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Abstract

The zero-crossing problem is the determination of the probability density

function of the intervals between the successive axis crossings of a stochastic

process. This thesis studies the properties of the zero-crossings of station-

ary processes belonging to the symmetric-stable class of Gaussian and non-

Gaussian type, corresponding to the stability index ν = 2 and 0 < ν < 2

respectively.

The statistical properties of zero-crossing intervals of Gaussian processes

are strongly influenced by the form of their autocorrelation function. The

thesis examines two broad classes of autocorrelation functions. One is ex-

ponentially bounded for large delay time, and the other one has a power-

law asymptote. These cases respectively represent processes with short-term

and long-term correlation memory. It is found that, on comparison with

numerical simulations, zero-crossing intervals of short-term correlated Gaus-

sian processes can be approximated by assuming that they form independent

random variables. The general morphologies presented by the interval prob-

ability density function, and the moments associated with it, are identified

qualitatively and determined quantitatively in terms of the smoothness of

the underlying process and the rate at which the autocorrelation function

decays. The asymptote of the probability density function for large intervals

τ is a simple exponential ∼ exp(−θτ), where the ‘persistence parameter’ θ

is a non-trivial constant involving the parameter of the autocorrelation func-

tion, and which is calculated quantitatively and compared with simulation
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results.

For autocorrelation functions with power-law decaying tails, it is found

that the approximation that zero-crossing intervals are independent random

variables is not valid. The independence model shows that the tail of the

interval density function is of power-law form, but simulation results show

that it remains of exponential type provided that the power-law index γ is

not too small compared with unity. Claims appearing in extant literature

(Eichner et al., Physical Review E 75, 011128 (2007)) that the asymptote of

the large interval τ becomes a stretched exponential function are examined

critically, and it is shown that processes with γ ≤ 1 have infinite power and

so are inadmissible. This can be corrected if the autocorrelation function pos-

sesses a cut-off at large delay times, whereupon the large τ asymptote for the

density function once again becomes a simple exponential. The behaviours

presented in terms of the properties of the cut-off are examined using theory

and simulation.

This programme is continued to consider the zero-crossing intervals of

symmetric stable non-Gaussian processes. These processes have infinite vari-

ance and consequently do not possess an autocorrelation function. Never-

theless, there is a quantity, termed ‘coherence’ which imbues ‘memory’, is

defined for these processes and which maps continuously to a function of

the Gaussian autocorrelation function when ν = 2. Classes of coherence

function corresponding to the exponential and power-law bounded autocor-

relation functions are considered within the assumption that the intervals

are independent. The properties of the interval density function and its mo-

ments are calculated as functions of the properties of the coherence function

and the stability index 0 < ν < 2. It is shown that the general morphology of

the interval density functions behave as for the Gaussian case.
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Chapter 1

Introduction

1.1 Background

Natural and economic disasters, such as floods, droughts, earthquakes, and

economic recession, occur intermittently and bring enormous damages to

life and property in human society. Hence, it is profitable to study their

properties of occurrence and develop technique related to their prediction

regarding the frequency of the events in a given period, and the time inter-

vals between the events. These are, by their nature, random variables and so

the machinery of stochastic processes is a tool that can be utilised for their

study. There are extensive literatures concentrated on issues of the occur-

rence and properties of such catastrophic events. For example, the classical

extreme value theory shows the distribution of extreme maximal values of a

given random variable [1].

In contrast to the classical extreme value theory, another way to consider

extreme events is to investigate the distributions of returns/occurrence inter-

vals between these events. That is the so-called the zero/level-crossing analy-

sis of random processes, whose the main aim is to determine the probability

distribution of zero/level-crossing intervals. This problem is illustrated in

Figure 1.1, and has been researched extensively since the pioneering works
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Chapter 1

Figure 1.1: This figure shows that the goal in the zero/level-crossing analysis is to

determine the probability density function of the zero-crossing interval τ .

of Kac [2] and Rice [3, 4]. Although the study dates back to the 1940s, there

are few rigorous and exact solutions to the entire problem. So far, the mean

of the zero-crossing interval τ has been obtained, but its probability density

function is still unknown in all generality. Such a problem is not only of

physical and theoretical importance but is also of practical importance. For

example, the related fields of the zero-crossing problem include signal pro-

cessing [5, 6], communications [7], reliability [8, 9], stock market [10], and

oceanography [11, 12]. More applications of the zero-crossing analysis can

be found in Blake and Lindsey [13].

For the most commonly studied random processes, a Gaussian process

with an arbitrary autocorrelation function, the probability density function

of zero crossing intervals cannot be derived explicitly by analytical methods.

Hence, the thesis investigates zero-crossing intervals of Gaussian processes

through numerical methods and simulations before using these results to

inform a theoretical description. The thesis is motivated by wide applica-

tions of Gaussian distributions and is to analyse statistical properties of zero-
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Chapter 1

crossing intervals of Gaussian processes.

In 1924, Paul Lévy investigated the sum of independent and identical ran-

dom variables, and defined the notion of stable random variables and pro-

cesses [14], which will be reviewed later. He pointed out that the Gaussian

random variable is a special case in the class of stable random variables.

Most results of the zero-crossing problem are known for the Gaussian pro-

cess. Hence, it is natural to generalise such results to the non-Gaussian stable

case. A few results concern the zero-crossing problem of the stable processes,

and these will be described in Chapter 5 and 6 of this thesis. These two

chapters investigate the zero-crossing problem of the symmetric stable non-

Gaussian process. Such a process introduces the concept of the coherence

function [15], which measures the ‘correlations’ between two different time

lags of the process. These two chapters consider the zero-crossing intervals

when the underlying process with the coherence function has either the ex-

ponential or the power-law asymptotic behaviour since it will be seen later

that the properties of zero-crossing intervals are influenced by the structure

of the coherence function. The methodology is inherited from the Gaussian

case.

1.2 Literature review

The research literature, which has an effect on the thesis, includes two parts.

The first part reviews the zero-crossing interval problem, and then stable

random variables are introduced.

1.2.1 The zero-crossing analysis

The zero/level-crossing problem of random processes began with the work of

Kac [2] and Rice [3, 4]. The major review regarding the zero/level-crossings

of random processes was given by Blake and Lindsey [13].

3



Chapter 1

In 1945, Rice derived the formula for the mean rate of zero-crossings per

unit time (namely, the zero-crossing rate β) for Gaussian processes

β =
1

π

√
−ρ′′(0),

where ρ(t) = 〈x(t′)x(t′ + t)〉 is the autocorrelation function of the Gaussian

process {x(t)} with zero mean and unit variance. Others [16–18] also de-

rived the same formula. Rice’s formula is very simple and only requires that

the second derivative of ρ(t) evaluated at the origin is finite. This condition

also implies that the underlying Gaussian process has to be smooth and dif-

ferentiable. If the second derivative of ρ(t) at the origin does not exist, it

means that the number of zero-crossings per unit time is infinite and that the

zero-crossing intervals are infinitesimally small. Hence, this thesis considers

the zero-crossing problem with the finite zero-crossing rate. Rice’s formula

is important for the zero-crossing problem because the approach Rice devel-

oped can be generalised to other random processes [19].

Another significant contribution by Rice was that he obtained an approx-

imation to the probability density function of zero-crossing intervals. Others

[11, 20] tried to improve Rice’s approximation. The only known exact ana-

lytical result of the probability density function of zero-crossing intervals was

obtained by Wong [21] for the Gaussian process with a specific autocorre-

lation function. Wong expressed this density function in terms of complete

elliptic integrals, and one can use this closed form result for verification of

computer codes when simulating the zero-crossing problem.

McFadden [22, 23] focused on the same problem without assuming the

underlying process is Gaussian distributed. Parts of his results are reviewed

in Chapter 2.

The zero-crossing problem is closely related to another problem: the per-

sistence probability, which measures how long the process stays above/below

a set level. The precise definition of persistence is as follows. Consider a

4



Chapter 1

random process x(t), the persistence probability Pr(t) is that x(t′) remains

below (or above) a given level L for all times t′ ∈ [0, t]. Namely, Pr(t) =

Prob{x(t′) < L, t′ ∈ [0, t]}. This problem has been researched by mathe-

maticians and physicists, e.g. [24–26], but exact expressions for the persis-

tence probability have been obtained only for a very limited number of cases

[21, 27]. Hence, an alternative problem is considered. That is, to determine

the large-time asymptotic behaviours of the persistence probability, which

leads to the definition of the persistence parameter [25, 28, 29]. It can be

shown [28, 30] that for the stationary Gaussian process, Pr(t) ∼ exp(−θt)

for large t, where θ is termed as the persistence parameter. It will be seen

in Chapter 2 that θ describes the tail behaviour of the probability density

function of zero-crossing intervals. The question to determine θ turns out

to be a hard unsolved problem [4, 31, 32]. By assuming that the successive

zero-crossing intervals are independent and identically distributed random

variables, Majumdar et al. [28] and Derrida et al. [25] found that the inde-

pendence assumption could produce the persistence value θ which is close to

the simulation results for a particular class of autocorrelation functions that

decay to zero rapidly.

The statistics of zero-crossings has also been considered. Steinberg et

al. [33] developed a method for calculating the second order moment of

the number of zero-crossings occurring in an interval. Furthermore, they

derived an exact formula for the variance of the number of zero-crossing

points. Smith et al. [34] considered the zero-crossings of Gaussian processes

as a stochastic point process, and showed that the distribution of the number

of zero-crossings in the asymptotically large interval regime is approximately

negative-binomial or binomial according to the smoothness of the process.

Hopcraft and Jakeman [15] derived the zero-crossing rate formula for

the symmetric stable process, and showed that this formula reverts to Rice’s

formula when the underlying process is the Gaussian case.
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In recent years, there is growing evidence and interest in many examples

of natural phenomena, which shows the ‘long-term’ memory. For example,

heartbeat records [35], daily temperature [36], DNA sequences [37] etc.

The long-term memory means that the autocorrelation function is of power-

law type ρ(t) ∼ t−γ, for large t, where γ > 0 is a constant. Altmann [38]

and Eichner et al. [39] argued that if the autocorrelation function of the

Gaussian process is of power-law form with 0 < γ < 1, then the tail of the

probability density function of zero-crossing intervals is approximately given

by a stretched exponential distribution exp(−tγ). They obtained this result

from simulations but did not give an analytical proof. Olla [40] applied an

ε-expansion for γ = 1 − ε and claimed to obtain the stretched exponential

distribution. This issue will be investigated in Chapter 4.

1.2.2 Stable random variables and processes

In 1924, Paul Lévy introduced the notion of the stable random variable, and

realised that a powerful technique to study the stable random variable is its

characteristic function, which is the Fourier transform of a random variable,

and summarised his main results in [41]. Since then papers on the theory

and applications of stable random variables and processes are published by

many authors. Analysis of stable distributions and processes and their theo-

retical proof can be found in Samorodnitsky and Taqqu [42]. A review in this

area from a statistical perspective is provided by a collection of papers edited

by Cambanis et al. [43]. One monograph focused on the one-dimensional

stable distribution was written by Zolotarev [44]. Various applications of the

stable distributions are contained in Adler et al. [45], and Mittnik et al. [46].

A random variable X is said to stable if for any positive constants a and

b, there exists positive constants c, and d, such that aX1 + bX2 has the same

distribution as cX + d, where X1 and X2 are independent copies of X [47].

The stable distribution is a generalisation of the Gaussian case. The epithet

6
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‘stable’ used in this thesis means the non-Gaussian stable random variable.

Three commonly seen stable random variables are the Gaussian distribution,

the Cauchy distribution, and the Lévy distribution, whose probability density

functions are known in closed forms [42]. More closed expressions of prob-

ability density functions of stable random variables can be found in [48].

The more elegant way to define a stable random variable is the characteristic

function, and more details can be found in [42]. Chapter 5 and 6 concen-

trate on the symmetric stable process, whose characteristic function has a

very simple form 〈exp(iλX)〉 = e−A|λ|
ν , where A > 0 is a scale parameter and

0 < ν ≤ 2. When ν = 2, it corresponds to the Gaussian case. A statistical

model based on the class of the bivariate symmetric stable distributions and

processes will be reviewed and exploited in Chapter 5.

The stable distributions have power-law tails, such that P (x) ∼ |x|−ν−1

for large x with 0 < ν < 2. There is much evidence to show that stable

distributions can be used to model impulsive signals and noise, financial

data, and fluctuations of highly correlated systems. For example, a large

number of financial institutions collapsed during the global financial crisis

of 2007-2008, including Lehman Brothers and Merrill Lynch. By studying

six daily total return indices (ISEQ, CAC40, DAX30, FTSE100, Dow Jones

Composite and S&P500) from 31 December 1987 to 31 January 2008, Frain

[49] used the stable distributions to fit the daily returns on these indices,

as he found a larger number of extreme values from the data set and stable

distributions allow the heavy tails.

The applications of the stable distributions also appear in the physics lit-

erature. Bak et al. [50] introduced the notion of the sandpile model, which

is a system to count numbers of falling sand grains onto a pile. Once the

pile becomes too steep, the pile will collapse like an avalanche until the pile

is again stable. They repeated the sandpile model and found that the size

and frequency of avalanches followed power-law tails with index in the sta-

7
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ble range. They introduced the concept of self-organized criticality, where

systems evolve naturally to their critical points.

