incorrectly merged. 

Ouwayed  et al. 2010. 

[175]. 

 

Image paving that is 

initialized with a small 

window and Wigner-Ville 

distribution on the 

histogram projection 

profile. 

Evaluated with 100 

handwritten Arabic 

documents. 98.6% of the 

lines were correctly 

segmented. 

 

6.4.2 Lines-to-words Segmentation Experiments 

To segment a text line into words, an algorithm that uses statistical methods is 

proposed (in appendix F). The proposed algorithm uses the mathematical 

representation of the binary image as an array, where zeros represent the background. 

The proposed algorithm uses empty columns to measure the space between words and 
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characters, and to measure the width of words and characters. This measurement is 

used to determine whether the segmented component is a word or a character. 

 

The output of the line-to-words segmentation algorithm might be connecting 

words, sub-words or characters as all of them appear as connected components. Thus, 

the algorithm will test the segmented components to determine whether they are 

words/ sub-words to be sent to the next segmentation algorithm or characters to be 

sent to the recognizer. 

   

To test the line-to-words segmentation algorithm, samples of 30 text line images 

were used. The algorithm was successful to segment all 30 lines into their connected 

components and was able to recognize 96.47% of the segmented components. The 

main reason for recognition failure is overlapping of some characters in a word with 

adjacent words or sub-words characters. Thus, overlapping characters will be 

segmented by different algorithm. Table 6.8 shows the results of text line-to-words 

segmentation algorithm test. 

 

Table 6.8: Results of line-to-words segmentation algorithm test  

Sample No Segmented components Recognition rate % 

Words/sub-words Characters 

Sample 1 9 1 90 

Sample 2 9 1 90 

Sample 3 10 2 90.90 

Sample 4 9 2 100 

Sample 5 12 2 100 

Sample 6 9 1 100 

Sample 7 8 2 90 

Sample 8 10 1 90 

Sample 9 9 2 100 

Sample 10 8 1 100 

Sample 11 8 1 100 

Sample 12 11 1 90.90 

Sample 13 12 2 91.66 

Sample 14 7 1 100 

Sample 15  10 2 100 

Sample 16  12 2 83.33 

Sample 17  11 2 100 
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Table 6.8 Cont’d: Results of Text line-to-words segmentation algorithm test  

Sample No Segmented components Recognition rate % 

Words/sub-

words 

Characters 

Sample 18 11 2 100 

Sample 19 9 2 100 

Sample 20 9 1 100 

Sample 21 8 1 90 

Sample 22 8 1 100 

Sample 23 7 1 100 

Sample 24 7 1 100 

Sample 25 9 1 100 

Sample 26 11 2 90.90 

Sample 27 9 1 100 

Sample 28 8 1 100 

Sample 29 8 1 100 

Sample 30 10 2 90.90 

Average 96.47 

 
6.4.2.1 Previous Work in Arabic Text line-to-Words Segmentation 

To evaluate the performance of the proposed algorithm for text line-to-words 

segmentation, the results obtained from our experiment are compared with the results 

of some previous works in Arabic text line-to-words segmentation. Table 6.9 shows 

some methods and the accuracy of some previous works in Arabic text line-to-words 

segmentation. 

 

Table 6.9: Previous work in Arabic text line-to-words segmentation 

Author and date Method Accuracy 

Motawa et al. 

1997. [176]. 

Vertical or semi-vertical strokes are used 

to determine segmentation points 

 

Accuracy of 81.88% 

unspecified number of 

samples 

Lorigo and 

Govindaraju. 

2005. [65]. 

Over-segmenting each word, then 

removes extra breakpoints using 

knowledge of character shapes. 

Accuracy of 92.3% 

using a set of 200 

images. 

Ali. 2005. [16]. Classifying connected-pixels into 

three different classes, then 

associating geometrical attributes to 

be used as extracted features. 

Accuracy of 99.7% of 

80-87% using a set of 

63 images. 

AlKhateeb et 

al. [177]. 2008. 

 

Analyzing distances between words 

and sub-words to obtain their 

statistical distributions to decide an 

optimal threshold. 

Accuracy of 66.67 to 

91.84% using 

IFN/ENIT database 

Aghbari and 

Brook [178].  

2009 

Projecting line image vertically to 

create a vertical histogram 

representing the word density.  

Accuracy of 99.7% 

using a set of 27 pages 

( from one book)  
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6.4.3 Word-to-Characters Segmentation Experiments 

Word-to-characters is the last part of the segmentation stage where the output of this 

stage, which is the individual characters, should be ready to be fed into the recognizer. 

Due to the nature of Arabic characters, where characters are overlapping in many 

cases, word-to -characters segmentation is the most difficult part of the segmentation 

stage.   

 

For the word-to-characters segmentation, the proposed algorithm uses the 

mathematical representation of the binary image as an array to find the possible points 

for segmentation. In the image array, columns that have a sum of 1 indicate a position 

of horizontal strokes that can be considered as points of segmentation since strokes 

are the connection between characters.  

  

The problem of overlapping characters can be divided into two parts: detecting the 

overlapping characters and segmenting the overlapping characters into individual 

characters. For the first part, the recognizer is used to detect the overlapping 

characters. The characters that failed to be recognized for the first time are sent to the 

overlapping character segmentation algorithm (in appendix G). That means, the 

overlapping character segmentation algorithm will take place after the recognition 

stage but the results of its performance will be presented in this section as it is a part 

of the segmentation stage. For the second part, the most common cases of overlapping 

characters were analyzed. It was found that the overlapping characters in Arabic can 

be classified into three classes: non-connected overlapping characters, connected 

overlapping characters, and the special case of Lamalif. Different solutions for each 

class are proposed. 

 

The output of the word-to-characters segmentation algorithm might be either 

characters only, or overlapping characters, or a mix of characters and overlapping 

characters. However, the algorithm is considered successful if the individual character 

or the two overlapping characters are correctly segmented.   

 

To test the word-to-characters segmentation algorithm, it was applied on 30 

different words with different number of characters. The algorithm was successful to 

segment 91.78% of 180 characters in 30 words. Table 6.10 shows the results of word-
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to-characters segmentation algorithm test. The overlapping characters segmentation 

algorithm was tested on 30 different cases of overlapping characters with different 

number of characters. The algorithm was successful to segment 77.01% of 180 

characters in 62 overlapping characters. The algorithm failed to segment overlapping 

characters in the case of visually unclear connected point (Cp) between two 

characters. The results of word-to- overlapping characters segmentation algorithm test 

are tabulated in Table 6.11. 

 

Table 6.10: Results of word-to-characters segmentation algorithm test 

Sample No Segmented characters Segmentation rate % 

Sample 1 5  out of  5 100 

Sample 2 6  out of  6 100 

Sample 3 6  out of  7 85.71 

Sample 4 7  out of  8 87.5 

Sample 5 4  out of  4 100 

Sample 6 6  out of  6 100 

Sample 7 5  out of  5 100 

Sample 8 6  out of  7 85.71 

Sample 9 7  out of  7 100 

Sample 10 7  out of  7 100 

Sample 11 8  out of  8 100 

Sample 12 6  out of  6 100 

Sample 13 5  out of  6 83.33 

Sample 14 4  out of  5 80 

Sample 15 4  out of  6 66.66 

Sample 16 5  out of  5 100 

Sample 17 6  out of  6 100 

Sample 18 5  out of  5 100 

Sample 19 4  out of  5 80 

Sample 20 5  out of  7 71.42 

Sample 21 6  out of  6 100 

Sample 22 5  out of  6 83.33 

Sample 23 4  out of  6 66.66 

Sample 24 6  out of  7 85.71 

Sample 25 7  out of  7 100 

Sample 26 6  out of  6 100 

Sample 27 6  out of  6 100 

Sample 28 6  out of  7 85.71 

Sample 29 4  out of  4 100 

Sample 30 4  out of  4 100 

Success rate 91.78 
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In Table 6.10, the algorithm is considered successful regardless of the output, 

whether it is one character, or two or more overlapping characters as long as the body 

of one character or the bodies of overlapping characters is successfully segmented, 

and there are no cut off from them. This is because the algorithm was not designed to 

overcome the overlapping character problem. The segmentation is considered as a 

failure only if the body of any character in the word was cut off.      

 

Table 6.11:  Results of overlapping character segmentation algorithm test 

Sample No Segmented characters Segmentation rate % 

Sample 1 2  out of  2 100 

Sample 2 2  out of  2 100 

Sample 3 1  out of  2 50 

Sample 4 2  out of  2 100 

Sample 5 1  out of  2 50 

Sample 6 1  out of  2 50 

Sample 7 1  out of  3 33.33 

Sample 8 2  out of  2 100 

Sample 9 2  out of  2 100 

Sample 10 2  out of  3 66.66 

Sample 11 1  out of  2 50 

Sample 12 2  out of  2 100 

Sample 13 2  out of  3 66.66 

Sample 14 1  out of  2 50 

Sample 15 1  out of  2 50 

Sample 16 2  out of  2 100 

Sample 17 2  out of  3 66.66 

Sample 18 2  out of  2 100 

Sample 19 2  out of  2 100 

Sample 20 1  out of  2 50 

Sample 21 1  out of  2 50 

Sample 22 2  out of  2 100 

Sample 23 2  out of  2 100 

Sample 24 2  out of  2 100 

Sample 25 2  out of  2 100 

Sample 26 1  out of  2 50 

Sample 27 2  out of  2 100 

Sample 28 1  out of  2 50 

Sample 29 2  out of  2 100 

Sample 30 2  out of 2 100 

Success rate 77.01 
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Table 6.11 shows that the proposed algorithm for overlapping character 

segmentation is more successful with two overlapping characters. It is less successful 

with three overlapping characters. This is because the algorithm was mainly designed 

for two overlapping characters. However, from the collected data, it was found that 

two overlapping characters are more common than three overlapping characters.   

6.4.3.1 Previous Work in Arabic Word-to-Characters Segmentation 

To evaluate the performance of the proposed algorithm for word-to-characters 

segmentation, the experimental results are compared with other results of some 

previous works on Arabic word-to-characters segmentation. In this comparison, some 

old works as well as new works are briefly presented to show the progress that has 

been made in Arabic word-to-characters segmentation. Table 6.12 summarizes the 

methods and accuracy of some previous works in Arabic word-to-characters 

segmentation. 

 

Table 6.12: Previous works in Arabic word-to-characters segmentation 

Author and date Method Accuracy 

Olivier, et al. 1996. 

[179]. 

Words were segmented 

into portions of characters 

the portions were analyzed 

and the words were coded 

by a sequence of 

observations similar to the 

human perception. 

Accuracy of 95.42%. 

using a set of 6000 

words. 

 

Touj, et al. 2002. [180]. Planar HMM-based model Not reported. 

 

Abdulla et al. 2008. 

[181]. 

Rotational invariant 

segments features 

Accuracy of 95.66% 

using AHD/AUST 

database and 90.85% 

using IFN/ENIT 

database. 

Dreuw, et al. 2008. 

[182]. 

 

Using position-dependent 

character shapes in Arabic 

handwriting to insert large 

white-spaces between 

characters within words. 

Not reported. 

Wshah, et al. 2009. 

[57]. 

 

Connected character s 

were segmented to smaller 

segments, each of which 

contains no more than 

three character s to be used 

by a small size lexicon. 

Accuracy of 93% using 

a set of 45 different 

documents. 
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6.5 Recognition Stage Experiments 

As mentioned earlier in Section 5.5, the accuracy of recognition stage is dependent on 

four factors: filter type, decomposition level, codebook size, and size of the created 

DCV. Thus, the experiments of the recognition stage have been divided into four parts 

to separately analyze the influence of each factor.  

 

The input of the recognition stage is made of individual segmented characters in 

four different positions: isolated, at the beginning of a word, in the middle of a word, 

and at the end of a word. To study the influence of the four factors, isolated characters 

were tested first. After choosing the best parameters that enable the system to achieve 

the best level of recognition, characters at the beginning of a word, in the middle of a 

word, and at the end of a word were then tested.  

6.5.1 Filter Type Experiments 

In this experiment, the performance of five different filters was tested. One picture of 

each isolated character was used. The DCV is a vector of 2115 elements, due the file 

size of the character image, covering horizontal, vertical and diagonal details. The 

training set has 24 samples of each character, as well as the test set.  The results are 

compared in Tables 6.13.  

