199 research outputs found

    Persistent Homology Over Directed Acyclic Graphs

    Full text link
    We define persistent homology groups over any set of spaces which have inclusions defined so that the corresponding directed graph between the spaces is acyclic, as well as along any subgraph of this directed graph. This method simultaneously generalizes standard persistent homology, zigzag persistence and multidimensional persistence to arbitrary directed acyclic graphs, and it also allows the study of more general families of topological spaces or point-cloud data. We give an algorithm to compute the persistent homology groups simultaneously for all subgraphs which contain a single source and a single sink in O(n4)O(n^4) arithmetic operations, where nn is the number of vertices in the graph. We then demonstrate as an application of these tools a method to overlay two distinct filtrations of the same underlying space, which allows us to detect the most significant barcodes using considerably fewer points than standard persistence.Comment: Revised versio

    Persistence for Circle Valued Maps

    Full text link
    We study circle valued maps and consider the persistence of the homology of their fibers. The outcome is a finite collection of computable invariants which answer the basic questions on persistence and in addition encode the topology of the source space and its relevant subspaces. Unlike persistence of real valued maps, circle valued maps enjoy a different class of invariants called Jordan cells in addition to bar codes. We establish a relation between the homology of the source space and of its relevant subspaces with these invariants and provide a new algorithm to compute these invariants from an input matrix that encodes a circle valued map on an input simplicial complex.Comment: A complete algorithm to compute barcodes and Jordan cells is provided in this version. The paper is accepted in in the journal Discrete & Computational Geometry. arXiv admin note: text overlap with arXiv:1210.3092 by other author

    Computing Topological Persistence for Simplicial Maps

    Full text link
    Algorithms for persistent homology and zigzag persistent homology are well-studied for persistence modules where homomorphisms are induced by inclusion maps. In this paper, we propose a practical algorithm for computing persistence under Z2\mathbb{Z}_2 coefficients for a sequence of general simplicial maps and show how these maps arise naturally in some applications of topological data analysis. First, we observe that it is not hard to simulate simplicial maps by inclusion maps but not necessarily in a monotone direction. This, combined with the known algorithms for zigzag persistence, provides an algorithm for computing the persistence induced by simplicial maps. Our main result is that the above simple minded approach can be improved for a sequence of simplicial maps given in a monotone direction. A simplicial map can be decomposed into a set of elementary inclusions and vertex collapses--two atomic operations that can be supported efficiently with the notion of simplex annotations for computing persistent homology. A consistent annotation through these atomic operations implies the maintenance of a consistent cohomology basis, hence a homology basis by duality. While the idea of maintaining a cohomology basis through an inclusion is not new, maintaining them through a vertex collapse is new, which constitutes an important atomic operation for simulating simplicial maps. Annotations support the vertex collapse in addition to the usual inclusion quite naturally. Finally, we exhibit an application of this new tool in which we approximate the persistence diagram of a filtration of Rips complexes where vertex collapses are used to tame the blow-up in size.Comment: This is the revised and full version of the paper that is going to appear in the Proceedings of 30th Annual Symposium on Computational Geometr

    A Geometric Perspective on Sparse Filtrations

    Full text link
    We present a geometric perspective on sparse filtrations used in topological data analysis. This new perspective leads to much simpler proofs, while also being more general, applying equally to Rips filtrations and Cech filtrations for any convex metric. We also give an algorithm for finding the simplices in such a filtration and prove that the vertex removal can be implemented as a sequence of elementary edge collapses

    Computational Complexity of the Interleaving Distance

    Full text link
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.Comment: Discussion related to the characteristic of the field added. Paper accepted to the 34th International Symposium on Computational Geometr

    Dualities in persistent (co)homology

    Full text link
    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm.Comment: 16 pages, 3 figures, submitted to the Inverse Problems special issue on Topological Data Analysi
    • …
    corecore