1.3 Outline of thesis

The thesis is divided into six further chapters: five chapters of results and

one providing a summary of conclusions and suggestions for further work.

At the end of each results chapter, its findings are summarized.

Chapter 2 first reviews mathematical models of zero-crossing intervals of

stationary random processes, which will be utilised throughout this thesis.

Then zero-crossing intervals of Gaussian processes with three different au-

tocorrelation functions are considered. One is of the exponentially bounded

form, and the others are of power-law type. Results obtained in this chapter

are derived by assuming that successive zero-crossing intervals are indepen-

dent. The independence assumption is simple to use, but its validity needs

to be examined by comparison with the simulation experiment.

Results of Chapter 3 largely depend on numerical simulations, and the

aim is to examine the independence assumption. This chapter shows sim-

ulation results of zero-crossing intervals of Gaussian processes with the au-

tocorrelation functions considered in Chapter 2. Chapter 3 first introduces

simulation algorithms, then the simulation results are compared with that in

Chapter 2. It is found that the independence assumption is valid for the expo-

nentially bounded autocorrelation function, but not for the power-law types.

The simulation result for the power-law autocorrelation function seems to

support the work of Eichner et al. [39], and is discussed in detail in Chapter

4.

Chapter 4 investigates the results of Eichner et al. [39] by considering

the spectral density function of the power-law autocorrelation function and

the finite size of the data stream. Based on this analysis, the cut-off power-

8
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law autocorrelation function is motivated. Then the thesis argues that the

tail of the zero-crossing interval is of exponential form, not the stretched

exponential form, which was claimed by Eichner et al.

Chapter 5 considers zero-crossing intervals of the symmetric stable pro-

cess, which is a generalisation of the Gaussian process. Such a process in-

troduces the coherence function, which plays the similar role as the auto-

correlation function of the Gaussian process, but is not the autocorrelation

function, rather is a generalisation of a structure function. The exact defini-

tion of the coherence function can be found in Chapter 5. Specifically, this

chapter investigates zero-crossing intervals given the exponential coherence

function.

In Chapter 6, zero-crossing intervals with the power-law coherence func-

tion are considered first. Then, motivated by the cut-off power-law auto-

correlation function, this chapter obtains the properties of zero-crossing in-

tervals given the cut-off power-law coherence function. The main aim is to

show that given the cut-off term, the tail of the zero-crossing interval is of

exponential form.

Conclusions are drawn in Chapter 7. Suggestions are given as to how

these results might be furthered and exploited.

9



Chapter 2

Zero-crossing Intervals of

Gaussian Processes

2.1 Introduction

This chapter investigates zero-crossing intervals of the Gaussian process with

different autocorrelation functions. Mathematical background required to

understand this is reviewed first, then statistical properties of the zero cross-

ing intervals are presented. Due to lack of any other effective model for in-

corporating correlations among the crossing intervals, results shown in this

chapter are obtained by assuming that successive zero-crossing intervals are

independent. The independence assumption is an approximation only, but

it is a simple and analytically tractable choice. The results of this chapter

will be compared with simulation results of zero-crossing intervals in Chap-

ter 3. This chapter also serves to set up various notations that will be used

throughout this thesis.

10
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2.2 Mathematical background

This section reviews the fundamental identities given by McFadden [22, 23]

and Rice [3, 4]. Their results provide the general way to investigate zero-

crossing intervals of any arbitrary stationary random process.

2.2.1 Zero-crossing intervals of the stationary process

Let x(t) describe a stationary random process with zero mean. The autocor-

relation function of x(t) is denoted by r(t) = 〈x(t′)x(t′ + t)〉. The average

〈x(t′)x(t′ + t)〉 is independent of t′ since x(t) is a stationary process. The

clipped process y(t) is defined as

y(t) =


1, x(t) ≥ 0

−1, x(t) < 0.

(2.1)

Let the autocorrelation function of y(t) denote as R(t) = 〈y(t′)y(t′ + t)〉. The

process y(t) is of interest because it preserves information about the zero-

crossings.

Let p(n, t) describe the probability of finding exactly n zeros in the given

interval (t′, t′ + t). Now consider the possible values of 〈y(t′)y(t′ + t)〉. The

product 〈y(t′)y(t′ + t)〉 is 1 if there are an even number of zero-crossings in

the interval (t′, t′ + t), and −1 if there are an odd number of crossings in the

interval (t′, t′ + t). Then it leads to the infinite series

R(t) = 〈y(t′)y(t′ + t)〉 =
∞∑
n=0

(−1)np(n, t), (2.2)

which is first given by Rice [4].

Let τ be a random variable, which describes the lengths of intervals

between two successive zero-crossings, and denote P0(τ) as the probabil-

ity density function of the zero-crossing interval τ . The main aim of zero-

11
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crossing analysis is to determine P0(τ). Then define Pn(τ), n = 0, 1, 2, · · · , as

the probability density functions of crossing intervals between the mth and

(m + n + 1)st zeros, where m = 1, 2, · · · . In other words, P0(τ) is the proba-

bility density function of the zero-crossing interval τ ; P1(τ) is the probability

density function of the sum of two successive zero-crossing intervals; P2(τ) is

the probability density function of the sum of three successive zero-crossing

intervals, and so on.

Let β be the expected number of zero-crossings per unit time. Con-

sider the mean 〈τ〉 of the zero-crossing interval τ . Given a very long time

interval T , there will be βT zeros and βT intervals; then it implies that

〈τ〉 = T/(Tβ) = 1/β. The analytical proof can be found in [39] and [51],

and is verified below. Although this argument is heuristic, the mean 〈τ〉 is

unaffected by whether or not there are correlations between successive zero-

crossing intervals [39].

The contribution of McFadden is that he connected the function p(n, t),

which is already seen before, with the probability density function Pn(τ), and

derived the recursion relationships between them:

p′′(0, τ) = βP0(τ) (2.3)

p′′(1, τ) = β[P1(τ)− 2P0(τ)] (2.4)

p′′(n, τ) = β[Pn(τ)− 2Pn−1(τ) + Pn−2(τ)] n ≥ 2, (2.5)

where primes denote differentiation with respect to τ . These relationships

are derived in the Appendix A. Differentiating (2.2) twice with respect to t

and then inserting Equations (2.3)-(2.5) leads to

R′′(τ)

4β
=
∞∑
n=0

(−1)nPn(τ), (2.6)

which implies that the clipped autocorrelation function R(t) and the crossing

12
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rate β are required for the zero-crossing analysis to be effected.

McFadden then used the Laplace transform to derive moments of the

zero-crossing interval τ . The Laplace transform of a function h(t) is [52]

L{h(t)} =

∫ ∞
0

e−sth(t) dt.

Now denote the following notations

g(s) = L
{
R′′(τ)

4β

}
, (2.7)

pn(s) = L{Pn(τ)}.

Then transforming Equation (2.6) gives

g(s) =
∞∑
n=0

(−1)npn(s). (2.8)

The thesis investigates the probability density function P0(τ) of zero-crossing

intervals under the assumption that successive axis-crossing intervals are sta-

tistically independent. This is a rough approximation and may not be in ac-

cordance with the practice problem. However, in the absence of any other

definitive model for the correlations among zero-crossing intervals, this is

a simple and analytically tractable choice. Furthermore, it will be seen in

Chapter 3 that the independence approximation is adequate for certain types

of autocorrelation functions. Based on this argument, if it is presumed that

successive axis-crossing intervals are statistically independent, then the prob-

ability density functions of the sums of the crossing intervals are given by the

convolution of P0(τ), or in terms of the transform pn(s) = pn+1
0 (s). Inserting

this into Equation (2.8) allows the sum to be evaluated

p0(s) =
g(s)

1− g(s)
. (2.9)

13
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The advantage of the independence assumption is that one can sum up the

infinite series on the right-hand side of Equation (2.8) in the Laplace space.

Theoretically, the full probability density function P0(τ) of the zero-crossing

interval τ can be revealed by the inversion of Laplace transform of Equation

(2.9). The zero-crossing problem can also be investigated from the renewal

theory, as one can consider each zero-crossing as a ‘renewal’ of the process.

A similar structure can be found in [24, 53].

According to the definition of the Laplace transform, moments of the

zero-crossing interval τ may be obtained from the derivatives of p0(s), eval-

uated at s = 0. Then McFadden [23] evaluated the following quantities:

g(0) =
1

2
(2.10)

〈τ〉 =
1

β
(2.11)

σ2 =
2

β

∫ ∞
0

R(t) dt, (2.12)

which are derived in Appendix B. Note that given (2.9), Equation (2.10)

confirms that p0(0) = 1, which states that P0(τ) is correctly normalised.

The model (2.9) is based on the independence assumption, which makes

the analysis possible, but does not reflect the reality in general. Therefore,

the independence assumption has to be tested by comparing with simulation

experiments when possible. It can be seen that the independence model

(2.9) requires the knowledge of the clipped autocorrelation function R(t)

and the zero-crossing rate β to obtain the Laplace transform g(s). The next

two sections outline the principle methodology to derive these two quantities

for the Gaussian process.

14
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2.2.2 The Van Vleck theorem

Define the rectified telegraph signal χ(t) of the clipped process y(t) as:

χ(t) =
1

2
(1 + y(t)) =


1, y(t) ≥ 0

0, y(t) < 0.

(2.13)

Now consider the autocorrelation function 〈χ(t′)χ(t′ + t)〉. Let m2(x, y) de-

note the bivariate probability density function of the underlying process x(t).

Then the average 〈χ(t′)χ(t′ + t)〉 is either zero or unity, thus by stationary it

follows that

〈χ(0)χ(t)〉 =

∫ ∞
0

∫ ∞
0

m2(x, y) dx dy, (2.14)

which depends on the specific form of the joint density function m2(x, y).

Take the most familiar Gaussian process with zero mean and unity vari-

ance as an example. Let x = x(t′) and y = x(t′ + t), then its autocorrelation

function is defined as ρ(t) = 〈x(t′)x(t′+t)〉, and the joint distribution function

is

m2(x, y) =
1

2π(1− ρ2)1/2
exp

(
−x

2 + y2 − 2xyρ(t)

2(1− ρ2)

)
. (2.15)

Then evaluating Equation (2.14) gives a closed expression:

〈χ(0)χ(t)〉 =
1

4
+

1

2π
arcsin(ρ(t)).

Then, following Equation (2.13), it obtains a quite simple form

R(t) =
2

π
arcsin(ρ(t)), (2.16)

which is known as the Van Vleck theorem or the arcsine law formula [54].

The above analysis shows that if the autocorrelation function R(t) of the

clipped process is required to be determined, one needs the proper defined

bivariate probability density function m2(x, y) of the underlying process. It
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will be seen in Chapter 5 that for the symmetric stable process, the derivation

of the joint density functionm2(x, y) is obtained, which enables the Van Vleck

theorem to be generalised.

2.2.3 Rice’s formula

This section reviews the mean zero-crossings rate of a Gaussian process,

which was was first derived by Rice [4]. Let x(t) be a continuous and differ-

entiable random process. Namely, its sample path is continuous and differ-

entiable. Now consider its behaviour in the time interval (t1, t1 + dt). If dt is

chosen to be so small that x(t) can be treated as a straight line in (t1, t1 + dt).

For simplicity, let x = x(t1) at time t1. Suppose it passes a zero in (t1, t1 + dt),

then its intercept on x(t) = 0 is

t = t1 −
x

ẋ
, (2.17)

where the time derivative is defined as

ẋ = ẋ(t1) = lim
dt→0

x(t1 + dt)− x(t1)

t1
,

where the limit is to be interpreted in the mean square sense [55]. Equation

(2.17) implies that x and ẋ have opposite signs, and there is a relation

t1 < t1 −
x

ẋ
< t1 + dt. (2.18)

Consider the positive slopes (ẋ > 0), then Equation (2.18) becomes

− ẋ dt < x < 0. (2.19)
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Let q2(x, ẋ) denote the joint probability density function of x and ẋ, then the

probability of x and ẋ satisfying the inequality (2.19) is

∫ ∞
0

dẋ

∫ 0

−ẋdt
q2(x, ẋ) dx

=dt

∫ ∞
0

ẋ q2(0, ẋ) dẋ, (2.20)

where we have made use of the fact that dt is so very small that x is effectively

zero. Similar analysis yields

− dt

∫ 0

−∞
ẋ q2(0, ẋ) dẋ, (2.21)

as the probability of x and ẋ satisfying the inequality (2.18) when ẋ < 0.

Combining (2.20) and (2.21) leads to the zero-crossing rate per unit time

formula

β =

∫ ∞
−∞
|ẋ| q2(0, ẋ) dẋ, (2.22)

which is first obtained by Rice [4].