 

As mentioned earlier in Section 5.11.4, the filter.m function is responsible for creating 

different wavelet decomposition filters. For each filter type, high-pass and low-pass 

filters will be created. In this test, five types of filters were tested: 

1. Haar  

2. 4th order Daubechies 

3. 4th order Symlets  

4. Cohen-Daubechies-Feauveau biorthogonal  

5. Antonini-Barlaud-Mathieu-Daubechies (JPEG 9.7) 

 



 167 

From Table 6.13 it can be seen that, on the overall, the system performed with the 

highest level of accuracy while using the jpeg9.7 filter. On the other hand, the system 

gave the lowest level of accuracy when Haar filter was used. Based on these results, 

jpeg9.7 filter was selected. The performance of the five filters is compared as 

illustrated in Figure 6.5  

         

Table 6.13: A comparison between different filters performance 

Character  
Filters accuracy % 

Haar filter Db4 

filter 

Sym4 

filter 

Bior6.8 

filter 

jpeg9.7 filter 

 Alif 66.66 70.83 70.83 66.66 87.5    أ

 Baa 45.83 50 58.33 70.83 62.5  ب

 Taa 66.66 70.83 70.83 66.66 70.83   ت

 Thaa 41.66 66.66 66.66 45.83 70.83  ث

 Jeem 58.33 66.66 66.66 66.66 70.83 ج

 Haa 41.66 45.83 58.33 66.66 62.5   ح

 Kha 37.5 66.66 66.66 66.66 70.83   خ

 Daal 58.33 66.66 66.66 62.5 70.83   د

 Thaal 66.66 70.83 70.83 66.66 87.5   ذ

 Raa 41.66 45.83 50 75 58.33   ر

 Zay 45.83 45.83 50 66.66 58.33   ز

 Seen 37.5 70.83 70.83 45.83 87.5  س

 Sheen 41.66 58.33 58.33 66.66 66.66  ش

 Saad 58.33 66.66 66.66 66.66 70.83   ص

 Thaad 45.83 50 58.33 62.5 66.66  ض

 Tta 58.33 66.66 66.66 66.66 70.83    ط

 Thaa 45.83 50 58.33 58.33 62.5  ظ

 Aeen 41.66 45.83 50 62.5 58.33  ع

 Geen 37.5 45.83 50 58.33 58.33  غ

 Faa 41.66 45.83 45.83 66.66 45.83    ف

 Gaaf 58.33 66.66 66.66 50 70.83  ق

 Kaaf 41.66 66.66 66.66 45.83 70.83  ك

 Laam 12.5 12.5 12.5 66.66 12.5  ل

 Meem 41.66 66.66 66.66 70.83 70.83  و

 Noon 37.5 50 58.33 66.66 66.66  ن

 Ha 58.33 66.66 66.66 50 70.83   ه

 Wow 37.5 45.83 50 62.5 58.33  و

 Ya 37.5 50 66.66 45.83 70.83  ي

Average 46.57 56.84 59.81 61.90 66.06 
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Figure 6.5:  A comparison of the performance of five filters  

 

The main disadvantage of jpeg9.7 filter is that it (as all jpeg filters) supports only 

true-colour and gray-scale image types, while some other filters can also support 

palette-based image type [183]. This disadvantage can be tolerated as the proposed 

model deals only with binary images, which is a kind of gray-scale images.  

6.5.2 Decomposition Level Experiments 

As mentioned in Section 5.13.2, the decomposition process can be repeated to get 

decomposed images in different decomposition levels. In this experiment, the aim is 

to choose the best level of decomposition based on the nature of the input, which are 

binary images of handwritten characters. Thus, the accuracy level of the model with 

using one level, two levels and three levels are compared to examine the influence of 

decomposition level.     

 

The training set has 24 samples of each character as well as the testing set. The 

results are compared in Table 6.14.  

 

This test was carried out using the best filter as determined from the previous test. 

During the test, it was observed that the accuracy decreased with using more 

decomposition levels; with all filter types. 
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Table 6.14: The system performance with different decomposition level 

Character  
Decomposition level 

1 level 2 levels 3 levels 

 Alif 87.5 70.83 58.33    أ

 Baa 62.5 62.5 45.83  ب

 Taa 70.83 62.5 45.83   ت

 Thaa 70.83 62.5 45.83  ث

 Jeem 70.83 45.83 8.33 ج

 Haa 62.5 62.5 62.5   ح

 Kha 70.83 45.83 8.33   خ

 Daal 70.83 62.5 45.83   د

 Thaal 87.5 62.5 45.83   ذ

 Raa 58.33 12.5 8.33   ر

 Zay 58.33 12.5 8.33   ز

 Seen 87.5 62.5 45.83  س

 Sheen 66.66 66.66 58.33  ش

 Saad 70.83 62.5 8.33   ص

 Thaad 66.66 66.66 58.33  ض

 Tta 70.83 62.5 45.83    ط

 Thaa 62.5 62.5 45.83  ظ

 Aeen 58.33 12.5 8.33  ع

 Geen 58.33 12.5 8.33  غ

 Faa 45.83 12.5 8.33    ف

 Gaaf 70.83 66.66 45.83  ق

 Kaaf 70.83 66.66 45.83  ك

 Laam 12.5 12.5 8.33  ل

 Meem 70.83 62.5 12.5  و

 Noon 66.66 66.66 45.83  ن

 Ha 70.83 66.66 45.83   ه

 Wow 58.33 12.5 8.33  و

 Ya 70.83 58.33 8.33  ي

Average 66.06 49.84 31.84 

 

The results in Table 6.14 show that the highest level of accuracy can be achieved 

when one level of decomposition is used. The accuracy decreased when the 

decomposition level number increased. As mentioned in Section 5.13.2, the 

approximations of each level can be decomposed again which means that the 

approximations and details of level two, for example, is a result of the decomposition 

of only level one approximations. In other words, only the approximations of each 
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level will be decomposed to get approximations and details of the next level. As the 

proposed model uses the uniqueness of the DCV to recognize the character image, 

maximum amount of information are required. In case of multi-level decomposition, 

this information will be reduced each time the decomposition process is repeated. 

Thus, one level of decomposition will be used from now on. A comparison of the 

accuracy using three different levels of decomposition is graphically shown in Figure 

6.6. The next experiment shows the importance of having all available information 

(approximations and details).   

 

 

Figure 6.6: A comparison among three different numbers of decomposition levels 

6.5.3 DCV Size Experiments 

In the decomposition process, the character image will be decomposed into a 

coefficient vector as it is passes though the filter set. In the proposed model, the 

wave.m function produces the matrix C, which represents the coefficient 

decomposition vector containing approximation, horizontal, vertical, and diagonal 

coefficient matrices. Basically, the size of C depends on the size of the input image, 

which in our input image case, produces a vector of 2115 elements.  

 

To study the influence of the DCV size on the model accuracy, the results of two 

experiments will be presented. In the first experiment, the size of DCV was decreased 
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by modifying the wave.m function several times to produce only horizontal, vertical, 

or diagonal each time. The accuracy of the system, in each case, is compared with the 

case of having all details as shown in Table 6.15. 

 

Table 6.15: A comparison between different cases of DCV contents 

Character  

Accuracy according to DCV contents % 

Full  

details 

 

Approximation, 

and horizontal 

details 

Approximation 

and vertical 

details 

Approximation 

and diagonal 

details 

 Alif 87.5 45.83 41.66 20.83   أ

 Baa 62.5 41.66 41.66 20.83   ب

 Taa 70.83 41.66 41.66 16.66   ت

 Thaa 70.83 37.5 37.5 20.83   ث

 Jeem 70.83 33.33 33.33 8.33   ج

 Haa 62.5 29.16 29.16 16.66   ح

 Kha 70.83 41.66 41.66 12.5   خ

 Daal 70.83 41.66 41.66 4.16   د

 Thaal 87.5 33.33 33.33 8.33   ذ

 Raa 58.33 41.66 41.66 12.5   ر

 Zay 58.33 25 25 25   ز

 Seen 87.5 41.66 41.66 12.5   س

 Sheen 66.66 45.83 41.66 4.16   ش

 Saad 70.83 20.83 20.83 8.33   ص

 Thaad 66.66 20.83 20.83 4.16   ض

 Tta 70.83 25 25 25   ط

 Thaa 62.5 0 0 0   ظ

 Aeen 58.33 20.83 20.83 0   ع

 Geen 58.33 0 0 4.16   غ

 Faa 45.83 20.83 20.83 0   ف

 Gaaf 70.83 0 0 0   ق

 Kaaf 70.83 25 25 25   ك

 Laam 12.5 20.83 20.83 0   ل

 Meem 70.83 45.83 41.66 16.66   و

 Noon 66.66 25 25 25   ن

 Ha 70.83 20.83 20.83 4.16   ه

 Wow 58.33 25 25 0   و

 Ya 70.83 41.66 41.66 16.66   ي

Average 66.06 29.01 28.56 11.15 
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The results in Table 6.15 show that the accuracy of the system decreased 

dramatically when only one kind of details was used. This shows that all details are 

needed to enable the DCV to efficiently represent the character image. A comparison 

of the accuracy using four different cases of DCV contents is graphically shown in 

Figure 6.7.   

   
After the influence of DCV size has been proven, the second experiment was 

carried out to test the proposed method of an increase of the DCV size by using two 

pictures for each character which provided additional DCV for each character. To 

ensure that the additional DCV will provide new different approximation and details 

for the same character, the character image is rotated before applying the wave.m 

function as the rotation will produce a new image of the same character. 

 
The best degree of rotation was found to be 90°, regardless of the direction. At 

this degree of rotation, all vertical strokes in the character body shape were converted 

into horizontal strokes and vice-versa, which made the character shape totally 

different and provided “new” different DCV for the same character.  

 

 

Figure 6.7: A comparison among four cases of DCV contents 

 

The rotation of 180° will produce a horizontal mirror image of the character. The 

strokes will be in the same vertical or horizontal position which makes the DCV of the 

rotated image almost the same. The same will happen with 270° rotation, which will 
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produce a vertical mirror image of the rotated character image at 90°. The results of 

using additional pictures with different degrees of rotation degree for each character 

are shown in Table 6.16. 

 

Table 6.16: Effect of using additional pictures with different degrees of rotation  

Characte

r  

Accuracy (%) after additional picture at different degrees 

of rotation % 

Only one 

picture 

Rotation of  

90° 

Rotation of 

180° 

Rotation of 

270° 

 Alif 87.5 100 100 100   أ

 Baa 62.5 87.5 70.83 70.83   ب

 Taa 70.83 95.83 75 87.5   ت

 Thaa 70.83 95.83 87.5 95.83   ث

 Jeem 70.83 95.83 95.83 95.83   ج

 Haa 62.5 87.5 87.5 87.5   ح

 Kha 70.83 95.83 75 95.83   خ

 Daal 70.83 83.33 83.33 83.33   د

 Thaal 87.5 100 100 100   ذ

 Raa 58.33 66.66 66.66 66.66   ر

 Zay 58.33 70.83 70.83 70.83   ز

 Seen 87.5 100 100 100   س

 Sheen 66.66 91.66 91.66 91.66   ش

 Saad 70.83 91.66 87.5 87.5   ص

 Thaad 66.66 91.66 91.66 91.66   ض

 Tta 70.83 95.83 91.66 91.66   ط

 Thaa 62.5 87.5 70.83 91.66   ظ

 Aeen 58.33 75 75 79.16   ع

 Geen 58.33 79.16 75 79.16   غ

 Faa 45.83 54.16 54.16 54.16   ف

 Gaaf 70.83 70.83 70.83 70.83   ق

 Kaaf 70.83 95.83 75 87.5   ك

 Laam 12.5 16.66 16.66 16.66   ل

 Meem 70.83 95.83 87.5 95.83   و

 Noon 66.66 91.66 75 87.5   ن

 Ha 70.83 95.83 87.5 95.83   ه

 Wow 58.33 75 75 87.5   و

 Ya 70.83 95.83 87.5 87.5   ي

Average 66.06 85.11 79.46 83.92 
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Tables 6.16 shows that the best degree of rotation that provides maximum amount 

of additional different details is 90°. A comparison of the accuracy of using only one 

picture and using additional picture after rotation is graphically shown in Figure 6.8.  

    

 

Figure 6.8: A comparison of using one picture and using extra picture after 

rotation at different degrees  

6.5.4 Codebook Experiments 

The recognition accuracy has been found to be affected by the size of training data 

which are used to create the representative of each character that is able to represent 

the character group more accurately can be created by using more samples. 

 

In this experiment, as many character samples as available (47 samples out of 48 

samples) were tested with the proposed technique. Table 6.17 shows the influence of 

codebook size on the accuracy level.  

The results of this test had catalyzed us to think of new ways to maximize the 

codebook size by adding an optional validation part. This validation is activated after 

the recognition stage, whereby the system will request the user to validate the 

characters that have been successfully recognized, and to correct the characters that 
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failed to be recognized. The validated characters and the corrected characters will be 

stored in the codebook to increase the codebook size each time the system is used. 

