1,892 research outputs found

    Contrastive audio-language learning for music

    Get PDF
    As one of the most intuitive interfaces known to humans, natural language has the potential to mediate many tasks that involve human-computer interaction, especially in application-focused fields like Music Information Retrieval. In this work, we explore cross-modal learning in an attempt to bridge audio and language in the music domain. To this end, we propose MusCALL, a framework for Music Contrastive Audio-Language Learning. Our approach consists of a dual-encoder architecture that learns the alignment between pairs of music audio and descriptive sentences, producing multimodal embeddings that can be used for text-to-audio and audio-to-text retrieval out-of-the-box. Thanks to this property, MusCALL can be transferred to virtually any task that can be cast as text-based retrieval. Our experiments show that our method performs significantly better than the baselines at retrieving audio that matches a textual description and, conversely, text that matches an audio query. We also demonstrate that the multimodal alignment capability of our model can be successfully extended to the zero-shot transfer scenario for genre classification and auto-tagging on two public datasets

    Convolutional Recurrent Neural Networks for Polyphonic Sound Event Detection

    Get PDF
    Sound events often occur in unstructured environments where they exhibit wide variations in their frequency content and temporal structure. Convolutional neural networks (CNN) are able to extract higher level features that are invariant to local spectral and temporal variations. Recurrent neural networks (RNNs) are powerful in learning the longer term temporal context in the audio signals. CNNs and RNNs as classifiers have recently shown improved performances over established methods in various sound recognition tasks. We combine these two approaches in a Convolutional Recurrent Neural Network (CRNN) and apply it on a polyphonic sound event detection task. We compare the performance of the proposed CRNN method with CNN, RNN, and other established methods, and observe a considerable improvement for four different datasets consisting of everyday sound events.Comment: Accepted for IEEE Transactions on Audio, Speech and Language Processing, Special Issue on Sound Scene and Event Analysi

    Segmentation process and spectral characteristics in the determination of musical genres

    Get PDF
    Over the past few years there has been a tendency to store audio tracks for later use on CD-DVDs, HDD-SSDs as well as on the internet, which makes it challenging to classify the information either online or offline. For this purpose, the audio tracks must be tagged. Tags are said to be texts based on the semantic information of the sound [1]. Thus, music analysis can be done in several ways [2] since music is identified by its genre, artist, instruments and structure, by a tagging system that can be manual or automatic. The manual tagging allows the visualization of the behavior of an audio track either in time domain or in frequency domain as in the spectrogram, making it possible to classify the songs without listening to them. However, this process is very time consuming and labor intensive, including health problems [3] which shows that "the volume, sound sensitivity, time and cost required for a manual labeling process is generally prohibitive. Three fundamental steps are required to carry out automatic labelling: pre-processing, feature extraction and classification [4]. The present study developed an algorithm for performing automatic classification of music genres using a segmentation process employing spectral characteristics such as centroid (SC), flatness (SF) and spread (SS), as well as a time spectral characteristic

    An audio-visual approach to web video categorization

    Get PDF
    International audienceIn this paper we address the issue of automatic video genre categorization of web media using an audio-visual approach. To this end, we propose content descriptors which exploit audio, temporal structure and color information. The potential of our descriptors is experimentally validated both from the perspective of a classification system and as an information retrieval approach. Validation is carried out on a real scenario, namely on more than 288 hours of video footage and 26 video genres specific to blip.tv media platform. Additionally, to reduce semantic gap, we propose a new relevance feedback technique which is based on hierarchical clustering. Experimental tests prove that retrieval performance can be significantly increased in this case, becoming comparable to the one obtained with high level semantic textual descriptors

    Pre-training Music Classification Models via Music Source Separation

    Full text link
    In this paper, we study whether music source separation can be used as a pre-training strategy for music representation learning, targeted at music classification tasks. To this end, we first pre-train U-Net networks under various music source separation objectives, such as the isolation of vocal or instrumental sources from a musical piece; afterwards, we attach a convolutional tail network to the pre-trained U-Net and jointly finetune the whole network. The features learned by the separation network are also propagated to the tail network through skip connections. Experimental results in two widely used and publicly available datasets indicate that pre-training the U-Nets with a music source separation objective can improve performance compared to both training the whole network from scratch and using the tail network as a standalone in two music classification tasks: music auto-tagging, when vocal separation is used, and music genre classification for the case of multi-source separation.Comment: 5 pages (4+references), 3 figures. ICASSP-24 submissio

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach
    corecore