The above derivation is the main procedure to calculate the zero-crossing

rate for a continuous and differentiable process, but to proceed further re-

quires knowing the bivariate probability density function q2(x, ẋ). Note that

q2(x, ẋ) is not the same as m2(x, y) in the previous section, but m2(x, y) can

be used to determine q2(x, ẋ) through the following transformation. Let

x = x(t′) and y = x(t′ + t). For sufficient small t, then there exists the

transform pair x = x and y = x + ẋ t. After changing variables from x and y

to x and ẋ, and note that the Jacobian of the transform is

∣∣∣∣∂(x, y)

∂(x, ẋ)

∣∣∣∣ = t,

it leads to

q2(x, ẋ) = lim
t→0

tm2(x, x+ ẋ t). (2.23)

17



Chapter 2

The implication of Equation (2.23) is that to determine the joint density func-

tion q2(x, ẋ), one needs to know m2(x, y), which is the joint density function

of the underlying process.

Rice [4] evaluated Equation (2.23) for the Gaussian process with the joint

density function m2(x, y) given by (2.15), and found that

q2(x, ẋ) =
1

2π
√
−ρ′′(0)

exp

(
−1

2

(
x2 +

ẋ2

−ρ′′(0)

))
, (2.24)

which means that x and ẋ are joint-Gaussian distributed and independent

of each other. Then inserting Equation (2.24) into Equation (2.22), Rice

showed that the zero-crossing rate

β =
1

π

√
−ρ′′(0). (2.25)

Note that Equation (2.25) is only applied to when the second derivative

of ρ(t) exists, which means that the expansion of ρ(t) near the origin is

ρ(t) = 1 − ρ′′(0)t2/2 + · · · . This restriction is generalised when it comes

to investigating the zero-crossing rate for the symmetric stable process. It

can be seen that calculating the zero-crossing rate also requires knowledge

of the joint density function m2(x, y). Rice’s formula (2.25) is generalised to

the symmetric stable case in Chapter 5 by using a similar method.

2.2.4 Autocorrelation functions ρ(t)

Equation (2.16) indicates that the behaviour of the clipped autocorrelation

function R(t) is influenced by the structure of the autocorrelation function

ρ(t) of the Gaussian process, then it will affect the probability density func-

tions {Pn(τ)} by Equation (2.6). Two classes of correlations often encoun-

tered in random processes and time series analysis are considered in this

thesis.
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1. Short-term memory correlations where values are correlated with one

another at short lags in time ([56]; [57]). That is the autocorrela-

tion function for short-range correlations is bounded by an exponential

decay ρ(t) ∼ exp(−α1t), as t→∞ where α1 is a constant. Random pro-

cesses with short-term correlation functions can be found in practical

applications such as river flows [58], ecology [59] and telecommuni-

cation networks [60].

2. Long-term memory correlations where values are correlated with one

another at very long lags in time ([61]; [62]). That is the autocor-

relation function has a power-law asymptote ρ(t) ∼ t−γ, as t → ∞,

where γ > 0 is a constant. Long-term correlations have been found in

the physiological records [35], DNA sequences [37] and musical pitch,

rhythms, and loudness fluctuations ([63], [64] and [65]).

To explore the effects that changes in the autocorrelation function ρ(t) have

on the probability density function P0(τ) of the zero-crossing interval τ , the

thesis considers three specific models.

The first one is the exponentially bounded autocorrelation function, cor-

responding to the short-term memory,

ρe(t) =
2 exp(−at)

1 + exp(−2at)
, (2.26)

where a > 0 is a time-scale parameter. ρe(t) is of interest since it is generated

from the exponential coherence function of the symmetric stable process,

which has the asymptotic form exp(−at) for large t. The detail will be seen

in Chapter 5 of the thesis. The expansion of ρe(t) near the origin is

ρe(t) = 1− a2

2
t2 +

5a4

24
t4 +O(t6),

implying that the mean rate β of zero-crossings of the process exists by Rice’s
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formula (2.25).

The second autocorrelation function is power-law bounded, correspond-

ing to the long-term memory,

ργ(t) = (1 + a2t2/γ)−γ/2, (2.27)

where a > 0 is the time-scale parameter and γ > 0 is the long-term memory

index. The expansion of this model for small t always contains even terms:

ργ(t) = 1− a2

2
t2 +

a4(2 + γ)

8γ
t4 +O(t6),

implying the existence of the zero-crossing rate. Note that as γ →∞, ργ(t)→

exp(−a2t2/2), which is the Gaussian type autocorrelation function [34].

The final model for the autocorrelation function that will be considered

is still long-term correlated

φγ(t) =
2(1 + a|t|/γ)γ

1 + (1 + a|t|/γ)2γ
. (2.28)

The expansion of φγ(t) near the origin includes both even and odd terms:

φγ(t) = 1− a2

2
t2 +

a3

2γ
|t|3 +

a4(5γ2 − 11)

24γ2
t4 +O(|t|5).

Clearly, the zero-crossing rate exists according to Rice’s formula (2.25). Note

that, as γ → ∞, φγ(t) → ρe(t), which implies that φγ(t) is reflected the

power-law coherence function, which is discussed in Chapter 6.

Both the power-law autocorrelation functions are with asymptote t−γ for

large t, but it will be seen later that the initial behaviour of the probability

density function P0(τ) of the zero-crossing interval τ shows the different

property. A key difference between these two power-law models φγ(t) and

ργ(t) is that φγ(t) is known as a ‘sub-fractal’ ([66], [67]). Because the fourth

derivative at the origin is singular corresponding to the process having a
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derivative that is continuous but not differentiable ([34], [68]), however

ργ(t) is smooth to all orders.

2.3 The exponentially bounded autocorrelation

model ρe(t)

This section considers zero-crossing intervals of the Gaussian process with

the exponentially bounded autocorrelation function ρe(t), given by Equation

(2.26). The aim is to show statistical properties of the zero-crossing interval

τ , when the Gaussian process is short-term correlated.

2.3.1 Mean and variance of zero-crossing intervals

The calculation for the mean 〈τ〉 and variance σ2 of the zero-crossing interval

τ is simple. By using Rice’s formula (2.25), it gives β = a/π, therefore by

Equation (2.11), the mean 〈τ〉 is π/a. According to Equation (2.12), the

variance σ2 is

σ2 =
2

β

∫ ∞
0

2

π
arcsin[ρe(t)] dt.

The numerical evaluation of the integral gives σ2 ≈ 7.32/a2. It will be seen in

Chapter 5 that these values for 〈τ〉 and σ2 can be obtained from the general

symmetric stable case.

2.3.2 The persistence parameter

The second quantity to be calculated is the persistence parameter θ, which

describes the tail behaviour of zero-crossing intervals. The independence

assumption plays an important role to determine θ. The Laplace transform

of the probability density function P0(τ) of the zero-crossing interval τ is

given by Equation (2.9), which has a pole satisfying 1− g(s) = 0, where g(s)

is given by Equation (2.7). Note that for s ≥ 0, 0 < g(s) ≤ 1/2, which means
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that the pole is located on the negative s-axis. Hence the pole we are after is

the least negative solutions to this equation. If let s = −θ denote the location

of the pole, where θ > 0, then the expansion of g(s) around s = −θ is

g(s) = g(−θ) + g′(−θ)(s+ θ) +
g′′(−θ)

2
(s+ θ)2 + · · · .

With g(−θ) = 1, inserting Equation (2.9) gives that, for s = −θ

p0(s) ≈
−1

g′(−θ)(s+ θ)
.

Furthermore, by using the property of Laplace transform, then it gives that

P0(τ) ∼ exp(−θτ) for large τ . This result implies that the existence of the

persistence parameter θ gives the exponential tail of the zero-crossing inter-

val τ .

Now evaluate the Laplace transform g(s) = L{R′′(t)/(4β)}. For the expo-

nentially bounded autocorrelation function ρe(t), which is given by (2.26),

we evaluate that

R′′(t) =
2a2

π
sech(at) tanh(at).

Then with the constant β = a/π, the Laplace transform of R′′(t)/(4β) is

g(s) =
1

4β

∫ ∞
0

2a2

π
sech(at) tanh(at)e−st dt, (2.29)

which implies that a is only a scaling constant if we introduce the variable

p = at. Evaluating Equation (2.29) gives that

g(s) =
1

4a

[
2a+ s

(
ψ(
s+ a

4a
)− ψ(

s+ 3a

4a
)

)]
, (2.30)

where ψ(·) is the logarithmic derivative of the gamma function:

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
.
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Given the closed form of g(s) (2.30), now we can evaluate the persistence

parameter θ. As a is a time-scale factor, for computational simplicity, let

a = 1. Then the solution of 1 − g(−θ) = 0 gives that θ = 0.37. This result

implies that the tail of the zero-crossing interval τ is of exponential form

exp(−θτ) for large τ , and this result is verified in the following section.

2.3.3 Probability density functions

The main interest of the zero-crossing problem is to determine the proba-

bility density function P0(τ) of the zero-crossing interval τ . The thesis uses

numerical inversion of Laplace transform to obtain P0(τ). That is to invert

Equation (2.9) by a proper numerical algorithm, once we know the exact

form g(s).

The Tablot method

The formal inverse Laplace transform formula [69] is given by

h(t) = L−1{h̃(s)} =
1

2πi

∫ x+i∞

x−i∞
h̃(s)est ds, (2.31)

where x is real and greater than the real parts of all singularities of h̃(s).

In practice, the integral in (2.31) is evaluated by considering the Bromwich

contour [70], which is composed of the vertical line s = x parallel to the

imaginary axis and the arc of a circle with centre at the origin.

There are several algorithms available for the numerical inversion of

Laplace transforms. One of the best ways for numerical inversion of the

Laplace transform is to deform the Bromwich integral [71–73]. One of the

methods in this direction is given by Tablot [74]. With the Cauchy theorem

[70], Tablot deformed the Bromwich contour with

s(η) = xη(cot(η) + i), (2.32)
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Figure 2.1: The probability density function P0(τ) of the zero-crossing interval τ

of the Gaussian process with the exponentially bounded autocorrelation function

ρe(t), given by Equation (2.26). This figure is obtained by using the Tablot method.

The inset log-linear plot suggests that the tail of the zero-crossing interval τ is ex-

ponential: P0(τ) ∼ exp(−Aτ), where A = 0.37 is consistent with the persistence

parameter θ obtained by solving equation 1 − g(−θ) = 0, where g(s) is given by

Equation (2.30).

where −π < η < π. Replace the contour in (2.31) with (2.32), then

h(t) =
1

2πi

∫ π

−π
exp(ts(η))h̃(s(η))s′(η) dη, (2.33)

where s′(η) = x(i + cot(η)− η csc2(η)). Then Tablot used the trapezoidal rule

to approximate Equation (2.33).

The Tablot method has been coded in the mathematical software package,

e.g. Mathematica. Abate and Valkó [71] implemented the Tablot method and

provided the command ‘FT[F , t ]’ in Mathematica, where F is the inverse

Laplace transform function for a given time point t. This thesis obtains the

probability density function P0(τ) of the zero-crossing interval τ by using this

function in Mathematica.
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The probability density function

For the exponentially bounded model ρe(t) (2.26), g(s) is given by Equation

(2.30), so there is no need to approximate the function g(s). By using the

Tablot method, Figure 2.1 shows the probability density function P0(τ) of

the zero-crossing interval τ of the Gaussian process with ρe(t). It can be seen

that the initial value P0(0) = 0, and a peak is located off-axis, which im-

plies that the zero-crossings have a tendency to stay apart from one another.

This behaviour is called ‘anti-bunching’ [34, 48], referring zero-crossings are

repelled from each other. The inner log-linear plot shows that the tail is a

straight line, indicating that the zero-crossing interval τ follows an exponen-

tial tail: P0(τ) ∼ exp(−Aτ), where A = 0.37 is obtained from numerical

data and is approximately equal to the persistence parameter θ, which is

calculated from solving the pole with the aid of Equation (2.30) in the last

section. The agreement implies that θ can be obtained from two methods.

This result shows that the existence of θ means that the tail of zero-crossing

intervals is of exponential form and that θ describes the tail behaviour. Figure

2.1 will be compared with the simulation experiment in Chapter 3.

2.4 The power-law model ργ(t)

This section considers zero-crossing intervals of the Gaussian process with

the power-law autocorrelation function ργ(t), which is given by Equation

(2.27). Section 2.2 presumed successive zero-crossing intervals are statisti-

cally independent. This is a gross approximation, but it turns out to be a

analytically tractable choice. Therefore, based on this argument, this section

considers the independent model analytically for the power-law bounded

model ργ(t). Results derived from the independent approximation will be

compared with that of simulations in Chapter 3, if the analytical results of

this chapter are not inconsistent with simulations, the assumption of inde-
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pendence should be rejected.

2.4.1 Mean and variance of zero-crossing intervals

For the power-law model ργ(t) (2.27), the crossing rate β is a/π, so the

mean 〈τ〉 of the zero-crossing interval τ is still π/a, implying that 〈τ〉 does

not depend on the memory index γ. The variance σ2, however, is not always

finite, which is given by (2.12):

σ2 =
4

βπ

∫ ∞
0

arcsin
[
(1 + a2t2/γ)−γ/2

]
dt. (2.34)

If γ ≤ 1, Equation (2.34) does not converge by the comparison test [75],

and for other γ, it is solved numerically. The normalised variance σ2/〈τ〉2 is

considered, since σ2/〈τ〉2 shows the fluctuations of the lengths of the zero-

crossing intervals. Figure 2.2 plots σ2/〈τ〉2 as a function of γ. It can be seen

that σ2/〈τ〉2 is finite for γ > 1. Otherwise, it is infinite. This result indicates

that the variance σ2 depends on the value γ. In practice, the variance σ2

cannot be infinite, and this issue will be discussed in Chapter 4.