 

Table 6.17: The influence of codebook size on accuracy level 

Character  
Accuracy according to the codebook size 

(%) 

Using 24 samples Using 47 samples 

 Alif 100 100   أ

 Baa 87.5 95.74   ب

 Taa 95.83 100   ت

 Thaa 95.83 100   ث

 Jeem 95.83 100   ج

 Haa 87.5 95.74   ح

 Kha 95.83 100   خ

 Daal 83.33 93.61   د

 Thaal 100 100   ذ

 Raa 66.66 68.08   ر

 Zay 70.83 72.34   ز

 Seen 100 100   س

 Sheen 91.66 97.87   ش

 Saad 91.66 97.87   ص

 Thaad 91.66 97.87   ض

 Tta 95.83 100   ط

 Thaa 87.5 95.74   ظ

 Aeen 75 82.97   ع

 Geen 79.16 87.23   غ

 Faa 54.16 55.31   ف

 Gaaf 70.83 78.72   ق

 Kaaf 95.83 100   ك

 Laam 16.66 19.14   ل

 Meem 95.83 100   و

 Noon 91.66 97.87   ن

 Ha 95.83 100   ه

 Wow 75 80.85   و

 Ya 95.83 100   ي

Average 85.11 89.89 

 

Table 6.17 shows that there is a considerable increase in the accuracy when the 

codebook size was increased. According to the proposed method for validation, the 
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more the system is used, the greater the accuracy will be. The system with the latest 

enhancement was applied on connected characters at three different positions in a 

word. The results are shown in Table 6.18.  

 

Table 6.18: Recognition accuracy of characters at different positions 

Character 
Accuracy of isolated 

shape (%) 

Accuracy of connected shape (%) 

Beginning Middle End 

 Alif 100 100 100 100   أ

 Baa 95.74 95.74 95.74 95.74   ب

 Taa 100 95.74 95.74 95.74   ت

 Thaa 100 100 100 100   ث

 Jeem 100 100 100 100   ج

 Haa 95.74 95.74 95.74 95.74   ح

 Kha 100 100 100 100   خ

 Daal 93.61 93.61 93.61 93.61   د

 Thaal 100 100 100 100   ذ

 Raa 68.08 68.08 68.08 68.08   ر

 Zay 72.34 72.34 72.34 72.34   ز

 Seen 100 95.74 95.74 95.74   س

 Sheen 97.87 97.87 97.87 97.87   ش

 Saad 97.87 97.87 97.87 97.87   ص

 Thaad 97.87 97.87 97.87 97.87   ض

 Tta 100 100 100 100   ط

 Thaa 95.74 95.74 95.74 95.74   ظ

 Aeen 82.97 82.97 82.97 82.97   ع

 Geen 87.23 87.23 87.23 87.23   غ

 Faa 55.31 55.31 55.31 55.31   ف

 Gaaf 78.72 78.72 78.72 78.72   ق

 Kaaf 100 100 100 100   ك

 Laam 19.14 78.72 78.72 31.91   ل

 Meem 100 100 100 100   و

 Noon 97.87 97.87 97.87 97.87   ن

 Ha 100 100 100 100   ه

 Wow 80.85 80.85 80.85 80.85   و

 Ya 100 78.72 78.72 78.72   ي

Average 89.89 90.95 90.95 89.28 

Average of 

averages 

90.26 

  

From Table 6.18, it can be seen that the average of the system accuracy increases 

when the system is applied on connected characters. The main reason of this increase 
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is contributed by the character Laam which showed a significant increase of accuracy 

from 19.14% for the isolated case to 31.91-78.72% for the connected cases. This is 

because this character has different shapes when connected which renders similarity 

with other characters, especially with the character Kaaf as will be discussed in the 

next section. On the other hand, it can be seen that a majority of the character have the 

same accuracy level at the four different character positions. There are two reasons for 

this. First, when the difference between the character shapes at different position is 

only a small stroke connected to the right side with some characters as in (  - ذ -د  -ز -ر

-و  ت -ب  ) or to the left side such as ( ظ -ط  ). In these cases, the character shape looks 

almost the same as in the isolation position. Second, when the character shape is 

totally different but it is still unique such as character (هـ). The same accuracy 

obtained in at different character positions also indicates the advantage of using the 

DCV, which represent the image as a whole instead of using extracted features of the 

characters because the features of some characters might change according to the 

character position.   

  

 

Figure 6.9: The increase of accuracy after applying the proposed methods 

 

In summary, two methods have been tested to increase the accuracy level. The 

first method uses additional rotated picture of each character image. As shown in 

Figure 6.9, using this method the accuracy increased from 66.06 % to 85.11% which 

represent an increase of 19.05%. In the second method, the number of samples used to 

build the codebook was increased from 24 samples to 47 samples. Using this method, 

the model accuracy increased from 85.11 % in the case of using 24 samples to 
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89.89% when 47 samples were used, which represent an increase of 4.78 %. The 

success of each method can be evaluated from the graph in Figure 6.9.  

6.6 Analysis of Results  

It is important to analyze the results obtained from the experimental investigations in 

order to understand the reason for recognition failure, in the attempt to improve the 

system performance. In other words, it should be clear why the system has been 

successful to recognize some characters more than others. This brings to mind the 

special nature of Arabic characters, where the characters, in many cases, share the 

same primary shape and are differentiated only by the dots and the same character can 

take totally different shape according to its position in the word. In general, the 

similarity between different characters is the main reason for recognition failure. Even 

though, the experiments have shown that the model has been successful to recognize 

some similar characters such as ( -  ب ث  - ت  )  while it was less successful to recognize 

others such as ( -  ف - ق  - ز  ر  ). This shows that the model is more successful to 

recognize characters where the main part of the character body is a straight stroke. 

The system becomes confused with characters where the main part of the character 

body is curved such as ( ر - ز ) or with those characters that have loops such as ( ق  - 

 This happens only if there are two or more similar characters. Characters that .(ف

have unique shape are easier to be recognized even it has loops such as (ه (. However, 

in many cases, the way the characters are written has been found as the cause for 

recognition failure. Some writers are used to write some of the characters which make 

them look similar to other characters. This kind of recognition failure is difficult to 

avoid. 

 

Although the segmentation stage should produce individual characters, but there 

will be small strokes connected to the right side, i.e. end word position, or on the left 

side, i.e. beginning of word position, or on both sides, i.e. middle of word position. To 

analyze the system performance, the results of each sample recognition is shown in 

Table 6.19, where the shaded cells indicate failure of recognition.  
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Table 6.19: Full recognition results 

Sample No Alif Baa Taa Tha Jeem Haa Kha 

1 Alif Baa Taa Tha Jeem Haa Kha 

2 Alif Baa Taa Tha Jeem Haa Kha 

3 Alif Baa Taa Tha Jeem Haa Kha 

4 Alif Baa Taa Tha Jeem Haa Kha 

5 Alif Baa Taa Tha Jeem Haa Kha 

6 Alif Baa Taa Tha Jeem Haa Kha 

7 Alif Baa Taa Tha Jeem Haa Kha 

8 Alif Baa Taa Tha Jeem Haa Kha 

9 Alif Baa Taa Tha Jeem Haa Kha 

10 Alif Baa Taa Tha Jeem Haa Kha 

11 Alif Baa Taa Tha Jeem Haa Kha 

12 Alif Baa Taa Tha Jeem Jeem Kha 

13 Alif Baa Taa Tha Jeem Haa Kha 

14 Alif Baa Taa Tha Jeem Haa Kha 

15 Alif Baa Taa Tha Jeem Haa Kha 

16 Alif Baa Taa Tha Jeem Haa Kha 

17 Alif Baa Taa Tha Jeem Haa Kha 

18 Alif Baa Taa Tha Jeem Haa Kha 

19 Alif Baa Taa Tha Jeem Haa Kha 

20 Alif Ra Taa Tha Jeem Haa Kha 

21 Alif Baa Taa Tha Jeem Haa Kha 

22 Alif Baa Taa Tha Jeem Haa Kha 

23 Alif Baa Taa Tha Jeem Haa Kha 

24 Alif Baa Taa Tha Jeem Haa Kha 

25 Alif Baa Taa Tha Jeem Haa Kha 

26 Alif Baa Taa Tha Jeem Haa Kha 

27 Alif Baa Taa Tha Jeem Haa Kha 

28 Alif Baa Taa Tha Jeem Jeem Kha 

29 Alif Baa Taa Tha Jeem Haa Kha 

30 Alif Baa Taa Tha Jeem Haa Kha 

31 Alif Baa Taa Tha Jeem Haa Kha 

32 Alif Baa Taa Tha Jeem Haa Kha 

33 Alif Baa Taa Tha Jeem Haa Kha 

34 Alif Baa Taa Tha Jeem Haa Kha 

35 Alif Baa Taa Tha Jeem Haa Kha 

36 Alif Baa Taa Tha Jeem Haa Kha 

37 Alif Baa Taa Tha Jeem Haa Kha 

38 Alif Baa Taa Tha Jeem Haa Kha 

39 Alif Baa Taa Tha Jeem Haa Kha 

40 Alif Baa Taa Tha Jeem Haa Kha 

41 Alif Baa Taa Tha Jeem Haa Kha 

42 Alif Baa Taa Tha Jeem Haa Kha 

43 Alif Baa Taa Tha Jeem Haa Kha 

44 Alif Baa Taa Tha Jeem Haa Kha 

45 Alif Baa Taa Tha Jeem Haa Kha 

46 Alif Baa Taa Tha Jeem Haa Kha 

47 Alif Ra Taa Tha Jeem Haa Kha 

Accuracy (%) 100 95.74 100 100 100 95.74 100 
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Table 6.19 Cont’d: Full recognition result 

Sample No Dal Thal Ra Zay Seen Sheen Saad 

1 Dal Thal Ra Zay Seen Sheen Saad 

2 Dal Thal Ra Zay Seen Sheen Saad 

3 Dal Thal Ra Zay Seen Sheen Saad 

4 Dal Thal Ra 

Ra 

Zay Seen Sheen Saad 

5 Dal Thal Ra Zay Seen Sheen Saad 

6 Dal Thal Zay Zay Seen Sheen Saad 

7 Dal Thal Ra Zay Seen Sheen Saad 

8 Dal Thal Ra Zay Seen Sheen Baa 

9 Dal Thal Ra Zay Seen Sheen Saad 

10 Dal Thal Zay Zay Seen Sheen Saad 

11 Dal Thal Zay Zay Seen Sheen Saad 

12 Dal Thal Zay Ra Seen Sheen Saad 

13 Dal Thal Zay Ra Seen Sheen Saad 

14 Dal Thal Ra Ra Seen Sheen Saad 

15 Dal Thal Ra Zay Seen Sheen Saad 

16 Dal Thal Ra Zay Seen Sheen Saad 

17 Dal Thal Ra Ra Seen Sheen Saad 

18 Dal Thal Ra .Zay Seen Sheen Saad 

19 Dal Thal Dal Dal Seen Sheen Saad 

20 Dal Thal Ra 

Ra 

Zay Seen Sheen Saad 

21 Dal Thal Ra Zay Seen Sheen Saad 

22 Dal Thal Ra Ra Seen Sheen Saad 

23 Dal Thal Ra Zay Seen Sheen Saad 

24 Dal Thal Ra Zay Seen Sheen Saad 

25 Dal Thal Dal Zay Seen Sheen Saad 

26 Wow Thal Dal Zay Seen Sheen Saad 

27 Dal Thal Dal Zay Seen Sheen Saad 

28 Dal Thal Dal Zay Seen Sheen Saad 

29 Dal Thal Ra Ra Seen Faa Saad 

30 Dal Thal Ra Zay Seen Sheen Saad 

31 Dal Thal Ra Zay Seen Sheen Saad 

32 Wow Thal Ra Dal Seen Sheen Saad 

33 Dal Thal Zay Zay Seen Sheen Saad 

34 Dal Thal Zay Zay Seen Sheen Saad 

35 Dal Thal Zay Zay Seen Sheen Saad 

36 Dal Thal Ra 

Ra 

Dal Seen Sheen Saad 

37 Wow Thal Ra Zay Seen Sheen Saad 

38 Dal Thal Ra Ra Seen Sheen Saad 

39 Dal Thal Ra Zay Seen Sheen Saad 

40 Dal Thal Dal Dal Seen Sheen Saad 

41 Dal Thal Ra Zay Seen Sheen Saad 

42 Dal Thal Ra Zay Seen Sheen Saad 

43 Dal Thal Ra Zay Seen Sheen Saad 

44 Dal Thal Zay Zay Seen Sheen Saad 

45 Dal Thal Zay Zay Seen Sheen Saad 

46 Dal Thal Ra Ra Seen Sheen Saad 

47 Dal Thal Ra Ra Seen Sheen Saad 

Accuracy (%) 93.61 100 93.61 72.34 100 97.87 97.87 
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Table 6.19 Cont’d: Full recognition results 

