8 research outputs found

    Zero-crossing intervals of Gaussian and symmetric stable processes

    Get PDF
    The zero-crossing problem is the determination of the probability density function of the intervals between the successive axis crossings of a stochastic process. This thesis studies the properties of the zero-crossings of stationary processes belonging to the symmetric-stable class of Gaussian and non-Gaussian type, corresponding to the stability index nu=2 and 0<nu<2 respectively

    Zero-crossing intervals of Gaussian and symmetric stable processes

    Get PDF
    The zero-crossing problem is the determination of the probability density function of the intervals between the successive axis crossings of a stochastic process. This thesis studies the properties of the zero-crossings of stationary processes belonging to the symmetric-stable class of Gaussian and non-Gaussian type, corresponding to the stability index nu=2 and 0<nu<2 respectively

    The application of auditory signal processing principles to the detection, tracking and association of tonal components in sonar.

    Get PDF
    A steady signal exerts two complementary effects on a noisy acoustic environment: one is to add energy, the other is to create order. The ear has evolved mechanisms to detect both effects and encodes the fine temporal detail of a stimulus in sequences of auditory nerve discharges. Taking inspiration from these ideas, this thesis investigates the use of regular timing for sonar signal detection. Algorithms that operate on the temporal structure of a received signal are developed for the detection of merchant vessels. These ideas are explored by reappraising three areas traditionally associated with power-based detection. First of all, a time-frequency display based on timing instead of power is developed. Rather than inquiring of the display, "How much energy has been measured at this frequency? ", one would ask, "How structured is the signal at this frequency? Is this consistent with a target? " The auditory-motivated zero crossings with peak amplitudes (ZCPA) algorithm forms the starting-point for this study. Next, matters related to quantitative system performance analysis are addressed, such as how often a system will fail to detect a signal in particular conditions, or how much energy is required to guarantee a certain probability of detection. A suite of optimal temporal receivers is designed and is subsequently evaluated using the same kinds of synthetic signal used to assess power-based systems: Gaussian processes and sinusoids. The final area of work considers how discrete components on a sonar signal display, such as tonals and transients, can be identified and organised according to auditory scene analysis principles. Two algorithms are presented and evaluated using synthetic signals: one is designed to track a tonal through transient events, and the other attempts to identify groups of comodulated tonals against a noise background. A demonstration of each algorithm is provided for recorded sonar signals

    Correlation between Zero-Crossing Intervals of Gaussian Processes

    No full text
    corecore