2.4.2 The persistence parameter

We have already seen that the persistence parameter θ can be determined by

solving the equation 1 − g(−θ) = 0, where g(s) = L{R′′(t)/(4β)}. For the

power-law autocorrelation function ργ(t) (2.27), we can calculate that

R′′(t)

4β
=
a (2− h+ (γ(h− 1) + h− 2)hγ)

2h2 (hγ − 1)3/2
(2.35)

where h = 1 + a2t2/γ. It can be seen that Laplace transforming Equation

(2.35) does not converge for negative s values, which implies that there

does not exist the persistence parameter θ. This fact implies that the proba-

bility density function P0(τ) of the zero-crossing interval τ does not have an

26



Chapter 2

0 1 2 3 4

0

2

4

6

8

10

12

14

Γ

Σ2

XΤ\2

Figure 2.2: This figure shows the normalised variance σ2/〈τ〉2 of the zero-crossing

interval τ against the index γ for the Gaussian process with the power-law auto-

correlation function ργ(t), which is given by Equation (2.27). It can be seen that

the variance σ2 becomes infinite if γ is equal to or less than 1, implying that the

zero-crossing interval τ is related to the value of γ.

exponential tail. If it had, then the variance σ2 would be finite. This result

is different with that for the exponentially bounded autocorrelation function

ρe(t), which is shown in previous section.

Another way to show the same result is to consider the asymptotic be-

haviour of the Laplace transform of Equation (2.35). In asymptotic analysis,

the symbol ‘∼’ means that for two functions w(t) and f(t), lim
t→∞

w(t)/f(t) = 1.

Hence, for large t, Equation (2.35) behaves like

R′′(t)

4β
∼ c

(t+ 1)γ+2
, (2.36)

where c is a constant γ1+γ/2(γ + 1)a1−γ/2. By the property of the Laplace

transform [76], then Laplace transforming Equation (2.36) gives the small s

behaviour

g(s) = L
{
R′′(t)

4β

}
∼ c es E2+γ(s), (2.37)

27



Chapter 2

where the exponential integral [77] is defined as

E2+γ(s) =

∫ ∞
1

e−st

t2+γ
dt.

Note that the expansion of E2+γ(s) for small s depends on whether the index

γ is an integer or not. If γ is an integer, then it gives the logarithmic case:

E2+γ(s) = c0s
1+γ ln(s) + c1 + c2s+ · · ·+ cis

1+γ +O(s2+γ),

where {ci} are constants. If γ is not an integer, then it has the fractional

form:

E2+γ(s) = b0s
1+γ + b1 + b2s+ b3s

2 +O(s3),

where {bi} are constants. These two expansions for E2+γ(s) imply that Equa-

tion (2.9)

p0(s) =
g(s)

1− g(s)

will also have two expansion forms for small s.

Now we expand the function p0(s) for small s. Taking into g(0) = 1/2 and

g′(0) = 1/(4β) (Appendix B) into account, we can write

g(s) =
1

2
− 1

4β
s+ U(s),

where U(s) has either the logarithmic term s1+γ ln(s) or the fractional term

s1+γ depending on whether γ is an integer or not, according to the expansion

of E2+γ(s). If γ is an integer, then

U(s) = v0s
1+γ ln(s) + v1s

2 + · · ·+ vjs
1+γ +O(s2+γ),

where {vi} are constants. If γ is not an integer, then

U(s) = w0s
1+γ + w1s

2 +O(s3),
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where {wi} are constants. Therefore, if we expand p0(s) for small s, it either

gives

p0(s) = 1− 1

β
s+ u0s

1+γ ln(s) + u1s
2 + · · ·+ ujs

1+γ +O(s2+γ)

or

p0(s) = 1− 1

β
s+ l0s

1+γ + l1s
2 +O(s3),

where {ui} and {li} are constants. These two expansions for p0(s) imply

that the zero-crossing interval τ always has the finite mean 〈τ〉 = 1/β, but its

higher order moments do not always exist, indicating that the tail of the zero-

crossing interval τ does not follow the exponential tail. As a consequence, it

implies that the persistence parameter θ does not exist.

It has to be mentioned that the above two expansions for p0(s) are not

the same as the McFadden’s assumption [23]:

p0(s) = 1− 〈τ〉s+
〈τ 2〉

2
s2 − · · · ,

where he assumed that all moments of the zero-crossing interval τ exist and

are finite. It can be shown that given the independence model, the tail now

is of power-law form with the index γ + 2:

p0(s) =
g(s)

1− g(s)
≈ g(s) +O(g(s)2),

then the inverse Laplace transform leads to P0(τ) ∼ τ−(γ+2) for large τ . This

behaviour is consistent with the fact that the existence of the variance σ2

depends on whether γ > 1 or not.
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2.4.3 Probability density functions

This section is to evaluate the probability density function P0(τ) of the zero-

crossing interval τ and its initial value P0(0). The initial behaviour of P0(τ) is

related to the concept of the anti-bunching and bunching, by which is meant

that the zero-crossings are respectively repelled or attracted to one-another

[34], [48].

The initial value P0(0)

The initial value theorem [76] can be used to determine P0(0). That is

lim
τ→0

P0(τ) = lim
s→∞

s p0(s),

where p0(s) is given by Equation (2.9). For the power-law model ργ(t), g(s)

refers to the Laplace transform of Equation (2.35). The theorem requires to

know the large s behaviour of g(s), which is related to the small t behaviour

of Equation (2.35). If we expand Equation (2.35) near the origin for small t,

it yields
R′′(t)

4β
=
a2(γ + 3)

4γ
t− a4(γ2 + 30γ + 65)

48γ2
t3 +O(t5),

implying the leading order of s-term is

g(s) =
a2(γ + 3)

4γ

1

s
− a4(γ2 + 30γ + 65)

8γ2
1

s4
+O(s−6).

Then by the initial value theorem, it gives that

lim
τ→0

P0(τ) = lim
s→∞

s p0(s)

= lim
s→∞

a2(γ + 3) s

4γs2 − a2(γ + 3)

= 0.
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It can be seen that the initial value P0(0) is always zero for all γ. If applying

the initial value theorem twice to P ′0(τ), it yields

lim
τ→0

P ′0(τ) = lim
s→∞

s(sp0(s)− P0(0))

= lim
s→∞

a2(γ + 3)s2

4γs2 − a2(γ + 3)

=
a2(γ + 3)

4γ
> 0.

The analytical result of P ′0(0) indicates that zero-crossings tend to repel by

each other, namely the anti-bunched behaviour, which is similar to that for

the exponentially bounded model ρe(t) given by Equation (2.26). The results

of P0(0) = 0 and P ′0(0) > 0 indicate that the probability density function P0(τ)

will increase from the origin, and this fact is to be verified in the next section.

Probability density functions

This section shows three examples of the probability density function P0(τ)

of the zero-crossing interval τ for the cases γ = 2/5, 1 and 2. The aim is to

find the influence of the index γ on the zero-crossing intervals. Based on

the previous analysis, the cases γ = 2/5 and 1 correspond to that the mean

〈τ〉 of the zero-crossing interval τ is finite, but the variance and higher order

moments are not. As for γ = 2, it represents the mean and variance are

finite, but the third and higher order moments are not.

The numerical method for inverting the Laplace transform p0(s) is still

the Tablot method. Hence, it requires an analytical form for g(s). For γ =

1, the closed form for g(s) is shown below, but for the rest two cases, the

closed forms are not known yet. In order to fill this gap, an approximation

function G(s), which combines the asymptotic large and small behaviours

of L{R′′(t)/(4β)}, will be used. As the constant a is a time scale parameter,

shown in Appendix D, so set a = 1 as before.
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When γ = 1, the Laplace transform of Equation (2.35) is

g(s) =
1

4a

[
2a− 2sCi

(s
a

)
sin
(s
a

)
− s cos

(s
a

)
(π − 2Si

(s
a

)
)
]
, (2.38)

where the cosine-integral [77] is

Ci(x) = ζ + ln(x) +

∫ x

0

cos(q)− 1

q
dq,

where ζ = 0.5772 · · · is the Euler constant [77], and the sine-integral [77] is

Si(x) =

∫ x

0

sin(q)

q
dq.

Inserting Equation (2.38) into Equation (2.9) and expanding p0(s) near the

origin for small s lead to

p0(s) = 1− π

a
s+

1

2a2
(4− 4ζ + π2 + 4 ln(a)− 4 ln(s))s2 +O(s3),

which implies that 〈τ〉 is π/a and that the existence of the second and higher

order moments depends on γ. As γ = 1 is an integer, so the expansion has

the singularity ln(s) term, so the variance does not exist, as illustrated in

Figure 2.2. This expansion justifies the asymptotic analysis in the previous

section.

For the cases γ = 2/5 and 2, the closed forms for g(s) = L{R′′(t)/(4β)} are

not known. Hence, the thesis approximates g(s) by considering its asymp-

totic large and small behaviours. In time t space, the large t behaviour of

R′′(t)/(4β) is given by the Equation (2.36), and the small t behaviour is ob-

tained by expanding Equation (2.35) near the origin:

R′′(t)

4β
=
a2(γ + 3)

4γ
t+O(t3).

Transforming these two behaviours into the Laplace s space, then the ap-

32



Chapter 2

proximation function G(s) to g(s) has the general form

G(s) =
1

Ws2 +Ms+ 2(u(0) +Q)
(u(s) +Q), (2.39)

where W,M and Q are constants, and can be determined from the data of

numerical calculating the Laplace transform of R′′(t)/(4β), so that to furnish

the correct asymptotic form for g(s) at small and large values of s respec-

tively. Note that the fact that G(0) is 1/2 results in p0(0) = 1, which provides

the right normalisation. The function u(s) is given by Equation (2.37). As

s → ∞, the fact that u(s) → 0 ensures that the asymptotic large behaviour

of G(s) is s−2, which agrees with the small t expansion of R′′(t)/(4β).

The probability density function P0(τ) of the zero-crossing interval τ now

is determined by numerically inverting Equation (2.9) by using the Tablot

method. To justify the validity of the approximation function G(s), Figure

2.3 compares the probability density function P0(τ) for the case γ = 1. The

solid-blue curve represents P0(τ) produced by using the closed form g(s)

(2.38), and the dashed-black one is obtained from by using the asymptotic

approximation function G(s) (2.39). It can be seen that this asymptotic ap-

proximation method well matches the analytical result. The precise form of

G(s) is found in Appendix F.

Figure 2.4 shows the probability density function P0(τ) of the zero cross-

ing interval τ for three γ. From top to bottom, it is for γ = 2, 1 and γ = 2/5

respectively. Appendix F shows the approximation function G(s). It can be

seen that the probability density function P0(τ) shows the similar shape for

all γ, and has a single peak off-axis, implying that zero-crossings tend to stay

away from each other. The initial value is zero, which is consistent with the

analysis. The inner figure is plotted on a log-log scale, and the straight line

indicates that the tail of the zero-crossing interval τ is of power-law form

P0(τ) ∼ τ−α, where α = 2 + γ for all examples. This result agrees with the

asymptotic analysis shown in the previous section. These three examples will
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the closed form

the asymptotic approximation
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Figure 2.3: Verification of the approximation function G(s) for the case γ = 1. This

figure compares the probability density function P0(τ), which is obtained from either

the analytical or asymptotic method. The closed form for g(s) (Equation (2.38)) is

used for produced the solid-blue curve, and the approximation function G(s) is for

the dashed-black one.

be compared with the simulation results in the next chapter.

2.5 The power-law model φγ(t)

This section considers zero-crossing intervals of the Gaussian process with

the power-law autocorrelation function φγ(t), which is given by Equation

(2.28). The two power-law models ργ(t) and φγ(t) have the same asymp-

tote t−γ for large t, but it is shown in this section that the full structure of the

power-law autocorrelation function affects the initial behaviour of the proba-

bility density function P0(τ) of the zero-crossing interval τ . This section uses

the similar method to derive statistical properties of the zero-crossing inter-

val τ under the independence assumption, which was introduced in Section

2.2. The analytical results serve as the benchmark, which will be compared

with simulations in Chapter 3. If simulations are not in accordance with
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Figure 2.4: The probability density function P0(τ) of the zero-crossing interval τ

for the Gaussian process with the power-law autocorrelation function ργ(t). These

curves are obtained from the independence assumption by numerical inverting

Equation (2.9). From top to bottom, it corresponds to γ = 2, 1 and 2/5 respec-

tively.
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analytical results, the assumption of independence should be rejected.