Sample No Thaad Dta Thaa Aeen Geen Faa Gaaf 

1 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

2 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

3 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

4 Thaad Dta Thaa Aeen  Geen Wow Gaaf 

5 Thaad Dta Thaa Aeen  Geen Thal Gaaf 

6 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

7 Thaad Dta Thaa Aeen  Geen Baa Gaaf 

8 Seen Dta Thaa Aeen  Geen Taa Gaaf 

9 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

10 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

11 Thaad Dta Thaa Aeen  Geen Baa Gaaf 

12 Thaad Dta Thaa Aeen Kha Taa Gaaf 

13 Thaad Dta Thaa Aeen  Geen Ra Baa 

14 Thaad Dta Thaa Aeen  Geen Noon Taa 

15 Thaad Dta Thaa Aeen  Geen Faa Wow 

16 Thaad Dta Thaa Aeen  Geen Taa Gaaf 

17 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

18 Thaad Dta Thaa Aeen  Geen Wow Baa 

19 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

20 Thaad Dta Dta Aeen  Geen Faa Gaaf 

21 Thaad Dta Thaa Aeen  Geen Wow Gaaf 

22 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

23 Thaad Dta Thaa Aeen Aeen Tha Gaaf 

24 Thaad Dta Thaa Aeen  Geen Taa Gaaf 

25 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

26 Thaad Dta Thaa Aeen  Geen Tha Gaaf 

27 Thaad Dta Thaa Aeen  Geen Wow Gaaf 

28 Thaad Dta Thaa Aeen  Geen Faa  Wow 

29 Thaad Dta Thaa Laam  Geen Faa  Wow 

30 Thaad Dta Thaa Aeen Aeen Faa Gaaf 

31 Thaad Dta Dta  Geen  Geen Faa Gaaf 

32 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

33 Thaad Dta Thaa  Geen  Geen Noon Gaaf 

34 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

35 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

36 Thaad Dta Thaa Dal Kha Taa Wow 

37 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

38 Thaad Dta Thaa Laam  Geen Thal Wow 

39 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

40 Thaad Dta Thaa  Geen Laam Faa Gaaf 

41 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

42 Thaad Dta Thaa Aeen  Geen Taa Wow 

43 Thaad Dta Thaa  Geen  Geen Faa Gaaf 

44 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

45 Thaad Dta Thaa Aeen  Geen Thal Wow 

46 Thaad Dta Thaa Aeen  Geen Faa Gaaf 

47 Thaad Dta Thaa Aeen Aeen Wow Gaaf 

Accuracy (%) 97.87 100 95.74 82.97 87.22 55.31 78.72 
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Table 6.19 Cont’d: Full recognition results 

Sample No Kaaf Laam Meem Noon Ha Wow Ya 

1 Kaaf Kaaf Meem Noon Ha Wow Ya 

2 Kaaf Kaaf Meem Noon Ha Wow Ya 

3 Kaaf Kaaf Meem Noon Ha Wow Ya 

4 Kaaf Kaaf Meem Noon Ha Wow Ya 

5 Kaaf Laam Meem Noon Ha Wow Ya 

6 Kaaf Kaaf Meem Noon Ha Wow Ya 

7 Kaaf Kaaf Meem Noon Ha Wow Ya 

8 Kaaf Kaaf Meem Noon Ha Wow Ya 

9 Kaaf Kaaf Meem Noon Ha Wow Ya 

10 Kaaf Laam Meem Noon Ha Wow Ya 

11 Kaaf Kaaf Meem Noon Ha Wow Ya 

12 Kaaf Kaaf Meem Noon Ha Wow Ya 

13 Kaaf Kaaf Meem Noon Ha Ra Ya 

14 Kaaf Kaaf Meem Noon Ha Wow Ya 

15 Kaaf Kaaf Meem Noon Ha Ha Ya 

16 Kaaf Laam Meem Noon Ha Wow Ya 

17 Kaaf Kaaf Meem Noon Ha Wow Ya 

18 Kaaf Kaaf Meem Noon Ha Wow Ya 

19 Kaaf Kaaf Meem Noon Ha Zay Ya 

20 Kaaf Kaaf Meem Noon Ha Wow Ya 

21 Kaaf Kaaf Meem Noon Ha Wow Ya 

22 Kaaf Kaaf Meem Wow Ha Wow Ya 

23 Kaaf Kaaf Meem Noon Ha Wow Ya 

24 Kaaf Laam Meem Noon Ha Wow Ya 

25 Kaaf Laam Meem Noon Ha Wow Ya 

26 Kaaf Kaaf Meem Noon Ha Wow Ya 

27 Kaaf Kaaf Meem Noon Ha Wow Ya 

28 Kaaf Kaaf Meem Noon Ha Wow Ya 

29 Kaaf Kaaf Meem Noon Ha Wow Ya 

30 Kaaf Kaaf Meem Noon Ha Wow Ya 

31 Kaaf Kaaf Meem Noon Ha Wow Ya 

32 Kaaf Kaaf Meem Noon Ha Wow Ya 

33 Kaaf Kaaf Meem Noon Ha Wow Ya 

34 Kaaf  Laam Meem Noon Ha Wow Ya 

35 Kaaf Kaaf Meem Noon Ha Zay Ya 

36 Kaaf Kaaf Meem Noon Ha Wow Ya 

37 Kaaf Kaaf Meem Noon Ha Zay Ya 

38 Kaaf Laam Meem Noon Ha Wow Ya 

39 Kaaf Kaaf Meem Noon Ha Wow Ya 

40 Kaaf  Laam Meem Noon Ha Wow Ya 

41 Kaaf Kaaf Meem Noon Ha Wow Ya 

42 Kaaf Kaaf Meem Noon Ha Zay Ya 

43 Kaaf Kaaf Meem Noon Ha Dal Ya 

44 Kaaf  Laam Meem Noon Ha Wow Ya 

45 Kaaf Kaaf Meem Noon Ha Dal Ya 

46 Kaaf Kaaf Meem Noon Ha Wow Ya 

47 Kaaf Kaaf Meem Noon Ha Ha Ya 

Accuracy (%) 100 19.14 100 97.87 100 80.85 100 
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Table 6.19 indicates recognition failure for each character. Two main reasons 

have been found for the recognition failure. First, which happens to be in the majority 

of cases, if characters share the same body shape or if there is some kind of similarity 

between the body shape in both characters. From Table 6.19-b, the first sample of the 

character Ra was wrongly recognized as Zay. The reason for this misidentification is 

because both characters share the same body shape, and only a dot makes the 

difference as shown in Figure 6.10. 

 

 

Figure 6.10: First case of recognition failure 

 

In fact, only specific samples of the character Ra were wrongly recognized as 

Zay, i.e. when the character Ra was written as sloped stroke and not as a curved 

stroke as it should be. Unlike the Ra samples, the majority of Zay samples were 

correctly written as a curved stroke as shown in Figure 6.11. The representative of any 

character will be closer to the majority, as it is calculated as the mean of the DCVs of 

that character group. 

  

 

a 

 

b 

Figure 6.11: The full data of character Ra (a) and character Zay (b) 

 

Figure 6.11 shows that the shape of the representative of character Ra (a) is closer 

to the sloped stroke shape, while that of the representative of character Zay (b) is 

closer to the curved stroke shape. The second reason for recognition failure, even if 
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there is no strong similarity between the shape of two characters, is that one character 

was written in a shape so close to the shape of the other. For example, from Table 

6.19, the character Faa, (sample 4) was wrongly recognized as Wow. When sample 4 

of the character Faa was checked, it was found that the character was written in a way 

that made it look like Wow, as shown in Figure 6.12. 

 

 

Figure 6.12: An example of recognition failure 

 

From Figure 6.12, the character Faa (c) was written in a shape quite similar to the 

shape of character Wow (b) with a curved stroke instead of a vertical stroke as it 

should be the character Faa (a). From Table 6.19, it can be noted that most recognition 

failure occurred with character Lam where the recognition accuracy was only 19.14%. 

The character Lam was recognized as Kaaf in 80.86% of the 47 samples. The reason 

for that low accuracy is due to the body shape of both characters. As shown in Figure 

6.13, both characters were written mostly in the same body shape. The difference 

between them is that the character Kaaf has a zigzag stroke called (Hamzah) which 

should be written above its main body as shown in Figure 6.13. 

 

 

 ل

a 

 

 ك

b 

Figure 6.13: The correct shape of character s Lam (a) and Kaaf (b) 

Figure 6.13 shows that in addition to the Hamzah, the vertical stroke in the 

character Lam should be shorter and quite curved, while the vertical stroke in 

character Kaaf should be longer and not curved. From the collected data, it was noted 
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that most writers did not make that difference when the writing Lam and Kaaf as 

shown in Figure 6.14. 

 

 

a 

 

b 

Figure 6.14: Collected data for character Lam (a) and Kaaf (b) 

 

Figure 6.14 shows that in many samples, the character lam was written with long 

non-curved vertical stroke, which makes the character body, somehow, looks like the 

body of Kaaf even if there is no Hamzah with it. However, the similarity between the 

shape of the character Lam and the character Kaaf happens only when both are 

written as isolated characters. When the characters are connected, especially in the 

middle and at the end of a word, the shape of both characters will be different and the 

similarity will be reduced as shown in Table 6.20. 

 

Table 6.20: The characters Lam and Kaaf at different positions 

Character Isolated shape 
Connected shape 

Beginning Middle End 

Lam ـم ـهـ نـ ل 

Kaaf ـك ـكـ كـ ك 

6.7 Time Consumption Estimation 

As mentioned in Section 2.6, the time consumed in the recognition process is a 

significant factor in the evaluation of the system, especially if the system is designed 

for applications where the speed of delivery is an important factor such as mail 
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sorting. In the reviewed works, it was noted that most of the researchers did not 

include the consumed time in their test results. 

 

In this section, time consumption for each operation in the proposed system is 

estimated. The total estimated time is the time needed to recognize one character. 

Since the stages in the proposed system are overlapping, the time consumed by each 

operation is estimated separately. Only operations that are achieved by separate 

algorithms will be considered in this estimation. Operations that are included within 

other operations, such as binarization, or operations that are achieved by algorithms 

within other algorithms, such as thinning will not be considered in this estimation. 

Table 6.21 shows the estimated time consumption by each stage.  

  

Table 6.21: Consumed time estimation 

Operation Consumed time in second Operation 

share% 

1 
Line extraction 18 sec to extract 15 lines. 

1.2 sec to extract 1 line. 
35.19 

2 Line skew detection 

and correction 

0.12 sec to detect and correct 1 line 

skew. 
3.51 

3 

Word extraction  3.6 sec to extract 14 connected 

components (word, sub-words and 

some characters). 

0.25 sec to extract 1 connected 

component. 

7.33 

4 
Slant word detection 

and correction  
1.06 sec to detect and correct 1 

word slant. 
31.08 

5 
Characters 

segmentation  
1.18 sec to segment 5 characters.  

0.23 sec to segment 1 character. 
6.74 

6 

Overlapping 

characters 

segmentation 

0.73 sec to segment 2 characters. 

0.36 sec to segment 1 character. 
10.55 

7 Character recognition 8.93 sec to recognize 47 characters. 

0.19 sec to recognize 1 character. 
5.57 

Total 

estimated 

consuming 

time 

Maximum 3.41 

100 

Minimum 2.23 
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In Table 6.21 the consumed time to recognize one character falls in the range 

between 2.23 sec as the best case, where the system extracted non-skewed line, 

segmented non-slanted words, and then recognizes non-overlapping characters, and 

3.41 sec as the worst case, where the system extracted skewed line, segmented slanted 

words, and then recognize overlapping characters. Table 6.21 shows that the longest 

operation in the proposed system is line extraction as the algorithm will be dealing 

with the whole text image. Figure 6.15 shows each operation share in the whole 

consumed time. 

 

 

Figure 6.15: Share of operations in consumed time 

6.8 System Speed Evaluation  

In order to evaluate the system speed, it was compared with the reviewed systems. 

Unfortunately, the recognition speed was not specified in most of the published works 

in off-line Arabic handwriting recognition. Furthermore, according to the reviewed 

works, there is no published time estimation for full Arabic handwriting system. 

Instead, the system speed was estimated depending on the classifier speed without 

specifying the training time, since the training stage is done separately.  Since most of 

the current off-line Arabic handwriting recognition systems are adopting features 

extraction and classification approaches, such as ANN, HMM or other methods, the 
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training time is much longer than recognition time. In some cases, while the 

recognition time was 0.2 sec for one character, the training time was 68.3 sec for one 

character [76].  

