430 research outputs found

    Latent Structure Preserving Hashing

    Get PDF
    Aiming at efficient similarity search, hash functions are designed to embed high-dimensional feature descriptors to low-dimensional binary codes such that similar descriptors will lead to binary codes with a short distance in the Hamming space. It is critical to effectively maintain the intrinsic structure and preserve the original information of data in a hashing algorithm. In this paper, we propose a novel hashing algorithm called Latent Structure Preserving Hashing (LSPH), with the target of finding a well-structured low-dimensional data representation from the original high-dimensional data through a novel objective function based on Nonnegative Matrix Factorization (NMF) with their corresponding Kullback-Leibler divergence of data distribution as the regularization term. Via exploiting the joint probabilistic distribution of data, LSPH can automatically learn the latent information and successfully preserve the structure of high-dimensional data. To further achieve robust performance with complex and nonlinear data, in this paper, we also contribute a more generalized multi-layer LSPH (ML-LSPH) framework, in which hierarchical representations can be effectively learned by a multiplicative up-propagation algorithm. Once obtaining the latent representations, the hash functions can be easily acquired through multi-variable logistic regression. Experimental results on three large-scale retrieval datasets, i.e., SIFT 1M, GIST 1M and 500 K TinyImage, show that ML-LSPH can achieve better performance than the single-layer LSPH and both of them outperform existing hashing techniques on large-scale data

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Optimal Projection Guided Transfer Hashing for Image Retrieval

    Full text link
    Recently, learning to hash has been widely studied for image retrieval thanks to the computation and storage efficiency of binary codes. For most existing learning to hash methods, sufficient training images are required and used to learn precise hashing codes. However, in some real-world applications, there are not always sufficient training images in the domain of interest. In addition, some existing supervised approaches need a amount of labeled data, which is an expensive process in term of time, label and human expertise. To handle such problems, inspired by transfer learning, we propose a simple yet effective unsupervised hashing method named Optimal Projection Guided Transfer Hashing (GTH) where we borrow the images of other different but related domain i.e., source domain to help learn precise hashing codes for the domain of interest i.e., target domain. Besides, we propose to seek for the maximum likelihood estimation (MLE) solution of the hashing functions of target and source domains due to the domain gap. Furthermore,an alternating optimization method is adopted to obtain the two projections of target and source domains such that the domain hashing disparity is reduced gradually. Extensive experiments on various benchmark databases verify that our method outperforms many state-of-the-art learning to hash methods. The implementation details are available at https://github.com/liuji93/GTH

    Representation Learning with Adversarial Latent Autoencoders

    Get PDF
    A large number of deep learning methods applied to computer vision problems require encoder-decoder maps. These methods include, but are not limited to, self-representation learning, generalization, few-shot learning, and novelty detection. Encoder-decoder maps are also useful for photo manipulation, photo editing, superresolution, etc. Encoder-decoder maps are typically learned using autoencoder networks.Traditionally, autoencoder reciprocity is achieved in the image-space using pixel-wisesimilarity loss, which has a widely known flaw of producing non-realistic reconstructions. This flaw is typical for the Variational Autoencoder (VAE) family and is not only limited to pixel-wise similarity losses, but is common to all methods relying upon the explicit maximum likelihood training paradigm, as opposed to an implicit one. Likelihood maximization, coupled with poor decoder distribution leads to poor or blurry reconstructions at best. Generative Adversarial Networks (GANs) on the other hand, perform an implicit maximization of the likelihood by solving a minimax game, thus bypassing the issues derived from the explicit maximization. This provides GAN architectures with remarkable generative power, enabling the generation of high-resolution images of humans, which are indistinguishable from real photos to the naked eye. However, GAN architectures lack inference capabilities, which makes them unsuitable for training encoder-decoder maps, effectively limiting their application space.We introduce an autoencoder architecture that (a) is free from the consequences ofmaximizing the likelihood directly, (b) produces reconstructions competitive in quality with state-of-the-art GAN architectures, and (c) allows learning disentangled representations, which makes it useful in a variety of problems. We show that the proposed architecture and training paradigm significantly improves the state-of-the-art in novelty and anomaly detection methods, it enables novel kinds of image manipulations, and has significant potential for other applications
    • …
    corecore