2.5.1 Mean and variance of zero-crossing intervals

The mean 〈τ〉 of the zero-crossing interval τ is still π/a, and the variance

σ2 is calculated by Equation (2.12). By using the comparison test [75], it is

found that σ2 is infinite when 0 < γ ≤ 1, and shows the similar shape like

that for the power-law model ργ(t), which is given by Equation (2.27).

2.5.2 The persistence parameter

The persistence parameter θ is calculated by solving the pole of the Laplace

transform of the probability density function in Equation (2.9). That is,

to determine θ, which satisfies the equation 1 − g(−θ) = 0, where g(s) =

L{R′′(t)/(4β)}. For the power-law autocorrelation function φγ(t), it is easy

to obtain that

R′′(t)

4β
=
a

γ

(1 + at/γ)γ(1− γ + (1 + γ)(1 + at/γ)2γ)

(1 + at/γ)2(1 + (1 + at/γ)2γ)2
, (2.40)

which does not converge for negative s values when evaluating the Laplace

transform, implying that θ does not exist. This fact indicates that the tail

of the zero-crossing interval τ is not of exponential form, and higher order

moments of the zero-crossing interval τ are not always finite. This result is

consistent with the infinite variance when 0 < γ ≤ 1. Note that the non-

existence of the persistence parameter θ is similar to that for the power-law

autocorrelation function ργ(t) (2.27).

2.5.3 Probability density functions

This section is to evaluate the probability density function P0(τ) of the zero-

crossing interval τ and its initial value P0(0). The aim is to show that given
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different power-law autocorrelation functions, the initial behaviour P0(0)

shows various forms.

The initial value P0(0)

It has been seen that the initial behaviour of P0(τ) provides information

about zero-crossings, which can be used to determine whether zero-crossings

are anti-bunching or bunching. The initial value theorem [76] is used again

to investigate P0(0). For the power-law model φγ(t), if we expand Equation

(2.40) for small t, it gives that

R′′(t)

4β
=

a

2γ
+
a2(γ2 − 2)

2γ
t+O(t2),

which implies that the large s behaviour of g(s) = L{R′′(t)/(4β)} is

g(s) =
a

2γ

1

s
+
a2(γ2 − 2)

2γ

1

s2
+O(s−3).

Inserting this expansion into the initial value theorem leads to

lim
τ→0

P0(τ) = lim
s→∞

s p0(s)

= lim
s→∞

sg(s)

1− g(s)

=
a

2γ
, (2.41)

which indicates that P0(0) is determined by the time-scale constant a and the

memory index γ. As γ → ∞, then φγ(t) → ρe(t), and the limit of Equation

(2.41) is zero, which is consistent with the initial behaviour shown in Figure

2.1. Equation (2.41) implies that P0(0) is not zero for all finite γ, which

differs from that for the power-law autocorrelation function ργ(t).

It has been seen that zero-crossings whether bunched or anti-bunched
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depend on the sign of P ′0(0), so using the initial value theorem twice yields

lim
τ→0

P ′0(τ) = lim
s→∞

s(sp0(s)− P0(0))

= lim
s→∞

s

(
sg(s)

1− g(s)
− a

2γ

)
=
a2(γ2 − 2)

2γ
. (2.42)

If γ >
√

2, zero-crossings are anti-bunched (repelled by each other), oth-

erwise, they are bunched (attracted to each other). When γ → ∞, Equa-

tion (2.42) is positive, which agrees with that for the exponentially bounded

model ρe(t) shown in Figure 2.1, because φγ(t)→ ρe(t).

We conclude that although the autocorrelation functions ργ(t) and φγ(t)

have the same asymptote t−γ for large t, the probability density function

P0(τ) of the zero-crossing interval τ has different initial behaviours.

The probability density function

This section shows the probability density function P0(τ) of the zero-crossing

interval τ for the power-law autocorrelation function φγ(t). Let γ = 1 and

a = 1 in Equation (2.40), then the Laplace transform of R′′(t)/(4β) is

g(s) =
1

2

(
i e(1−i)ssΓ(0, (1− i)s)− i e(1+i)ssΓ(0, (1 + i)s) + 1

)
,

where the incomplete Gamma function [77] is

Γ(α, x) =

∫ ∞
x

tα−1e−t dt,

and i is the imaginary unit. By using the Tablot method to inverse Equation

(2.9), Figure 2.5 plots the probability density function P0(τ) for the case

γ = 1. It can be seen that the initial value P0(0) is 1/2, which is consistent

with Equation (2.41), and that P ′0(0) < 0 because γ −
√

2 < 0, which is in
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Figure 2.5: This figure shows the probability density function P0(τ) of the zero-

crossing interval τ for the power-law model φγ(t) for the case γ = 1 under the

independence assumption. The initial value P0(0) is 1/2, and the inner log-log plot

indicates that the tail of the zero-crossing interval τ is of power-law form P0(τ) ∼

τ−(γ+2) for large τ .

accord with (2.42). The inset log-log plot shows that the tail is of power-law

form P0(τ) ∼ τ−(γ+2) for large τ . Comparing with Figure 2.4 (b), which is the

case γ = 1 for the power-law model ργ(t), one concludes that the probability

density function P0(τ) of the zero-crossing interval τ is influenced by the

entire structure of the autocorrelation function.

2.6 Summary

Chapter 2 considered zero-crossing intervals of correlated Gaussian processes

under the assumption that successive zero-crossing intervals are statistically

independent. This is a rough approximation though and in the absence of

any other known model for the correlations among zero-crossing intervals,

this is an analytically tractable choice. Based on this argument, results in this

chapter are obtained analytically, and will serve as the benchmark to com-
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pare with the simulations in Chapter 3. Three different models for the au-

tocorrelation functions were investigated. One is the exponentially bounded

type (short-term memory): ρe(t), and the other two are the power-law form

(long-term memory): ργ(t) and φγ(t). If results of simulations in Chapter 3

do not consist with analytical results shown in Chapter 2, the independence

approximation to zero-crossing intervals should be rejected.

For the exponentially bounded autocorrelation function ρe(t), it is found

that the mean 〈τ〉 of the zero-crossing interval τ is π/a, and the variance σ2

is finite. The persistence parameter θ is obtained analytically, which is about

0.37. The existence of θ implies that the tail of the zero-crossing interval τ

is of exponential form P0(τ) ∼ exp(−θτ) for large τ . This fact is justified by

determining the full probability density function of P0(τ), which is plotted in

Figure 2.1.

For the power-law autocorrelation functions ργ(t) and φγ(t), it is found

that the mean 〈τ〉 is π/a; the variance σ2 is finite if γ > 1 but becomes

infinite if γ ≤ 1. The implication of this result is that the persistence value

θ does not exist, and two different methods are used to show this fact. The

asymptotic analysis shows that the expansion of p0(s) for small s consists of

terms either sγ+1 ln(s) or sγ+1 depending on whether or not γ is an integer.

These singularity terms imply that not only the variance could be infinite, but

also higher order moments. The tail of the zero-crossing interval τ follows

P0(τ) ∼ τ−(γ+2) for large τ , which agrees with the fact that σ2 is infinite

when γ ≤ 1. The tail behaviour is justified by plotting the full probability

density functions, which are shown in Figure 2.4 and 2.5. The initial value

of P0(τ) is considered analytically by using the initial value theorem, and it

is found that P0(0) is zero for the model ργ(t), but it is not for φγ(t). This

result implies that the entire structure of the autocorrelation function affects

the initial behaviour of P0(τ).

It has to be noted that results of zero-crossing intervals in this chapter
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are derived from the independence assumption. Hence, in the next chapter,

these results will be compared with the simulation results, so that to examine

the validity of the independence assumption.
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Simulation Results of

Zero-crossing Intervals

3.1 Introduction

Chapter 2 investigated zero-crossing intervals of Gaussian processes, and re-

sults were obtained by assuming that the successive zero-crossing intervals

are statistically independent. The aim of this chapter is to examine the valid-

ity of the independence assumption by comparison with simulations.

This chapter first introduces simulation algorithms, which consist of two

steps. The first step is to generate the Gaussian process with the specific

autocorrelation function, and the second is to locate zero-crossings so that

to determine the lengths of zero-crossing intervals. These two steps can be

coded in the computer software, for example, MatLab. Therefore, the results

of this chapter heavily depend on numerical simulations. The autocorrelation

functions used for simulations are the same as those considered in Chapter

2, including the exponentially bounded autocorrelation function ρe(t), and

two power-law autocorrelation functions ργ(t) and φγ(t).
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3.2 Simulation algorithms

This section reviews the simulation procedures. To simulate the correlated

Gaussian process, the Fourier filtering method [78] is used. A summary of

methods of simulating correlated Gaussian processes can be found in [79].

The algorithm for finding zero-crossings was demonstrated by Smith [68].

3.2.1 Correlated Gaussian processes

To simulate the correlated Gaussian process is the first step. We want to

generate a Gaussian random process with the autocorrelation function ρ(t)

and with a Fourier transform

S(ω) =

∫ ∞
−∞

ρ(t)e−iωt dt.

In signal analysis, S(ω) is called as the spectral density function [80]. In this

section, we briefly outline the Fourier filter method, and more details can be

found in [78], [81] and [82]. In simulations, the processes are discrete, so

the discrete Fourier transform is used [83]:

Fk =
1√
N

N−1∑
j=0

fj exp

(
2πij

N
k

)

where fj is the jth component of the N elements to be transformed, and Fk

are the N transformed numbers. The inverse discrete Fourier transform is

defined as

fj =
1√
N

N−1∑
k=0

Fk exp

(
−2πik

N
j

)
.

When N is large enough, the transformation pair is an accurate approxi-

mation to the continuous Fourier transform. The exact value N used for

simulations in this thesis is seen in the next section.

Now consider a sequence {uj}j=1,2,...,N of uncorrelated Gaussian random
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numbers with zero mean and unit variance, and the autocorrelation function

ρ(t) sampled at N intervals: {ρj}. The Fourier filter method includes the

following three steps:

a. Compute the discrete Fourier transform of {uj}, denoted as {Uk}.

b. Compute the discrete Fourier transform of the sampled autocorrelation

function {ρj}, denoted as {Sk}.

c. Multiply them together

Yk =
√
Sk Uk,

and calculate the discrete inverse Fourier transform of {Yk} to obtain

{yj}, which is the required Gaussian process with the desired autocor-

relation function ρ(t).

Many numerical programming packages provide the built-in functions to

compute the discrete Fourier transform and its inverse, for instance, MatLab

provides the command ‘fft’ and ‘ifft’, which make the Fourier filter method is

simple to code. Given the correlated process {yj}, then we have to locate the

zero-crossing points so that to obtain data for zero-crossing intervals.

3.2.2 Lengths of zero-crossing intervals

We are now in a position that given a correlated series and need to locate its

zero-crossings. It has to mention that the process is discrete in simulations, so

it is necessary to define what is exactly meant by zero-crossings in a discrete

series.
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Zero-crossings in a discrete process

Given a discrete series {yj}, j = 1, 2, . . . , N , first consider a series {hj} de-

fined by

hj =


1 yj ≥ 0

0 yj < 0.

(3.1)

Let dj be an indicator function dj = (hj+1−hj)2. Then dj is 0 or 1. When dj =

1, we say that a zero-crossing occurs at time j. This definition implies that the

length of one zero-crossing interval is determined by the difference between

two successive zero-crossing times and that there cannot have infinite zero-

crossings.

Lengths of zero-crossing intervals

An efficient method to detect the zero-crossings was demonstrated by Smith

[68]. As an illustration of his method, consider the following series:

0.2 −0.2 −0.1 −0.3 0.3 0.1 0.3 −0.1 0.2

The first step is to take the sign of the series:

1 −1 −1 −1 1 1 1 −1 1

Next, create a new array which is the above sign array multiplies one

which the sign array shifts every element to right one place, and ignore the

elements where they do not overlap:
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1 −1 −1 −1 1 1 1 −1 1

×

1 −1 −1 −1 1 1 1 −1 1

=

−1 1 1 −1 1 1 −1 −1

The last step is to subtract one from each element in the above series, and

divide by minus two:

1 0 0 1 0 0 1 1

The corresponding train of zeros and ones gives the locations of the zero

crossings. The Smith’s method is quick to count zero-crossings in very long

streams of data. Once we know locations of the zero-crossing points, with

the help of MatLab’s built-in ‘find’ function, the locations of zero-crossings

can be identified:

1 0 0 1 0 0 1 1

Find

1 4 7 8

Then we can obtain the data for lengths of zero-crossing intervals by

difference:

Lengths of Zero-Crossing interval 3 3 1

MatLab allows operations to be performed on entire vectors, so in gen-

eral, there is no need to calculate in an element-by-element fashion.
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3.3 Simulation results

We simulate the Gaussian process with the specific autocorrelation function

by the Fourier filter method. The first considered autocorrelation function is

ρe(t) =
2 exp(−at)

1 + exp(−2at)
, (3.2)

the second one is

ργ(t) = (1 + a2t2/γ)−γ/2 (3.3)

and the last one is

φγ(t) =
2(1 + a|t|/γ)γ

1 + (1 + a|t|/γ)2γ
. (3.4)

Here γ > 0 is the memory index, and a is the correlation scale-length, which

is taken to be 0.01 in the simulations. The correlation length can be inter-

preted as the resolution of the process: decreasing it allows the process to be

resolved in more detail so that to expect the number of zero-crossings agree

with Rice’s formula (2.25).