 

In ICDAR2007 and ICDAR2009 competitions, time consumption was adopted to 

evaluate the participating systems. In ICDAR2007, the system with the highest 

recognition result (37.94-94.58%) had a speed of 0.109 - 0.125 sec/image, while the 

fastest system 0.034-0.041 sec/image had an accuracy of 41.32-83.70%. This brings 

to mind the trade-off between accuracy and time consumption as discussed earlier in 

Section 2.7. The slowest system had a speed of 15.8-10.8 sec/image with accuracy of 

49.91-85.69%. 

 

In ICDAR2009, the system with the highest recognition result (78.83-99.94%) 

had a speed of 0.12-0.46 sec/image, which is the highest speed among the 

participating systems. The slowest system had a speed of 17.84-18.64 sec/image with 

an accuracy of 71.33-99.79%. However, competed systems in ICDAR2007 and 

ICDAR2009 used IFN/ENIT database which contains only separated town names. 

Thus, operations such as lines extraction and word extraction, which take a long time, 

are not required. This should be considered when these competitions results are 

compared with the proposed system result. 

 

In the proposed system, the recognition time for one character including training 

time is 0.19 second.  This time is acceptable as the system re-calculates the mean of 

each DCV group and the Euclidian distance for each character every time the system 

is being used. The mean of each DCV group and the Euclidian distance for each 

character should be re-calculated because they are subject to change as the validation 

part might add new character images each time the system is used. 

 

To estimate the consuming time for one text, it was found that each line in the text 

dataset contains 40 characters as an average and each text contains 15 lines as 

average. Thus, the time needed for the whole text is 1.9 minute. 
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6.9 Results and Discussion 

Arabic handwriting recognition is a challenging problem. The difficulties in Arabic 

handwriting recognition come from two sources. The first source is the nature of 

Arabic characters itself, where characters are written in different styles and the 

majority of characters have different shapes according to their position in the word, 

which means the need to deal with a large number of different shapes. This leads to 

dealing with a large number of dataset, which consequently means a long time is 

needed for the system to recognize a character. On the other hand, the similarity 

between some characters that share the same primary body shape, where only dots 

make the difference between them, makes recognition task more difficult. This leads 

to increase the possibility of confusion between those similar characters, which means 

recognition failure and low accuracy. The second source of difficulty is due to the fact 

that the majority of people do not write the characters in a proper way according to 

the Arabic handwriting rules. The problem becomes worse when they do not even 

stick with any particular style when they write manually. This makes the common 

Arabic handwriting a mixture of several styles with non-proper character shapes 

which leads to reducing the recognition accuracy.   

 

It is seems impossible to correct people mistakes in their handwriting. Thus, the 

only way to increase the recognition accuracy is to follow their handwriting style 

regardless of whether the style is correct or not, since the aim of OCR is to recognize 

words either written manually or typed. In our opinion, the best way to achieve that is 

to emulate the human mechanism of object and pattern recognition. 

 

Although much is still unknown about how human brain deals with information, 

some theories tried to explain how human can recognize images. To recognize an 

image, the human brain, or even animal brain must have pre-identified saved image, 

or representation of that image. This pre-identified saved image might be directly 

obtained by seeing that image before or by having some kind of discretion which 

enables the brain to build that image by fantasy. On the other hand, the capacity of the 

brain of abstraction enables us to recognize different objects as long as they belong to 

the same group of objective because of common points. 
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According to some researchers [125,126], the images are saved in human 

memory, after being encoded in the optic nerve, in different abstraction levels where 

similar images are grouped together as clusters. The levels structure is built based on 

similarity measures, not feature measures. When we see a new image, it will be 

compared with all images in the memory. If there is any stored image very similar to 

the new image then the image is recognized, otherwise it is considered as a strange 

one and will be separately saved. 

 

That means, for human handwriting recognition, all characters image are being 

saved in our memory; mostly during childhood learning stage. When we see a 

character written in a new shape, we first might not be able to recognize it, but once 

we know which character this image represents, this image will be saved and it will be 

easier to be recognized when we see it again. This might explain the human ability of 

handwriting recognition that exceeds current OCR systems.  

    

A recognition model that emulates the human recognition mechanism is proposed 

as a part of OCR system. In the proposed model, the system will deal with the 

character image as a whole instead of extracting features. Then, the image will be 

decomposed into a vector which can be saved and used for comparing process. For 

each character, a group of vectors will be saved during the training process. Each 

group will have a representative, which is the mean of the vectors in that group. To 

emulate the human ability to save new shapes for the same character image, optional 

validation part is provided in the model that enables the user to store recognized 

characters and to store the characters that the system fails to recognize, as new shapes 

of character image which will enable the system to recognize them in future.  

 

The validation part makes the system more interactive and trainable. As the 

system is used, more shapes will be added to the codebook. The result of this is the 

representative of each group will be changed according to the character of shapes as 

written by the majority of people regardless whether the shape conforms to the rules 

or proper way of writing that character.  
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Currently, many researches have been conducted on Arabic handwriting 

recognition. Most of these researches presented some methods and techniques for 

specific stage of OCR system, and only few researches have presented a full OCR 

system. In this thesis, a full OCR system that that aims to recognize every single 

character of a handwritten text on paper is presented. When dealing with a system as a 

whole, it is important to combine different operations that would ensure each different 

steps of the whole process can be achieved successfully. In most of the reviewed 

works, it was found that the OCR stages were arranged sequentially, as preprocessing, 

segmentation, recognition, giving the impression that they occur sequentially. In fact, 

the stages overlap one another. For instance, as the first operation, the step that should 

be accomplished is to extract line from the text image with a segmentation operation. 

Then, the line is checked to detect the presence of a skew line and to correct it 

accordingly, which is a preprocessing operation. 

 

Many researches and even competitions used IFN/ENIT database consisting of 

Arabic words (i.e. Tunisian town). This limits the system ability to deal only with 

words, and not with full text image. In this research, the primary input is a full 

handwritten text on A4 paper which makes the system capable to deal with any 

handwritten input.  

 

The proposed system contains three stages: preprocessing stage, segmentation 

stage and recognition stage. The preprocessing stage includes several operations 

aiming to prepare the text, line, word, or character image to be processed by another 

operation. Some operation are achieved by separate proposed algorithms such as 

page, line and word skew correction and word slant correction. Other operations are 

achieved within the previous algorithms such as thinning and binarization. Radon 

transform is used for skew and slant correction.  

 

The segmentation stage includes three kinds of operations: line extraction, line-to 

-word segmentation and word-to-characters segmentation. For line extraction, Hough 

transform is used due to two factors. First, the main advantage of using the Hough 

transform is that the pixels lying on one line do not need all to be contiguous, which is 

necessary to detect lines with short breaks in them due to noise that can be expected in 
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the case of handwritten text lines. Second, the Hough transform has been chosen 

earlier as a method for slant correction in the preprocessing stage.  

 

For line-to-words segmentation and word-to-characters segmentation, the same 

concept is adopted, where the mathematical representation of the line/word binary 

image as a two-dimensional array is used. In this array, a column with sum of zero 

indicates a space that can be used as a point to segment a line into word, sub-word and 

isolated characters. On the other hand, a column with sum of one indicates a vertical 

stroke, which can be used as a point to segment a word into characters. The use of this 

method enables the system to obtain some segmented characters even before word-to-

characters segmentation.  

 

One of the biggest challenges in Arabic word segmentation is the overlapping 

characters. It was found that overlapping characters in Arabic can be classified into 

three classes: non-connected overlapping characters, connected overlapping 

characters and the special case of Lamalif. For non-connected overlapping characters, 

a technique that labels each character to be segmented is proposed. For connected 

overlapping characters, an algorithm that uses the mathematical representation of the 

overlapping image is proposed. For the special case of Lamalif, where, unlike other 

cases, two characters are overlapping, the addition of these two overlapping character 

s to the system dataset is proposed. 

 

The final stage contains the proposed model for recognition where decomposition 

process is used to convert a character image into a coefficient vector. The 

decomposition is processed by Fast Wavelet Transform. The model parameters such 

as type of filter, decomposition level and DCV size are selected experimentally.  

 

This proposed OCR system contains 12 algorithms to achieve different kind of 

tasks. Among the 12 algorithms, three algorithms were modified from the work of 

previous researchers while nine were developed specifically for this system. The first 

modified algorithm used for thinning was modified from Zhang and Wang [98], while 

the second and third modified algorithms used to generate wavelet decomposition and 

reconstruction filters were modified from Gonzalez et al. [147]. 
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A comparison with the latest works on Arabic handwriting was made to evaluate 

the performance of the proposed system. For a fair comparison, only systems 

designed for individual characters were considered. Systems designed for words or 

numbers were excluded. The comparison is shown in Table 6.22. 

 

Table 6.22: A comparison between the proposed system and some latest works on 

Arabic handwriting recognition 

Author name  Technique Accuracy 

Amin. 

)2001(. [71]. 

Used Freeman code representation to 

detect structural features including open 

curves in several directions from the 

skeleton of each character, then, 

determined the relationships with 

Inductive Logic Programming (ILP). 

86.65% of 10 

characters written 

by different 

writers. 

 

Haraty and 

Ghaddar. 

)2003(. [70]. 

Used a skeleton representation and 

structural and quantitative features feed 

two neural networks classifier. 

73% of 2,132 

characters. 

Pechwitz and 

Maärgner.  

)2003(.[72]. 

Used 160 semi-continuous HMMs 

representing the characters or shapes, 

then, the models were combined into a 

word model. 

89 % using the 

IFN/ENIT 

database. 

Khorsheed.  

)2003(.[73]. 

Used structural features with HMM 

recognizer constructed from 32 individual 

character HMMs, each with unrestricted 

jump margin. 

87 % of 405 

character samples 

of a single font. 

El-Hajj et al.  

)2005).[76]. 

Used features based on upper and lower 

baselines, within the context of frame-

based features with an HMM recognizer. 

86.40% using 

IFN/ENIT 

database. 

Our system 

(2010) 

Used FWT to decompose the character 

image into a vector that is used to 

recognize the character 

90.26% of 5264 

characters. 

 

Table 6.22 shows that the proposed system has been able to achieve a high level 

of accuracy compared to the other systems. Unfortunately, most of the researchers did 

not report the time consumed for the recognition process. 
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6.10 Summary   

In this chapter, our main aim is to demonstrate the theory of our recognition model, 

i.e. character image can be represented as a unique vector that can be used to 

recognize the character image itself. Next, we aim to test the different methods and 

techniques that have been proposed for each stage of the recognition system and to 

present their performance. 

.  

For the preprocessing stage, the proposed algorithm for skew correction has been 

found suitable for page, line and word skew correction after changing some 

parameters for each different case as the concept of skew correction using this method 

is the same for all three cases. The method has been successful to correct all the tested 

samples. For slant detection and correction, the proposed method was successful to 

detect 83.33% and corrected 86.66% of the tested samples. 

  

For segmentation stage, four different algorithms have been proposed for different 

segmentation cases. For line extraction, the proposed algorithm successfully extracted 

99.15% of lines in the tested samples. For word extraction, the proposed algorithm 

successfully extracted 96.47% of words in the tested line samples. For character 

segmentation, two algorithms have been proposed; one for word-to-characters 

segmentation and the second was specifically designed for overlapping characters. 

The first algorithm was successful to segment 91.78% of characters in the tested word 

samples, while the second algorithm achieved 77.01% segmentation of overlapping 

characters in the tested samples. 

 

For the recognition stage, the model was tested with each factor that affects the 

recognition accuracy namely the type of filter, the decomposition level and the DCV 

size. The best set of parameters that has enabled the system to achieve a maximum 

level of accuracy is Jpeg9.7 filter, one level of decomposition and DCV with a 

maximum of 2115 elements to ensure the DCV will provide the maximum amount of 

information that will lead to maximum level of uniqueness. 

 

A further analysis of the model parameters enabled us to propose two methods to 

increase the model accuracy. The first method involves increasing the DCV size by 
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using additional rotated picture for each character image which had increased the 

accuracy level from 66.06% when only one picture was used to 85.11% when 

additional picture was used. The second method involves improving the 

representative of each group by increasing the number of samples used to build the 

codebook. In this work, we had used 47 samples instead of 24 samples, which had 

increased the model accuracy from 85.11 % in case of using 24 samples to 89.89% 

when 47 samples were used.  

 

The results from the recognition stage were also analyzed to determine the reasons 

for failure. Similarities between some characters and writer’s failure to write some 

characters in their proper shape have been identified as the two major causes for 

failing to recognize the characters. 
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CHAPTER 7 

CONCLUSION AND FURTHER WORKS 

7.1 Conclusion 

Character recognition is one of the active research areas of pattern recognition. The 

challenge in this field is to make the computer able to recognize the character shapes. 

Character recognition systems can be used in a large variety of banking, business and 

data entry applications such as check verification and office automation. It is also 

used in other practical applications such as license plate recognition. 

 

Recognition of handwritten characters is more challenging than typewritten 

characters because the computer in this case is dealing with characters written by 

different writers with variation in shape and size, orientation, fragmentation and 

fusions. The character recognition accuracy is affected by the own nature of the 

alphabet in different languages. For Arabic characters, the recognition task is more 

complicated since the characters are written cursively and dots are used to 

differentiate between many characters which have the same shape.  

 

In most of the reviewed Arabic recognition system, HMM and ANN are the most 

widely used classifiers. Initially, they were be used as a pure, simple model, then, as 

multi-layers or hybrid. The HMM and ANN are still used in the latest designed 

systems even with the usage of other classifiers such as: Beam search algorithm and 

Support Vector Machines classifier. 

 

However, HMM and ANNs suffer from the trade-off between accuracy and time 

consumption. In order to get high accuracy, many features are needed to provide 

enough information, which requires a complex model that needs longer time. In the 
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case of using a simple model, the time will be reduced but the accuracy will be 

reduced as well.  

 

In this research, we have presented a non-traditional model that is able to 

accomplish the recognition task with a high accuracy and possibly consume less time. 

The proposed model emulates the human mechanism for image recognition as we 

believe that it is the easier way to reach the human ability in image recognition, which 

currently exceeds the computer ability.  

 

Unlike most of the published work in Arabic offline handwriting recognition 

systems, the proposed system is designed to be a consummate system which contains 

all necessary stages such as preprocessing and segmentation which enable it to deal 

with all possible cases of Arabic handwritten text. The proposed system contains three 

stages as follows:  

 

1- In preprocessing stage, a fast algorithm is proposed for word, line and page 

skew detection and correction. Then, a three-step technique is proposed for 

slant correction. Finally, a modified algorithm is proposed for thinning. Some 

Matlab Toolbox functions are used for some preprocessing operations such as 

binarization, and smoothing. 

   

2- In segmentation stage, a full set of segmentations that includes the 

segmentation of page into lines, then, line to words, and, finally, word to 

character is proposed. This makes the system able to receive any form of 

handwriting input. 

 

3- In the recognition stage, the model has been designed using the same concept 

of human mechanism to code and save images, and the image to be recognized 

will be compared with the saved images. On the other hand, our proposed 

model has been designed to be able to interact with current and common ways 

that people used to write characters by considering these common ways 

instead of relying on handwriting rules which are not commonly used. 
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The experimental results have shown that the proposed system is able to achieve 

an average of 90.26% of accuracy. The system needs only 3.41 seconds a most to 

recognize a single character in a text of 15 lines where each line has 10 words on 

average. This time is inclusive pre-procession and segmentation operations, as well as 

the computing time of the recognizer, keeping in mind that no training time is needed. 

 

With the accomplishment of this research, we hope we have added an important 

contribution to the field of Arabic handwriting recognition that can be a start for 

further improvements and development       

7.2 Further Works 

Due to time constraints, we did not have the opportunity to address some issues that 

we think may provide more enhancements for the proposed system. Here, we outline 

some further works that we believe can contribute toward improving the system 

performance: 

 

1. Adding some techniques to enable the system to deal with pages that might 

have tables, images or other elements since the proposed system has been 

designed to deal with pages containing only handwritten text. 

 

2. Adding more preprocessing operations to enable the system to deal with 

historical documents that usually have a lot of noise and bad quality 

background. This might require some modification to the dataset by adding 

new images to reflect the old way of writing Arabic characters. 

 

3. Adding another algorithm to deal with three overlapping characters as the 

proposed algorithm has been designed for two overlapping characters only. 

 

4. The proposed system will be tested with other languages as well as other 

patterns recognition such as fingerprint, iris, and face recognition. 
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APPENDIXS  

APPENDIX A 

PAGE SKEW DETECTION ALGORITHM  

 

%%% OCR system /Preprocessing stage/page skew detection 

% This code to detect Page skew as a part of the preprocess of Arabic handwriting 

recognition system 

clc; clear all; Close all; 

% % get the page image 

k=input('Enter the file name   ','s');  

I=imread(k); 

%% 1- To create the Create structuring element 

% convert the page image into gray scale image 

grayImage = rgb2gray(I); 

% Create structuring element of the gray scale image 

se = strel('disk',17); 

structuringElement = imopen(grayImage,se); 

% show the structuring Element(elective) 

%figure; imshow(structuringElement); 

%% 2- To apply the Randon tranform: 

% detect the image edges using Canny Edge Detector 

CannyImage = edge(structuringElement,'canny'); 

%  create edge linking by a morphological operation  

ThickenImage = bwmorph(CannyImage,'thicken'); 

% show the ThickenImage(elective) 

%figure;imshow(ThickenImage); 

%Radon transform projections along 180 degrees, from -90 to +89 

theta = -90:89; 
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[R,V] = radon(ThickenImage,theta); 

% R is the Radon transform of ThickenImage in -90 to 89 degrees. 

% V is a vector that contains the radial coordinates corresponding to each row of the 

Random Transform. 

[R1,MaxR] = max(R); 

% R1 is a vector which its elements are equal the maximum value of Radon transform 

along each angle. 

% MaxR is a vector that includes corresponding  of 'R1'. 

% to detect lines  a Hough-like search is performed to find maximum value of Radon 

% transform over all angles in angles > 50 or < -50.  

% angle indicates the slope of the upper bond of the image detected. 

Maxtheta = 90; 

while(Maxtheta > 50 || Maxtheta<-50) 

    [R2,Maxtheta] = max(R1); 

% R2: Maximum Radon transform value for all of the angles.  

% theta_max: Corresponding angle of R2 

R1(Maxtheta) = 0;  

% To find other maximum values,R2 element are deleted  from vector R1. 

    Maxtheta = Maxtheta - 89; 

end 

x=90+ Maxtheta; 

if (x<88) 

    y=90-x; 

    fprintf('The page is  skewed against clockwise, The skew angle is %d\n', y);   

else if (x>92) 

          y=x-90; 

       fprintf('The page is  skewed  clockwise, The skew angle is %d\n', y); 

else  

   fprintf('The page is not skewed, Go to Line extraction'); 

       

    end 

end 
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APPENDIX B 

PAGE SKEW CORRECTION ALGORITHM  

 

%%%OCR system /Preprocessing stage/page skew correction 

% This algorithm is to correct page skew as a part of the preprocess of Arabic 

handwriting recognition system 

clc; clear all; Close all; 

% get the page image 

k=input('Enter the file name   ','s');  

I=imread(k); 

%% 1- To create the Create structuring element 

% convert the page image into gray scale image 

grayImage = rgb2gray(I); 

% Create disk-shaped structuring element of the gray scale image 

se = strel('disk',17); 

structuringElement = imopen(grayImage,se); 

%% 2- To apply the Randon tranform: 

% detect the image edges using Canny Edge Detector 

CannyImage = edge(structuringElement,'canny'); 

%  create edge linking by a morphological operation  

ThickenImage = bwmorph(CannyImage,'thicken'); 

% Radon transform projections along 180 degrees, from -90 to +89 

theta = -90:89; 

[R,V] = radon(ThickenImage,theta); 

% R is the Radon transform of ThickenImage in -90 to 89 degrees. 

% V is a vector that contains the radial coordinates corresponding to each  

% row of the Random Transform. 

[R1,MaxR] = max(R); 

% R1 is a vector which its elements are equal the maximum value of Radon  
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% transform along each angle. 

% MaxR is a vector that includes corresponding of 'R1'. 

% to detect lines a Hough-like search is performed to find maximum value of % 

Radon 

% transform over all angles in angles > 50 or < -50.  

% angle indicates the slope of the upper bond of the image detected. 

Maxtheta = 90; 

while(Maxtheta > 50 || Maxtheta<-50) 

    [R2,Maxtheta] = max(R1); 

% R2: Maximum Radon transform value for all of the angles.  

% theta_max: Corresponding angle of R2 

R1(Maxtheta) = 0;  

% To find other maximum values,R2 element are deleted  from vector R1. 

    Maxtheta = Maxtheta - 89; 

end 

%% 3- To reconstruct the image  

% oprate morphological reconstruction process using repeated.. 

% dilations of the image ' marker' image, until the contour of the marker.. 

% image fits under a second image 'mask' image.  

mask=grayImage; 

marker=structuringElement; 

IM = imreconstruct(marker,mask); 

% Rotation correction 

FinalCorrectedImage = imrotate(IM,-Maxtheta);  

% to convert the black area into white 

FinalCorrectedImage(FinalCorrectedImage == 0) = 255; 

figure; imshow(FinalCorrectedImage) title('Corrected page image (after correction)'); 
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APPENDIX C 

LINE SKEW DETECTION AND CORRECTION ALGORITHM  

 

%%%OCR system /Preprocessing stage/line skew detection and correction 

% This algorithm is to detect and correct Line skew as a part of the preprocess of 

Arabic handwriting recognition system 

clc; clear all; Close all; 

%% get the page image 

k=input('Enter the file name   ','s');  

I=imread(k); 

%% Section (1): Skew line detection 

% convert the page image into gray scale image 

grayImage = rgb2gray(I); 

% Create structuring element of the gray scale image 

se = strel('disk',17); 

structuringElement = imopen(grayImage,se); 

% detect the image edges using Canny Edge Detector 

CannyImage = edge(structuringElement,'canny'); 

% create edge linking by a morphological operation  

ThickenImage = bwmorph(CannyImage,'thicken'); 

% Radon transform projections along 180 degrees, from -90 to +89 

theta = -90:89; 

[R,V] = radon(ThickenImage,theta); 

% R is the Radon transform of ThickenImage in -90 to 89 degrees. 

% V is a vector that contains the radial coordinates corresponding to each row of the 

Random Transform. 

[R1,MaxR] = max(R); 

Maxtheta = 90; 

while(Maxtheta > 30 || Maxtheta<-30) 
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    [R2,Maxtheta] = max(R1); 

% R2: Maximum Radon transform value for all of the angles.  

% theta_max: Corresponding angle of R2 

R1(Maxtheta) = 0;  

% To find other maximum values,R2 element are deleted  from vector R1. 

    Maxtheta = Maxtheta - 89; 

end 

x=90+ Maxtheta; 

if (x<90) 

    y=90-x; 

    fprintf('The line is  skewed  clockwise, The skew angle is %d\n', y); 

else if (x>92) 

          y=x-90; 

       fprintf('The line is  skewed  against clockwise, The skew angle is %d\n', y); 

else  

   fprintf('The page is not skewed, Go to Line extraction'); 

    end 

end 

if x>90 

    z=95;  r=17; 

else 

    z=89;  r=10; 

end 

%% Skew line correction 

%1- To create the Create structuring element 

% convert the line image into gray scale image 

grayImage = rgb2gray(I); 

% show the gray scale image (elective) 

imshow(grayImage ),title('Skewed line image (before correction)'); 

% Create structuring element of the gray scale image 

se = strel('disk',r); 

structuringElement = imopen(grayImage,se); 

% show the structuring Element(elective) 
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% figure; imshow(structuringElement); 

%% 2- To apply the Random tranform: 

% detect the image edges using Canny Edge Detector 

CannyImage = edge(structuringElement,'canny'); 

% show the CannyImage (elective) 

% figure; imshow(CannyImage); 

% create edge linking by a morphological operation  

ThickenImage = bwmorph(CannyImage,'thicken'); 

% show the ThickenImage(elective) 

% figure;imshow(ThickenImage); 

% Radon transform projections along 180 degrees, from -90 to +89 

 theta = -90:89; 

[R,V] = radon(ThickenImage,theta); 

% R is the Radon transform of ThickenImage in -90 to 89 degrees. 

% V is a vector that contains the radial coordinates corresponding to each row of the 

Random Transform. 

[R1,MaxR] = max(R); 

% R1 is a vector which its elements are equal the maximum value of Radon transform 

along each angle. 

% MaxR is a vector that includes corresponding  of 'R1'. 

% to detect lines  a Hough-like search is performed to find maximum value of % 

Radon 

% transform over all angles in angles > 50 or < -50.  

% angle indicates the slope of the upper bond of the image detected. 

Maxtheta = 90; 

while(Maxtheta > 30 || Maxtheta<-30) 

    [R2,Maxtheta] = max(R1); 

% R2: Maximum Radon transform value for all of the angles.  

% theta_max: Corresponding angle of R2 

R1(Maxtheta) = 0;  

% To find other maximum values,R2 element are deleted  from vector R1. 

    Maxtheta = Maxtheta - z; 

end 
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%% 3- To reconstruct the image  

% oprate morphological reconstruction process using repeated.. 

% dilations of the image ' marker' image, until the contour of the marker.. 