For the exponentially bounded model ρe(t) (3.2), the simulations are

formed by averaging 5000 realisations each with length up to 218, which is an

adequate length, because ρe(t) ∼ exp(−t) for large t and has a rapid decay.

The power-law models ργ(t) and φγ(t) given by Equation (3.3) and (3.4)

require longer and more realisations to achieve the accuracy for the mean

of the zero-crossing intervals, predicted by the reciprocal of Rice’s formula

(2.25). For generating longer data arrays, the Fourier transform takes longer

times to evaluate, but it still can be run. When γ > 1, each realisation with

220 is sufficient, but must be increased to 224 when γ ≤ 1. For all considered

γ, the simulated results are averaged over 105 realisations.
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Figure 3.1: The normalised probability density function P0(τ)/a of the zero-crossing

interval τ of the Gaussian process with the exponentially bounded autocorrelation

function ρe(t) (3.2), is plotted as a function of aτ . The inset log-linear plot indicates

that the tail is of the exponential form exp(−Aτ), where A ≈ 0.37. The figure is

simulated with the time-scale length a = 0.01 and averaged over 5000 realisations

with each up to 218.

3.3.1 Simulation results for the exponentially bounded au-

tocorrelation function ρe(t)

Figure 3.1 shows the normalised probability density function P0(τ)/a of the

zero-crossing interval τ as a function of aτ for the Gaussian process with the

exponentially bounded autocorrelation function ρe(t) (3.2). The normalised

probability density function P0(τ)/a is plotted since the correlation length a

is a scale parameter, which is shown in Appendix D. It can be seen that the

probability density function starts from zero, then there is a peak located off-

axis, implying zero-crossings are anti-bunched (repelled by each other). The

inner figure shows the tail behaviour of the zero-crossing interval τ , which

is plotted on a log-linear scale. The straight line shows that the tail is of

exponential form exp(−Aτ), where A is about 0.37. Clearly, the end of the
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tail shows the simulation noise.

Now we compare Figure 3.1 with Figure 2.1 in Chapter 2, which is ob-

tained from the independence assumption. It can be seen that these two

figures are satisfactorily close to each other, implying that the statistical inde-

pendence approximation of zero-crossing intervals is adequate. This approx-

imation also indicates that the correlations of intervals are so small that they

can be neglected. To justify this fact, the correlations among zero-crossing

intervals are shown in the next section in Figure 3.3 (d), and it is found the

correlations are approximated to be zero.

The exponentially bounded autocorrelation function ρe(t) decreases to

zero quickly, implying that two values at different times of the process have

little dependence on each other. Hence, it can be considered as producing

short-term memory between the zero-crossings. As a consequence, it indi-

cates that the independence assumption can be used to approximate corre-

lations of zero-crossing intervals. One implication is that this assumption is

still applicable if the autocorrelation function decays exponentially or even

faster.

3.3.2 Simulation results for the power-law model ργ(t)

This section shows simulation results of zero-crossing intervals of the Gaus-

sian process with the autocorrelation function ργ(t), which is given by Equa-

tion (3.3). Then the results will be compared with that obtained in Section

2.4 of Chapter 2, which were analytically derived under the statistical inde-

pendence assumption. The aim is to check the validation of the statistical

independence approximation.

Probability density functions

Figure 3.2 shows the normalised probability density function P0(τ)/a of the

zero-crossing interval τ as a function of aτ . From top to bottom, it corre-
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sponds to γ = 2, 1 and 2/5 respectively. Now compare Figure 3.2 with Figure

2.4 in Chapter 2, which is obtained from the independence assumption. Fig-

ure 3.2 shows that the probability density functions P0(τ) have the similar

shape and do not have power-law tails, however, Figure 2.4 shows that the

tail of zero-crossing intervals is of the power-law form: P0(τ) ∼ τ−(2+γ) for

large τ .

Figure 3.2 (a) shows that the tail is of the exponential form if γ > 1:

because the inset plot is produced on a log-linear scale, and the straight line

indicates that the tail is exponentially decaying exp(−Aτ), for large τ , where

A is about 0.32.

Figure 3.2 (b) and (c) plot P0(τ)/a against aτ for the cases γ = 1 and

γ = 2/5. This regime 0 < γ ≤ 1 was already considered by Eichner et

al. [39]. They claimed that given a Gaussian process with the power-law

asymptote autocorrelation function ρ(t) ∼ t−γ with 0 < γ ≤ 1, then the tail of

the probability density function of the return intervals follows the stretched

exponential. Specifically, they defined the return intervals as follows. Let

{xi} denote a sequence of time series. An extreme event happens at i, if

xi > q where q is some threshold value. The return interval then is defined as

the time between the successive occurrence of extreme events. The problem

they considered is very similar to the zero-crossing analysis discussed in this

thesis if we put q = 0.
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Figure 3.2: This figure shows the simulation results for the probability density func-

tion P0(τ)/a of the zero-crossing interval τ given the power-law autocorrelation

function ργ(t) (3.3). From top to bottom, it corresponds to γ = 2, 1 and 2/5 respec-

tively. The inner plots show the tail behaviour of the zero-crossing interval τ , which

is different with the independence model shown in Figure 2.4 in Chapter 2. This

figure is obtained by simulating with a = 0.01 and averaging over 105 realisations.
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The inner plots of Figure 3.2 (b) and (c) show − ln(P0(τ)/a) as a function

of ln(aτ) in the log-linear fashion, and straight lines appear. These two plots

seem to support the result of Eichner et al. [39], which claimed that P0(τ) ∼

exp(−τ η), where 0 < η < 1 is a constant. The thesis will argue that in

spite of the apparent agreement with Eichner et al.’s results, this regime 0 <

γ ≤ 1 does not represent a physically realizable Gaussian process because

the power is infinite. Notwithstanding this, a computer ’experiment’ with

this autocorrelation function can be conducted, but it does not correspond

to a realization of a valid Gaussian processes. This issue will be detailed in

Chapter 4.

We conclude that for power-law bounded autocorrelation function ργ(t),

the simulation results of zero-crossing intervals show different behaviours

compared with that derived from the independence assumption shown in

Section 2.4 of Chapter 2. This fact implies that simulations and analytical re-

sults are not consistent. Hence, the independent approximation to successive

zero-crossing intervals should be rejected. Based on this fact, it is natural to

consider and examine whether there exists correlations among zero-crossing

intervals, which will be checked in the following section.

Correlations between zero-crossing intervals

This section calculates the correlations of the zero-crossing intervals. The

aim is to examine the dependence between zero-crossing intervals.

Denote {ri}, i = 1, 2, · · · , N as the lengths of zero-crossing intervals. That

is r1 represents the length of the first zero-crossing interval; r2 is the length of

the second zero-crossing interval, and so on. To study the correlations among

zero-crossing intervals, the autocorrelation function of the zero-crossing in-

tervals is calculated by

c(k) =
1

σ2
ri

(N − k)

N−k∑
i=1

(ri − r)(ri+k − r), (3.5)
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where σ2
ri

and r are the variance and mean of the interval data array {ri}. In

particular, when k = 0, c(0) is unity. This definition is often encountered in

time series analysis, for example [84].

The interpretation of c(k) is as follows. c(1) is the correlation between

the ith and the i+ 1th zero-crossing intervals, c(2) is the correlation between

the ith and the i + 2th zero-crossing intervals, and in general c(k) measures

the correlation between the ith and the i + kth zero-crossing intervals. If

c(k) 6= 0, it means that two intervals are correlated. In simulations, c(k)

is calculated up to the lag 100 as it is sufficient to observe the trend of the

correlations of zero-crossing intervals.

Figure 3.3 shows the correlations of zero-crossing intervals by calculating

Equation (3.5) for γ = 2, 1 and 2/5. It can be seen that the correlations

c(k) show the alternating decaying behaviour, and c(1) is negative for all

considered value γ. The correlation defined by Equation (3.5) is a measure

of the linear dependence between two variables [85]. Hence, the negative

value c(1) implies that a zero-crossing interval and its successive one have the

trend to move in the opposite directions, according to the definition (3.5).

The right panel of Figure 3.3 plots c(k) against k on a log-log scale. The

straight lines indicate that c(k) ∼ k−δ, where δ > 0 is a constant. It is found

that δ is nearly the same as γ. For instance, when γ = 1, δ is about 1.1. The

power-law behaviour of c(k) indicates that zero-crossing intervals are also

long-term correlated, and do not form the Markov chain as was assumed by

McFadden [23].

Note that the value c(k) is small and not significant for all shown exam-

ples. Therefore, it implies that the correlations of zero-crossing intervals will

be contained in the high-order moments of {ri}.

Figure 3.3 (d) shows the correlations of zero-crossing intervals for the ex-

ponentially bounded model ρe(t) (3.2). It can be seen that c(k) is small for all

k > 0, implying that the independence assumption is a valid approximation
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Figure 3.3: This figure shows the correlations of zero-crossing intervals given the

power-law model ργ(t) (3.3). The correlations c(k) are defined by Equation (3.5).

Plots (a)-(c) correspond to γ = 2, 1 and 2/5 respectively. It shows that the corre-

lations have the alternating behaviour and are of power-law decaying form. Plot

(d) shows the correlations of zero-crossing intervals for the exponentially bounded

autocorrelation function ρe(t) (3.2). It shows that the correlations are close to zero.
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to the zero-crossing intervals.

3.3.3 Simulation results for the power-law model φγ(t)

This section shows simulation results for zero-crossing intervals of the Gaus-

sian process with the power-law bounded autocorrelation function φγ(t),

which is given by Equation (3.4). Simulations will be compared with the

analytical results derived from the independent assumption shown in Sec-

tion 2.5 in Chapter 2. Furthermore, it will be seen that although φγ(t) and

ργ(t) have the same power-law asymptote t−γ for large t, the exact structure

of the autocorrelation function has effects on the initial value of the proba-

bility density function P0(τ) of the zero-crossing interval τ .

Chapter 2 showed that the expansion of φγ(t) near the origin is

φγ(t) = 1− a2

2
t2 +

a3

2γ
|t|3 +

a4(5γ2 − 11)

24γ2
t4 +O(|t|5).

Unlike the power-law model ργ(t), which is smooth to all orders, the fourth

derivative of φγ(t) at the origin is singular corresponding to the trace formed

from a realization of the process having a derivative that is continuous but

not differentiable. For this reason, the power-law model φγ(t) is referred as

subfractal, which means zero-crossings could form a cluster [34]. Namely,

the crossings could stay close to each other. To illustrate the behaviour

of cluster, an example from a realisation of simulations is shown in black

squares in Figure 3.4.

Probability density functions

Figure 3.5 shows the normalised probability density functions P0(τ)/a of

zero-crossing intervals as a function of aτ for the power-law model φγ(t)

for the cases γ = 2, 1 and 2/5 from top to bottom respectively. It can be

seen that the shapes of P0(τ) are richer than that for the power-law model
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Figure 3.4: This figure illustrates the clusters formed by the zero-crossings from

a realisation of simulations, shown in the two squares. In each square, the zero-

crossings are close to each other, and there is space between two clusters. The

power-law autocorrelation function φγ(t) is with the index γ = 2.

ργ(t), shown in Figure 3.2. Figure 3.5 indicates that the initial value P0(0)

of the probability density function P0(τ) of the zero-crossing interval τ is far

away from zero for all considered value γ. This fact is different from that for

the power-law model ργ(t) shown in Figure 3.2, where P0(0) is close to zero.

Note that the initial value formula (2.41) in Chapter 2 is derived from the

independence model but approaches to the simulation results, implying that

the behaviour of P ′0(0) can be approximated by Equation (2.42).

The inner plot of Figure 3.5 (a) is shown in a log-linear scale when

γ = 2. The straight line indicates that the tail of the probability density

function P0(τ) of the zero-crossing interval τ is of exponential form P0(τ) ∼

exp(−Aτ), where A is about 0.25. When γ ≤ 1, the subfigures in Figure 3.5

(b) and (c) are produced by plotting − ln(P0(τ)/a) against ln(aτ) in a log-

linear fashion, and straight lines are presented. These results are similar to

that shown for the power-law model ργ(t). Therefore, we conclude that the

initial behaviour P0(0) is influenced by the full structure of the power-law

autocorrelation function, and the simulation results of probability density

functions of zero-crossing intervals show the same tail behaviours.
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Figure 3.5: This figure shows the normalised probability density function P0(τ)/a

of zero-crossing intervals for the power-law model φγ(t). From top to bottom, it

corresponds to γ = 2, 1 and 2/5 respectively. The aim of this figure is to compare

with Figure 3.2, which is obtained for the power-law model ργ(t). The obvious

difference is that the initial value P0(0) is not zero, and P0(τ) shows two shapes.

This figure is simulated with a = 0.01 and averaging over 105 realisations.
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Correlations of zero-crossing intervals

The correlations c(k) of zero-crossing intervals are calculated by using Equa-

tion (3.5). Figure 3.6 shows the behaviour of c(k) for the power-law model

φγ(t). From top to bottom, it corresponds to γ = 2, 1 and 2/5 respectively.

It can be seen that the correlations c(k) still show the alternating behaviour,

and the absolute value c(1) is not the largest. Comparing with Figure 3.3,

it is found that the alternation is more intensive, indicating that the depen-

dence of the zero-crossing intervals is stronger. The right panel of Figure

3.6 is plotted in a log-log scale. The straight lines imply that c(k) ∼ k−δ,

where δ is also shown. It is found that δ is very close to γ, especially when

γ is small. We conclude that there is no obvious difference in behaviours of

the correlations of the zero-crossing intervals for the considered power-law

autocorrelation functions.

3.4 Summary

Simulation results for zero-crossing intervals of Gaussian processes were ob-

tained in this chapter. The aim of this chapter is to test the validity of inde-

pendence assumption between zero-crossing intervals.

For the exponentially bounded autocorrelation function ρe(t), the inde-

pendence assumption can be used to study zero-crossing intervals. Figure 3.1

shows the simulated probability density function of the zero-crossing inter-

val τ . Comparing it with Figure 2.1 in Chapter 2, which is obtained from the

independence assumption, it is found that they match well. Moreover, the

correlations of zero-crossing intervals are shown in Figure 3.3 (d), which are

close to zero, implying that there is less dependence between zero-crossing

intervals. This fact indicates that if the autocorrelation function decays ex-

ponentially or even faster, the independence assumption is adequate.

For the power-law autocorrelation functions ργ(t) and φγ(t), however, the
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Figure 3.6: This figure shows the correlations c(k) of zero-crossing intervals for the

power-law model φγ(t). From top to bottom, it corresponds to γ = 2, 1 and 2/5

respectively. The aim is to compare with Figure 3.3. It is found that correlations

c(k) of the zero-crossings intervals show the similar behaviour for both considered

power-law autocorrelation functions.
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independence assumption is not valid. The correlations c(k) of zero-crossing

intervals are not zero, and behave c(k) ∼ k−δ, where δ is close to γ. This

result was shown in Figure 3.3 and 3.6 respectively.

For considered power-law autocorrelation functions, the simulation re-

sults show that the tail of zero-crossing intervals is of exponential form when

γ > 1. For the regime 0 < γ ≤ 1, the simulation results seem to support

the work of Eichner et al. [39], which claimed that the tail is of stretched

exponential type. This issue will be investigated in the following chapter.

The full structure of the power-law autocorrelation function affects the

initial behaviour of the probability density function P0(τ) of the zero-crossing

interval τ , which is summarised in the following table.

Shape of the density function P0(τ) Initial value P0(0)

ργ(t) 0

φγ(t)

a

2 Γ

a

2 Γ

6= 0

This table indicates that the density function P0(τ) has various shapes

and that the initial value P0(0) is different by changing the power-law auto-

correlation function.
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Zero-crossing Intervals and

Long-term Memory

4.1 Introduction

The work of Eichner et al. [39] was mentioned in Chapter 3, which claimed

that when the autocorrelation function ρ(t) of the Gaussian process has the

asymptotic behaviour ρ(t) ∼ t−γ for large t, then the tail of return intervals

is of a stretched exponential P0(τ) ∼ exp(−τ γ) for 0 < γ < 1. This chapter

first investigates this behaviour by considering the spectral density function

of the autocorrelation function and the effect of the finite simulation length

data. Taking these two factors into account, the chapter analyses properties

of zero-crossing intervals given a cut-off power-law autocorrelation function.

By using the cut-off model, it shows that the tail of the zero-crossing interval

density function is of the exponential tail, not the stretched exponential tail.

4.2 Spectral density function

Eichner et al. did not specify the exact form of the power-law autocorrela-

tion function used for their simulation, but the asymptotic behaviour of the
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autocorrelation function is ρ(t) ∼ t−γ for large t, which agrees with that used

in this thesis. This section considers the spectral density function of the auto-

correlation function to show that the simulation technique employed is not

allowable for the 0 < γ ≤ 1 case.

The power spectral density function is defined as the Fourier transform of

the autocorrelation function (Bendat [55], and Davenport and Root [80])

S(ω) =

∫ ∞
−∞

ρ(t)e−iωt dt.

Then the inverse transform relation gives

ρ(t) =
1

2π

∫ ∞
−∞

S(ω)eiωt dω.

This Fourier transformation pair is valid as written if

∫ ∞
−∞
|ρ(t)| dt <∞.

More properties of S(ω) can be found in [55] and [80].

Now consider the spectral density function S(ω) of the power-law auto-

correlation function ργ(t) = (1 + a2t2/γ)−γ/2. Evaluating the Fourier trans-

form of ργ(t) gives that

S(ω) =
π1/22(3−γ)/2γ(γ+1)/4

Γ(γ/2)a(γ+1)/2
|ω|

γ−1
2 K(1−γ)/2(a

−1γ
1
2 |ω|),

where Kv(x) is the modified Bessel function [77]. The spectral density func-

tion S(ω) is positive for all ω, but is not finite at ω = 0 for 0 < γ ≤ 1. This

fact implies that the process is not physically realisable, since it has infinite

power. The similar analysis can also be obtained for the power-law auto-

correlation function φγ(t), since φγ(t) has the same asymptotic behaviour for

large t.

On the other hand, the simulated Gaussian processes with the power-law
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bounded autocorrelation functions are affected by the finite length of the

data stream. The finite capacity or storage of the digital computer implies

that, for autocorrelation functions with power-law tails, there will always be

some truncation in the correlations [86]. This effectively introduces a cut-

off or outer scale to the tail of the autocorrelation function. In other words,

the power-law type correlations do not preserve for large correlation times.

Hence, this fact indicates that in simulations, there exists an outer scale or a

cut-off term embedded in power-law autocorrelation functions.

In response to these two points, the thesis claims the stretched expo-

nential obtained by Eichner et al. [39] is not reasonable, because in the first

place the simulated Gaussian processes with power-law autocorrelation func-

tions for the regime 0 < γ ≤ 1 are not physically realisable in practice, since

it has infinite power, which is shown above. However, a computer ’experi-

ment’ with this autocorrelation function can be conducted, but it does not

correspond to a realization of a valid Gaussian processes. These two points

indicate that a cut-off term to the pure power-law autocorrelation function is

needed, so as to truncate the infinite power and the effect of the finite data

length. This means that the spectral density function of a cut-off power-law

autocorrelation function will be finite for all −∞ < ω < ∞. As a result of

this analysis, the cut-off power-law autocorrelation function is considered in

the following section. Given the cut-off autocorrelation function, it will be

seen that there is not the stretched exponential tail, but the exponential tail.

4.3 The cut-off power-law autocorrelation func-

tion

Taking the infinite power and the finite storage of digital computers into

consideration, this section evaluates a power-law bounded autocorrelation

function but with a cut-off term. Then it can be shown that the spectral
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density function is finite for all ω. It has to be noticed that the aim of the cut-

off term is to make the process have the finite power and does not interfere

with the power-law type correlations. This can be achieved by constructing

an autocorrelation function that is effectively power-law in an intermediate

regime (of arbitrary length), but contains an exponential cut-off in the far

tail. Such a autocorrelation model, that is continuous, is

ρb(t) = (1 + a2t2/γ)−γ/2 exp

(
− t

2

b2

)
, (4.1)

where b > 0. To determine where the exponential behaviour takes in, we can

solve the inequality

(
1 +

a2t2

γ

)−γ/2
≥ exp

(
− t

2

b2

)
. (4.2)

This is a transcendental inequality, and can be solved by using the Newton-

Raphson method [83]. The solution t = tc is where ρb(t) transits from the

power-law type to the exponential behaviour and depends on the value a,

γ and b. Although ρb(t) ∼ exp(−t2) for large t and is not t−γ, the larger

the parameter b is, the more power-law type correlations are preserved. It

will be seen later that even though the cut-off power-law autocorrelation

function ρb(t) is of Gaussian decay ∼ exp(−t2), but the tail of the probability

density function P0(τ) of the zero-crossing interval τ is still of exponential

form. If t < b, ρb(t) provides an intermediate power-law regime; but if

t � b, ρb(t) ensures convergence of the power spectrum for all ω and γ > 0.

The cut-off model ρb(t) shows the similar behaviour like the pure power-law

autocorrelation function ργ(t) for sufficiently large values of b. It will be seen

later that if b = 1000, results of the persistence exponent, either obtained

from the power-law bounded autocorrelation function or from the power-

law cut-off case, are closed to each other.

In simulations, the cut-off term can be of any type. This chapter assumes
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that the cut-off term is exp(−t2/b2), not the pure exponential term exp(−t/b),

because Equation (4.1) has the property that its expansion near the origin is

ρb(t) = 1−
(
a2

2
+

1

b2

)
t2 +

(
a4

8
+

1

2b4
+

a2

2b2
+
a4

4γ

)
t4 +O(t6),

which implies that Rice’s formula (2.25) is valid, and is close to that for the

power-law model ργ(t), whose the crossing rate β is a/π. For the cut-off

model (4.1), the zero-crossing rate is

β =
1

π

√
a2 +

2

b2
, (4.3)

which means that β is unaffected if b �
√

2/a. The following sections show

the impact of the cut-off term on the persistence parameter, the variance and

the probability density function of zero-crossing intervals.

The simulation method is the same as introduced in the previous chapter.

In each realisation of the simulations, the correlation length a is 0.01, because

of the same reason introduced in Chapter 3. Three different b values are used

for comparison, which are b = 250, b = 500 and b = 1000 respectively. When

analysing the independence model, the same parameters for a and b are used.

The persistence parameter

The persistence parameter θ is of interest in the thesis. Given the cut-off

power-law autocorrelation function ρb(t) (4.1), there are two ways to deter-

mine θ, which has been seen in Chapter 2 and 3. The first way is to calcu-

late the pole of the zero-crossing interval probability density function in the

Laplace space, according to the independence model (2.9) in Chapter 2. The

other way is to obtain the persistence parameter θ from the simulation data,

which was used in Chapter 3. This section first compares the persistence

parameter θ obtained from these two separated methods, and the aim is to

show the validity of the independence model for the zero-crossing intervals
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Figure 4.1: This figure shows the normalised persistence parameter θ/a as a func-

tion of γ for the cut-off power-law autocorrelation function ρb(t) (4.1). The persis-

tence parameter θ is determined from either the simulation data (dashed lines) or

solving the pole of Equation (2.9) (solid lines) in Laplace space. It can be seen that

there is a satisfactory agreement between the simulation results and the solutions

from the independence model.

of the Gaussian process with the cut-off model ρb(t).

The constant a is a scale parameter to the persistence parameter θ, which

is shown in Appendix D, hence, Figure 4.1 shows the behaviour of the persis-

tence parameter θ/a against γ for different values of b, which are calculated

from either the independence model or the simulation data. It can be seen

that the value of θ decreases with increasing b. For each b, the persistence

parameter curves show a similar shape and increase to a constant value as γ

increases. The agreement between the solid lines (the independence model)

and the dashed lines (the simulation data) implies that the independence

model of zero-crossing intervals can describe the asymptotic properties of

the simulation results.

Now we compare the persistence parameter θ determined from the simu-

66



Chapter 4

lation data for two autocorrelation functions. One is the pure power-law au-

tocorrelation function ργ(t) (3.3), and the other one is the cut-off power-law

autocorrelation function ρb(t) (4.1). The purpose is to show how θ behaves

when 0 < γ ≤ 1. If θ exists, it implies that the tail of the zero-crossing inter-

vals is of exponential form. Figure 4.2 shows the persistence parameter θ/a

as a function of γ for both models. The three black curves are with b = 250

(square), b = 500 (diamond) and b = 1000 (down-triangle) respectively. The

red curve (circle) represents θ obtained from the power-law autocorrelation

function ργ(t). It is found that θ moves towards to the red curve with increas-

ing values of b. It can be seen that for b = 1000, θ is nearly identical to that

of the power-law model ργ(t) when γ > 1. This fact means that simulation

results are affected by the cut-off term in each realisation.

One important implication shown in Figure 4.2 is that the persistence

parameter θ exists and is finite when 0 < γ ≤ 1 for the cut-off power-law

autocorrelation function ρb(t). The existence of θ means that the tail of the

probability density function P0(τ) of the zero-crossing interval τ is of expo-

nential form, not the stretched exponential form. This argument is different

to that shown by Eichner et al. [39]. Note that for the pure power-law auto-

correlation function ργ(t), the analysis of the spectral density function in the

previous section shows that the process has infinite power and is not allow-

able for the cases 0 < γ ≤ 1. Hence, Figure 4.2 only shows the valid regime

of γ > 1 for the model ργ(t). The persistence parameter θ for the power-

law autocorrelation function φγ(t) is also plotted, and it shows the similar

behaviour like that for ργ(t), but θ is smaller.
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Figure 4.2: This figure compares the simulation results of the persistence parameter

θ given the power-law autocorrelation function ργ(t) (red) and the cut-off power-

law model ρb(t) (black). Three different b values are compared. For the largest b =

1000, the black down-triangle is nearly the same to the red curve when γ > 1, and

extends to where γ < 1. The two vertical lines are for γ = 1 and γ = 2/5 respectively.