%image fits under a second image 'mask' image.  

mask=grayImage; 

marker=structuringElement; 

IM = imreconstruct(marker,mask); 

% Rotation correction 

FinalCorrectedImage = imrotate(IM,-Maxtheta);  

% to convert the black area into white 

FinalCorrectedImage(FinalCorrectedImage == 0) = 255; 

figure; imshow(FinalCorrectedImage),title('Corrected line image (after correction)'); 
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APPENDIX D 

WORD SKEW DETECTION AND CORRECTION ALGORITHM  

 

%%% OCR system /Preprocessing stage/word skew detection and correction 

% This algorithm is to detect and correct word skew as a part of the preprocess of 

Arabic handwriting recognition system 

clc; clear all; Close all; 

%% get the page image 

k=input('Enter the file name   ','s');  

I=imread(k); 

%% Section (1): Skew word detection 

% convert the page image into gray scale image 

grayImage = rgb2gray(I); 

% Create structuring element of the gray scale image 

se = strel('disk',10); 

structuringElement = imopen(grayImage,se); 

% detect the image edges using Canny Edge Detector 

CannyImage = edge(structuringElement,'canny'); 

%  create edge linking by a morphological operation  

ThickenImage = bwmorph(CannyImage,'thicken'); 

%Radon transform projections along 180 degrees, from -90 to +89 

theta = -90:89; 

[R,V] = radon(ThickenImage,theta); 

% R is the Radon transform of ThickenImage in -90 to 89 degrees. 

% V is a vector that contains the radial coordinates corresponding to each row of the 

Random Transform. 

[R1,MaxR] = max(R); 

Maxtheta = 90; 

while(Maxtheta > 50 || Maxtheta<-50) 
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    [R2,Maxtheta] = max(R1); 

% R2: Maximum Radon transform value for all of the angles.  

% theta_max: Corresponding angle of R2 

R1(Maxtheta) = 0;  

% To find other maximum values,R2 element are deleted  from vector R1. 

    Maxtheta = Maxtheta - 89; 

end 

x=90+ Maxtheta; 

if (x<90) 

    y=90-x; 

    fprintf('The word is  skewed  clockwise, The skew angle is %d\n', y); 

else if (x>92) 

          y=x-90; 

       fprintf('The word is  skewed  against clockwise, The skew angle is %d\n', y); 

else  

   fprintf('The word is not skewed, Go to Line extraction');  

    end 

end 

if x>92 

    z=70;  r=17; 

else 

    z=99;  r=10; 

end 

%% Section (2): Skew word correction 

% 1- Create structuring element 

% convert the word image into gray scale image 

grayImage = rgb2gray(I); 

% show the gray scale image (elective) 

imshow(grayImage ),title('Skewed word image (before correction)'); 

% Create structuring element of the gray scale image 

se = strel('disk',r); 

structuringElement = imopen(grayImage,se); 

% show the structuring Element(elective) 
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% figure; imshow(structuringElement); 

%% 2- To apply the Random tranform: 

% detect the image edges using Canny Edge Detector 

CannyImage = edge(structuringElement,'canny'); 

% show the CannyImage (elective) 

% figure; imshow(CannyImage); 

% create edge linking by a morphological operation  

ThickenImage = bwmorph(CannyImage,'thicken'); 

% show the ThickenImage(elective) 

% figure;imshow(ThickenImage); 

% Radon transform projections along 180 degrees, from -90 to +89 

 theta = -90:89; 

[R,V] = radon(ThickenImage,theta); 

% R is the Radon transform of ThickenImage in -90 to 89 degrees. 

% V is a vector that contains the radial coordinates corresponding to each row of the 

Random Transform. 

[R1,MaxR] = max(R); 

% R1 is a vector which its elements are equal the maximum value of Radon transform 

along each angle. 

% MaxR is a vector that includes corresponding  of 'R1'. 

% to detect lines  a Hough-like search is performed to find maximum value of Radon 

% transform over all angles in angles > 50 or < -50.  

% angle indicates the slope of the upper bond of the image detected. 

Maxtheta = 90; 

while(Maxtheta > 25 || Maxtheta<-25) 

    [R2,Maxtheta] = max(R1); 

% R2: Maximum Radon transform value for all of the angles.  

% theta_max: Corresponding angle of R2 

R1(Maxtheta) = 0;  

% To find other maximum values,R2 element are deleted  from vector R1. 

    Maxtheta = Maxtheta - z; 

end 

%% 3- To reconstruct the image  
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% oprate morphological reconstruction process using repeated.. 

% dilations of the image ' marker' image, until the contour of the marker.. 

% image fits under a second image 'mask' image.  

mask=grayImage; 

marker=structuringElement; 

IM = imreconstruct(marker,mask); 

% Rotation correction 

FinalCorrectedImage = imrotate(IM,-Maxtheta);  

% to convert the black area into white 

FinalCorrectedImage(FinalCorrectedImage == 0) = 255; 

figure; imshow(FinalCorrectedImage),title('Corrected word image (after correction)'); 
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APPENDIX E 

LINE EXTRACTION ALGORITHM  

 

 

%%%% OCR system /Segmentation stage/Line Extraction 

% This Code is to segment the text file into lines as a first step in our segmentation 

stage 

% The Standard Hough Transform (SHT) is used to computes the Hough transform of 

the edged image in order to detect the lines in the text image.   

% The Hough transform is designed to detect lines, using the parametric  

% Read the text image 

clc; clear all; Close all; 

k=input('Enter the file name   ','s');  

I=imread(k); 

% Convert into gray scale image 

J=rgb2gray(I); 

bw2 = edge(J, 'canny', [], 1); 

% figure; imshow(bw2) 

% get Standard Hough Transform (SHT)using hough Matlab Toolbox function.   

[H,theta,rho] = hough(bw2); 

% find peak values in the parameter space using houghpeaks Toolbox function. 

peaks  = houghpeaks(H,15); 

% find find the endpoints of the line segments corresponding to peaks in the % Hough 

transform  

% using houghlines Toolbox function. 

lines = houghlines(bw2,theta,rho,peaks); 

% find the white pixels in the input image that correspond to a particular 

% Hough transform accumulator bin 

hold on 
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for k = 1:numel(lines) 

    x1 = lines(k).point1(1); y1 = lines(k).point1(2); 

    x2 = lines(k).point2(1); y2 = lines(k).point2(2); 

    plot([x1 x2],[y1 y2],'Color','g','LineWidth', 4) 

end 

hold off 

% find the corresponded white pixels for each line. 

for n=1:15 

bw3 = hough_bin_pixels(bw2, theta, rho, peaks(n,:)); 

% figure; imshow(bw3); 

% find the corresponded white pixels line as a vector  

[x,y]=find(bw3==1); 

% find the mean of X axis of the corresponded white pixels line. 

Xmaen=mean(x); 

% find the top and bottom border of the text line. 

Xt=Xmaen+45.00; 

Xb=Xmaen-55.00; 

% Create new file to store the extracted text line image 

I2 = fix(I); I3=I2(Xb:Xt, 5:2500 ); 

%figure;imshow(I2); 

title(['Text line number:',int2str(n)],'Color','b'); 

ExtractedLine = I3; 

filename = (['C:\Documents and Settings\MohamedGumah\My 

Documents\MATLAB\Text Line Extruction\Final 

work\store2\ExtractedLine_',num2str(n),'.bmp']); 

imwrite( ExtractedLine, filename ); 

end 
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APPENDIX F 

WORD EXTRACTION ALGORITHM  

 

%%%% OCR system /Segmentation stage/Line-to-word 

% This code is to segment text-line into words 

% Read the text image 

clc; clear all; Close all; 

k=input('Enter the file name   ','s');  

I=imread(k); 

% convert text line image into binary image 

I=rgb2gray(I); 

level = graythresh(I); 

bw = im2bw(I,level);  

imshow(bw); 

% make the empty space as zeros pixels 

bw2=~bw; 

imshow(bw2); 

% calculate how many empty column in the image 

horizontalProfile = sum(bw2, 1); 

imshow(horizontalProfile) 

zeroIndexes = find(horizontalProfile == 0); 

n = numel(zeroIndexes); 

% for the last column 

n=n-1;  x=0; 

% cut the text image whenever empty column is found 

  for i=1:n  

      x1=zeroIndexes(i);  x2=zeroIndexes(i+1); 

  bw3=I(1:100, x1:x2 ); 
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  % conseider only column with words 

  z=size(bw3);  a=z(2); 

  % Check the segmented component 

  % if the segmented component is a character, store it in the segmented 

  % characters store 

  if (a>2 && a<10) 

  figure; imshow(bw3)  

  SegmentedWord = bw3; 

  title(['Character-No:',int2str(x),' lettersize:',int2str(z)],'Color','b'); 

  x=x+1; 

filename = (['C:\Documents and Settings\MohamedGumah\My 

Documents\MATLAB\Segmentation 

work\Line2words\store\SegmentedCharacter_',num2str(i),'.bmp']); 

imwrite(SegmentedWord, filename ); 

  % if the segmented component is a word, store it in the segmented 

  % words store 

  elseif (a>10 ) 

  figure; imshow(bw3)  

  SegmentedWord = bw3; 

  title(['Word-No:',int2str(x),' Word size:',int2str(z)],'Color','b'); 

  x=x+1; 

filename = (['C:\Documents and Settings\MohamedGumah\My 

Documents\MATLAB\Segmentation 

work\Line2words\store\SegmentedWord_',num2str(i),'.bmp']); 

imwrite(SegmentedWord, filename ); 

      else 

      % Dont cut 

  end 

  end 
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APPENDIX G 

OVERLAPPING CHARACTER SEGMENTATION ALGORITHM  

 

%%%% OCR system /Segmentation stage/Overlapping character 

% This code is to segment Overlapping character as a part of segmentation 

% stage of Arabic handwriting recognition system  

clc; clear all; Close all; 

% Read the text image 

k=input('Enter the file name   ','s');  

I2=imread(k); 

% convert text line image into binary image 

level = graythresh(I2); 

bw3 = im2bw(I2,level); 

% apply thinning algorithm 

bw3 = Thinning2(bw3); 

% make the empty space as zeros pixels 

bw4=~bw3; 

%  normalization: The normalization parameters according to the dataset 

bw5=bw4 (40:100, 60:100); 

imshow(bw5) 

%  calculate how many empty column in the image 

horizontalProfile = sum(bw5, 1); 

nonzero=find(horizontalProfile >1); 

m=numel(nonzero); 

%%--- to segment the below character 

x=nonzero(1); c=bw5(:,x); 

c=find(c>0); n=numel(c); 

y1=c(1); y2=c(n); 

y2=y2+2; 
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% normalization 

bw6=bw5(y1:y2  , 1:41 ); 

figure; imshow(bw6); title('below character'); 

%  Store segmented characters 

title([Character number:',int2str(n)],'Color','b'); 

SegmentedCharacter = bw6; 

filename = (['C:\Documents and Settings\MohamedGumah\My 

Documents\MATLAB\Segmentation\Final 

work\store2\SegmentedCharacter_',num2str(n),'.bmp']); 

imwrite(SegmentedCharacter, filename ); 

%-----to segment the upper character 

x=nonzero(m); 

d=bw5(:,x); d=find(d>0); 

y3=d(1);  y3=y3-2; 

% normalization 

bw7=bw5(y3:y1 , 1:41 ); 

figure; imshow(bw7); title('upper character'); 

%  Store segmented characters 

title([Character number:',int2str(n)],'Color','b'); 

SegmentedCharacter = bw7; 

filename = (['C:\Documents and Settings\MohamedGumah\My 

Documents\MATLAB\Segmentation\Final 

work\store2\SegmentedCharacter_',num2str(n),'.bmp']); 

imwrite(SegmentedCharacter, filename ); 
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APPENDIX H 

TEST.M FUNCTION 

 

 

%%%% OCR system /Recognition stage/Test function (test.m) 

% This code is to apply FWT on characters images to create DCV as a part 

% of recognition stage of Arabic handwriting recognition system  

%----------------------------------------------% 

clear all; close all; clc; 

% Read the text image 

k=input('Enter the file name   ','s');  I=imread(k); 

% Binarization 

I=rgb2gray(I); level = graythresh(I); bw = im2bw(I,level);  

% Assigment the boundaries for each image 

a=3  ; b=39 ; c=45; d=81 ; e=86 ; f=122; g=126; h=162; i=167; j=203; k=209; l=245; 

m=250; n=286; 

% produces 48 images from i1 to i48. Each image is 40x40 8-pexil 

i1=bw(a:b ,a:b); i2=bw(a:b ,c:d); i3=bw(a:b ,e:f); i4=bw(a:b ,g:h); i5=bw(a:b ,i:j); 

i6=bw(a:b ,k:l); i7=bw(a:b ,m:n); i8=bw(c:d ,a:b); i9=bw(c:d ,c:d); i10=bw(c:d ,e:f); 

i11=bw(c:d ,g:h); i12=bw(c:d ,i:j); 

i13=bw(c:d ,k:l); i14=bw(c:d ,m:n); i15=bw(e:f ,a:b); i16=bw(e:f ,c:d);i17=bw(e:f 

,e:f); i18=bw(e:f ,g:h); i19=bw(e:f ,i:j); i20=bw(e:f ,k:l); i21=bw(e:f ,m:n); 

i22=bw(g:h ,a:b); i23=bw(g:h ,c:d); i24=bw(g:h ,e:f); i25=bw(g:h ,g:h); i26=bw(g:h 

,i:j); i27=bw(g:h ,k:l); i28=bw(g:h ,m:n); i29=bw(i:j ,a:b); i30=bw(i:j ,c:d); i31=bw(i:j 

,e:f); i32=bw(i:j ,g:h); i33=bw(i:j ,i:j); i34=bw(i:j ,k:l); i35=bw(i:j ,m:n); i36=bw(k:l 

,a:b); i37=bw(k:l ,c:d); i38=bw(k:l ,e:f); i39=bw(k:l ,g:h) i40=bw(k:l ,i:j); i41=bw(k:l 

,k:l); i42=bw(k:l ,m:n); i43=bw(m:n ,a:b); i44=bw(m:n ,c:d); i45=bw(m:n 

,e:f);i46=bw(m:n ,g:h); i47=bw(m:n ,i:j); i48=bw(m:n ,k:l); 

% Create DCV for each image 
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% Parameters: 

% Decomposition level number:1 

% Filter type: jpeg9.7 

% DCV used elements: 2115 

% Rotation degree: 90 

for n=1:48 

% apply wavefast algorithm on the character image before rotation 

c1 =wavefast(i(n),1, 'jpeg9.7'); 

% determine DCV size 

Z1= c1(1, 1:2115); 

% Rotate the image 90 degree 

i(n)=imrotate(i(n),90,'bilinear'); 

% apply wavefast algorithm on the character image after rotation 

c2 =wavefast(i,1, 'jpeg9.7'); 

% determine DCV size 

Z2= c2(1, 1:2115); 

% send the two CDVs (Z1,Z2) to train.m function to be compared with the 

% characters groups representatives 

Testimage; 

end 
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APPENDIX J 

TRAIN.M FUNCTION 

 

%%%% OCR system /Recognition stage/Train function (train.m) 

% This code is to apply FWT on characters images to create DCV as a part 

% of recognition stage of Arabic handwriting recognition system  

%----------------------------------------------% 

% Read the text image 

I= imread('A.bmp');  

% Binarization 

I=rgb2gray(I); level = graythresh(I); bw = im2bw(I,level); 

% Assigment the boundaries for each image 

a=3  ; b=39 ; c=45; d=81 ; e=86 ; f=122; g=126; h=162; i=167; j=203; k=209; l=245; 

m=250; n=286; 

% define cells of 48 values  

test_cell_c=cell(1,48);  % for 48 DCVs (before size determination) 

test_cell_v=cell(1,48);  % for 48 DCVs (after size determination) 

test_cell=cell(1,48);    % for 48 sub-images (before rotation) 

test_cell2=cell(1,48);   % for 48 sub-images (after rotation)   

% cell values declaration 

test_cell{1,1}=bw(a:b ,a:b);test_cell{1,2}=bw(a:b ,c:d);test_cell{1,3}=bw(a:b ,e:f); 

test_cell{1,4}=bw(a:b ,g:h); test_cell{1,5}=bw(a:b ,i:j); test_cell{1,6}=bw(a:b ,k:l); 

test_cell{1,7}=bw(a:b ,m:n); test_cell{1,8}=bw(c:d ,a:b); test_cell{1,9}=bw(c:d ,c:d); 

test_cell{1,10}=bw(c:d ,e:f);test_cell{1,11}=bw(c:d ,g:h);test_cell{1,12}=bw(c:d 

,i:j); 

test_cell{1,13}=bw(c:d ,k:l);test_cell{1,14}=bw(c:d ,m:n);test_cell{1,15}=bw(e:f 

,a:b);test_cell{1,16}=bw(e:f ,c:d);test_cell{1,17}=bw(e:f ,e:f);test_cell{1,18}=bw(e:f 

,g:h);test_cell{1,19}=bw(e:f ,i:j); test_cell{1,20}=bw(e:f ,k:l);test_cell{1,21}=bw(e:f 

,m:n); test_cell{1,22}=bw(g:h ,a:b);test_cell{1,23}=bw(g:h ,c:d); 
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test_cell{1,24}=bw(g:h ,e:f);test_cell{1,25}=bw(g:h ,g:h); test_cell{1,26}=bw(g:h 

,i:j); test_cell{1,27}=bw(g:h ,k:l); test_cell{1,28}=bw(g:h 

,m:n);test_cell{1,29}=bw(i:j ,a:b);test_cell{1,30}=bw(i:j ,c:d);test_cell{1,31}=bw(i:j 

,e:f); test_cell{1,32}=bw(i:j ,g:h);test_cell{1,33}=bw(i:j ,i:j); test_cell{1,34}=bw(i:j 

,k:l); test_cell{1,35}=bw(i:j ,m:n); test_cell{1,36}=bw(k:l 

,a:b);test_cell{1,37}=bw(k:l ,c:d); test_cell{1,38}=bw(k:l ,e:f); 

test_cell{1,39}=bw(k:l ,g:h); test_cell{1,40}=bw(k:l ,i:j);test_cell{1,41}=bw(k:l ,k:l); 

test_cell{1,42}=bw(k:l ,m:n); test_cell{1,43}=bw(m:n ,a:b); test_cell{1,44}=bw(m:n 

,c:d);test_cell{1,45}=bw(m:n ,e:f);test_cell{1,46}=bw(m:n 

,g:h);test_cell{1,47}=bw(m:n ,i:j); test_cell{1,48}=bw(m:n ,k:l); 

% Create DCV for each image 

% Parameters: 

% Decomposition level number:1 

% Filter type: jpeg9.7 

% DCV used elements: 2115 

% Rotation degree: 90 

for i=1:48 

    % apply wavefast algorithm on the character image before rotation 

    test_cell_c{1,i}=wavefast(test_cell{1,i},1, 'jpeg9.7'); 

    temp_c=test_cell_c{1,i}; 

    % determine DCV size 

    test_cell_v{1,i}=temp_c(1,1:2115); 

end 

% for 48 DCVs (after size determination) 

V_new=[ test_cell_v{1,1}; 

test_cell_v{1,2};test_cell_v{1,3};test_cell_v{1,4};test_cell_v{1,5};test_cell_v{1,6};..

. 

test_cell_v{1,7};test_cell_v{1,8};test_cell_v{1,9};test_cell_v{1,10};test_cell_v{1,11

};test_cell_v{1,12};test_cell_v{1,13};test_cell_v{1,14};test_cell_v{1,15};test_cell_v

{1,16};test_cell_v{1,17};test_cell_v{1,18};test_cell_v{1,19};test_cell_v{1,20};test_c

ell_v{1,21};test_cell_v{1,22};test_cell_v{1,23};test_cell_v{1,24};test_cell_v{1,25};t

est_cell_v{1,26};test_cell_v{1,27};test_cell_v{1,28};test_cell_v{1,29};test_cell_v{1,

30};test_cell_v{1,31};test_cell_v{1,32};test_cell_v{1,33};test_cell_v{1,34};test_cell



 239 

_v{1,35};test_cell_v{1,36};test_cell_v{1,37};test_cell_v{1,38};test_cell_v{1,39};tes

t_cell_v{1,40};test_cell_v{1,41};test_cell_v{1,42};test_cell_v{1,43};test_cell_v{1,4

4};test_cell_v{1,45};test_cell_v{1,46};test_cell_v{1,47};test_cell_v{1,48}]; 

% representative determination (calculate the mean) 

Y_new=mean(V_new); 

% calculate Euclidean distance between this group representative and the character 

image to be recognized 

%(before rotation) 

% where: 

% t1= Euclidean distance  

% Z= DCV of character image to be recognized ( sent from test.m ) 

 t1= sum((Z-Y_new).^2).^0.5; 

% Images rotation 

for i=1:48 

    test_cell2{1,i}=imrotate(test_cell{1,i},90,'bilinear');  

end 

for i=1:48 

     % apply wavefast algorithm on the character image after rotation 

    test_cell_c{1,i}=wavefast(test_cell2{1,i},1, 'jpeg9.7'); 

    temp_c=test_cell_c{1,i}; 

     % determine DCV size 

    test_cell_v{1,i}=temp_c(1,1:2115); 

end 

% for 48 DCVs (after size determination) 

V_new=[ test_cell_v{1,1}; 

test_cell_v{1,2};test_cell_v{1,3};test_cell_v{1,4};test_cell_v{1,5};test_cell_v{1,6};..

. 

test_cell_v{1,7};test_cell_v{1,8};test_cell_v{1,9};test_cell_v{1,10};test_cell_v{1,11

};test_cell_v{1,12};test_cell_v{1,13};test_cell_v{1,14};test_cell_v{1,15};test_cell_v

{1,16};test_cell_v{1,17};test_cell_v{1,18};test_cell_v{1,19};test_cell_v{1,20};test_c

ell_v{1,21};test_cell_v{1,22};test_cell_v{1,23};test_cell_v{1,24};test_cell_v{1,25};t

est_cell_v{1,26};test_cell_v{1,27};test_cell_v{1,28};test_cell_v{1,29};test_cell_v{1,

30};.test_cell_v{1,31};test_cell_v{1,32};test_cell_v{1,33};test_cell_v{1,34};test_cel
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l_v{1,35};test_cell_v{1,36};.test_cell_v{1,37};test_cell_v{1,38};test_cell_v{1,39};te

st_cell_v{1,40};test_cell_v{1,41};test_cell_v{1,42};.test_cell_v{1,43};test_cell_v{1,

44};test_cell_v{1,45};test_cell_v{1,46};test_cell_v{1,47};test_cell_v{1,48} ]; 

% representative determination (calculate the mean) 

Y_new=mean(V_new); 

% calculate Euclidean distance between this group representative and the character 

image to be recognized 

%(after rotation) 

% where: 

% t1= Euclidean distance  

% Y= DCV of character image to be recognized (sent from test.m ) 

t1b= sum((Y-Y_new).^2).^0.5; 

. % Euclidean distances of characters before rotation 

T1=[t1 t2 t3  t4 t5 t6 t7; t8 t9 t10 t11 t12 t13 t14; t15 t16  t17 t18 t19 t20 t21; t22 t23 

t24 t25 t26 t27 t28]; 

% Euclidean distances of characters after rotation 

T2=[t1b t2b t3b  t4b t5b t6b t7b; t8b t9b t10b t11b t12b t13b t14b; t15b t16b  t17b 

t18b t19b t20b t21b; t22b t23b t24b t25b t26b t27b t28b]; 

% combine both Euclidean distances 

D1=[t1+t1b]; D2=[t2+t2b];D3=[t3+t3b]; D4=[t4+t4b]; D5=[t5+t5b];  

D6=[t6+t6b]; D7=[t7+t7b]; D8=[t8+t8b]; D9=[t9+t9b]; D10=[t10+t10b];  

D11=[t11+t11b]; D12=[t12+t12b]; D13=[t13+t13b]; D14=[t14+t14b];  

D15=[t15+t15b]; D16=[t16+t16b]; D17=[t17+t17b]; D18=[t18+t18b]; 

D19=[t19+t19b]; D20=[t20+t20b];D21=[t21+t21b];D22=[t22+t22b]; 

D23=[t23+t23b];D24=[t24+t24b];D25=[t25+t25b]; 

D26=[t26+t26b];D27=[t27+t27b]; D28=[t28+t28b]; 

% combined Euclidean distances 

D=[D1 D2 D3  D4 D5 D6 D7; D8 D9 D10 D11 D12 D13 D14; D15 D16  D17 D18 

D19 D20 D21; D22 D23 D24 D25 D26 D27 D28]; 

% find the minimum Euclidean distance 

C = min(D); 

C=min(C); 
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% check the minimum Euclidean distance belong to which character: the character 

will be recognized according to the shorter  Euclidean distances 

switch (C) 

    case (D1) 

       fprintf( '. Alif \n' ); 

% apply validation function 

validation; 

case (D2) 

        fprintf( '. Baa \n' ); 

 % apply validation function 

validation; 

    case  (D28)  

        fprintf( '. Ya \n' ); 

% apply validation function 

validation; 

    otherwise 

% Store as overlapping character  

title([Character number:',int2str(n)],'Color','b'); 

SegmentedCharacter = I; 

filename = (['C:\Documents and Settings\MohamedGumah\My 

Documents\MATLAB\Segmentation\Final 

work\store2\OverlappingCharacter_',num2str(n),'.bmp']); 

imwrite(SegmentedCharacter, filename ); 

end 
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