This figure indicates that for the regime of 0 < γ ≤ 1, the tail of the probability

density function P0(τ) of the zero-crossing interval τ is of exponential form finally,

not a stretched exponential type. The persistence parameter θ for another power-law

model φγ(t) is shown by the blue curve.

Variance of the zero-crossing interval τ

The previous section indicates that the tail of the zero-crossing interval τ

is of exponential form, and the independence model could approximate the

asymptotic behaviour of the simulation data. This section determines the

variance σ2 of the zero-crossing interval τ for the cut-off power-law model

ρb(t), and the aim is to compare with that for the pure power-law autocorre-

lation function ργ(t), which shows in Chapter 2 that the variance σ2 is infinite
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Figure 4.3: This figure plots the normalised variance σ2/〈τ〉2 of the zero-crossing

intervals as a function of γ for the cut-off power-law autocorrelation function ρb(t).

It can be seen that all variances are finite for γ > 0, and this fact agrees with the

existence of the persistence parameter θ shown in Figure 4.2.

when γ ≤ 1. The normalised variance is considered again:

σ2

〈τ〉2
= 2β

∫ ∞
0

R(t) dt,

where here the zero-crossing rate β is given by Equation (4.3), and

R(t) =
2

π
arcsin(ρb(t)).

Figure 4.3 shows the behaviour of the normalized variance σ2/〈τ〉2 of

the zero-crossing intervals as a function of γ for the cut-off model ρb(t) with

different values of b. It can be seen that all curves show the similar behaviour,

and the most important fact is that σ2/〈τ〉2 exists for all γ > 0. Hence, Figure

4.3 implies that the second moment of the zero-crossing interval τ exists and

is finite, which is consistent with the existence of the persistence parameter

θ shown in Figure 4.2. This result is different from that for the pure power-
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law autocorrelation function ργ(t), which is shown in Figure 2.2 in Chapter

2, where σ2/〈τ〉2 diverges at γ ≤ 1. One can conclude that the cut-off term

makes the variance σ2 become finite, which is reasonable in practice.

Probability density functions

Figure 4.4 shows the simulation results about the normalised probability

density function P0(τ)/a of the zero-crossing interval τ as a function of aτ

for the cut-off power-law model ρb(t). The shown examples are with the

same index γ = 2/5. The blue-dashed curve is for b = 500, and the red-solid

one is for b = 1000. It can be seen that the probability density functions

have the similar shape but the peak for the case b = 1000 is slightly higher

than the other one. Now compare this figure with Figure 3.2 (c) in Chapter

3, it is found that the shown probability density functions are close to each

other. This fact implies that there is no obvious effect of the cut-off term

on the shape of the probability density functions of the zero-crossing inter-

vals for large b. The difference, however, is that the inner plot of Figure 4.4

shows that the tail of the zero-crossing interval τ is now of exponential form

P0(τ) ∼ exp(−Aτ), not the stretched exponential type, and the value of A is

consistent with Figure 4.1 and 4.2.
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Figure 4.4: This figure shows the simulation results about the normalised probabil-

ity density function P0(τ)/a of the zero-crossing interval τ as a function of aτ for

the cut-off power-law model ρb(t), which is given by Equation (4.1). The value b

is 500 and 1000 respectively. Here a = 0.01 and the index γ is 2/5 for both cases.

Comparing this with Figure 3.2 (c) in Chapter 3, we can see that the shape of the

density function curves is close to each other, especially for large b, but the obvious

difference is that the tail is of exponential form, not the stretched exponential type,

which is claimed by Eichner et al. [39]. This figure is simulated by averaging over

105 realisations, each of length 220.

4.4 Summary

This chapter first investigated results obtained by Eichner et al. [39], which

showed that the tail of the probability density function P0(τ) of the zero-

crossing interval τ is of the stretched exponential form for Gaussian pro-

cesses with the power-law asymptote autocorrelation function ρ(t) ∼ t−γ

given 0 < γ ≤ 1. Taking the spectral density function of the autocorrelation

function and the finite storage of the digital computer into consideration,

this chapter claimed that the stretched exponential is not valid, because at

the first place the process is not physically realisable, since it has infinite
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power for the regime 0 < γ ≤ 1. Furthermore, the finite storage of the

digital computer leads to the power-law correlations cannot sustain in the

simulated processes for large correlated time lags, implying that there will

always be some truncation in the correlations. These two facts imply that

a cut-off power-law autocorrelation function is required in order to trun-

cate the infinite power and the effect of the finite data length. Based on

these two facts, the chapter secondly considered the case that the power-law

bounded autocorrelation function ργ(t) provided with a cut-off term, namely,

ρb(t), which is given by Equation (4.1). The cut-off model ρb(t) is effectively

power-law in an intermediate regime (of arbitrary length), but contains an

exponential cut-off in the far tail. The position t = tc where ρb(t) transits

from the power-law behaviour into the exponential type is obtained by solv-

ing the inequality (4.2) and depends on the value of b. Although ρb(t) has a

different decaying form exp(−t2) for large t, the larger the parameter b is, the

more power-law type correlations are preserved. Notice that the cut-off term

can be of any type. The cut-off power-law autocorrelation model ρb(t) was

considered here because its second derivative near the origin is finite, which

ensures the zero-crossing rate β exists and is finite. On the other hand, the

spectral density function of ρb(t) is always finite for all γ. Furthermore, the

cut-off model ρb(t) retains the same power-law correlations for large b, which

agrees with ργ(t). This fact implies that we could investigate the influence of

power-law bounded autocorrelations on the tail of zero-crossing intervals as

long as the value b is large.

This chapter then shows that the zero-crossing intervals of the Gaussian

process with the cut-off power-law autocorrelation function ρb(t) can be de-

termined from either the independence model or the simulation data by com-

paring the persistence parameter θ, which was shown in Figure 4.1. Then the

chapter compared θ derived from two models: one is the power-law auto-

correlation function ργ(t), and the other one is ρb(t), which was shown in
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Figure 4.2. It is found that for large b, θ agrees with each other. Specifically,

the more importance is that θ exists for the regime 0 < γ ≤ 1 for the cut-off

model ρb(t), implying that the tail of the zero-crossing interval τ is of expo-

nential form. This property is verified by plotting the full probability density

function P0(τ) of the zero-crossing interval τ , which was shown in Figure

4.4. The inner log-linear plot indicates that P0(τ) ∼ exp(−Aτ), where A is

consistent with the persistence parameter θ.
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Zero-Crossing Intervals of

Symmetric Stable Processes

5.1 Introduction

The Gaussian distribution is a special case in the class of stable distributions.

Therefore, it is natural to investigate the zero-crossing problem of the non-

Gaussian stable process. Specifically, this chapter considers the zero-crossing

intervals of the symmetric stable process because it will be seen later that

the symmetric stable random variable has a simple characteristic function,

which enables integrals to be performed. The first section of this chapter

reviews a joint characteristic function introduced by Hopcraft and Jakeman

[15], which is based on the single symmetric stable variable. With this joint

characteristic function, it enables the clipped autocorrelation function R(t)

and the zero-crossing rate β to be generalised to the non-Gaussian stable

case. As the Gaussian variable belongs to the stable variables, the similar

method introduced in previous chapters can be used to explore the properties

of the zero-crossing interval τ .

The symmetric stable process with the proposed joint characteristic func-

tion requires the coherence function, which plays the similar role to the au-
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tocorrelation function of the Gaussian process, but is not the autocorrelation

function, which will be seen later. The autocorrelation function defines the

way in which the points of the Gaussian process are related to the other

points, so does the coherence function of the symmetric stable process. We

have already seen that the structure of the autocorrelation function affects

the properties of zero-crossing intervals. Therefore, it is expected that the

forms of the coherence function will influence zero-crossing intervals too.

It has been seen that the autocorrelation function has the expansion near

the origin ρ(t) = 1−a2t2/2+O(t3), which ensures that the zero-crossing rate

β exists. Similarly, the expansion of the coherence function is also satisfied a

particular structure near the origin, which is discussed later.

This chapter investigates zero-crossing intervals of the symmetric stable

process with the exponential coherence function

ϕe(t) = exp(−at), (5.1)

where a > 0 is a time-scale parameter. Equation (5.1) decays to zero rapidly.

Hence, it can be considered as a short-term memory function with the char-

acteristic time-scale a.

Simulation of stable random variables is of a complex problem since

they are lack of analytic expressions for their probability density functions.

Hence, the problem of simulating sequences of stable random variables can

be considered as another research area, and this thesis will not simulate non-

independence stable random processes because of time limit for a PhD thesis.

So the independence approximation is used to derive statistical properties of

zero-crossing intervals, and the methodology is inherited from the Gaussian

case shown in Chapter 2. Although the thesis does not consider simulations

for the stable processes, the analytical results of zero-crossing intervals can

be treated as an attempt and preparations for future work.
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5.2 Zero-crossing formulae of symmetric stable

processes

This section reviews a bivariate symmetric stable distribution introduced by

Hopcraft and Jakeman [15]. With this joint distribution, it is possible to

explore properties of zero-crossing intervals for the symmetric stable process.

The definition of symmetric stable distributions is introduced first. Then

follows the bivariate symmetric stable distribution. Finally, two formulae for

the clipped autocorrelation function R(t) and the zero-crossing rate β are

given. These two formulae are obtained by using the similar methods used

in Chapter 2 for the Gaussian case.

5.2.1 Symmetric stable distributions

A random variable X belongs to the symmetric stable class of distributions if

its characteristic function can be written as [42]:

C(µ) =

∫ ∞
−∞

m(x) exp(iµx) dx

= exp(−A|µ|ν) (5.2)

where m(x) is the probability density function of X. The parameter A >

0 is a scale factor which measures the dispersion of the distribution. The

exponent ν ∈ (0, 2] is called the stable index and describes heaviness of the

tail. If ν takes values other than in this range, the probability density function

m(x) can be negative, so does not correspond to a valid probability density

function. For all ν ∈ (0, 2], m(x) is defined on −∞ < x <∞.

The stable index ν is the most important parameter for the symmetric

stable random variables because ν specifies the asymptotic behaviour ofm(x)
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for large x:

m(x) ∼


1

|x|1+ν 0 < ν < 2,

exp(−x2) ν = 2.

The probability density function m(x) is obtained by Fourier inversion of

Equation (5.2):

m(x) =
1

2π

∫ ∞
−∞

exp(−ixµ)C(µ) dµ.

For example, evaluating the above integral for ν = 1 and 2 yields two simple

and special cases of the symmetric stable distributions, namely the Cauchy

(ν = 1) distribution and the Gaussian (ν = 2) distribution. The Cauchy

probability density function is

mC(x) =
A

π(x2 + A2)
,

and the Gaussian probability density function is

mG(x) =
1√
4πA

exp(− x
2

4A
).

If rewrite mG(x), we can verify that this Gaussian distribution has zero mean

and variance 2A, whereas neither mean nor variance exists for the Cauchy

distribution.

A summary for known closed forms m(x) is given in [48]. For a fuller

review on the general stable distributions, key works include that Lévy [41],

Samorodnitsky and Taqqu [42], and Zolotarev [44].

5.2.2 A bivariate distribution

This section reviews a special joint symmetric stable distribution, which was

first proposed by Hopcraft and Jakeman [15]. With this distribution, it en-

ables the clipped autocorrelation function R(t) and the zero-crossing rate β

for the symmetric stable process to be calculated.
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Let {x(t), t ≥ 0} be a stationary Gaussian process with zero mean and

unit variance. Then the probability density function of the single variable

x = x(t′) is

f1(x) =
1√
2π

e−x
2/2, (5.3)

and its characteristic function is obtained by Fourier transforming Equation

(5.3):

C1(λ) =

∫ ∞
−∞

eiλxf1(x) dx = exp(−1

2
λ2), (5.4)

which has the same type as (5.2) with A = 1/2.

Now consider the bivariate probability density function x and y = x(t′+t):

f2(x, y) =
1√

(2π)2(1− ρ2)
exp

[
−x

2 + y2 − 2xyρ(t)

2(1− ρ2)

]
, (5.5)

where ρ(t) = 〈x(t′)x(t′ + t)〉 is the autocorrelation function of the Gaussian

process. With minor calculation, Equation (5.5) can be rewritten as a product

of two single variable density functions (5.3):

f2(x, y) =
1√

1− ρ2
f1

(
y − ρx√

1− ρ2

)
f1(x). (5.6)

Similarly, we can rewrite the joint characteristic function of x and y as a

product of two single variable characteristic functions: Fourier transforming

Equation (5.5) gives

C2(λ, µ; ρ) =

∫ ∞
−∞

∫ ∞
−∞

ei(λx+µy)f2(x, y) dx dy

= exp

[
−1

2
(λ2 + 2ρλµ+ µ2)

]
(5.7)

= C1(λ+ µρ)C1(µ
√

1− ρ2). (5.8)

Clearly, the common feature of Equation (5.6) and (5.8) is that they are

expressed as the product of two single variable functions. The above calcu-
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lation is for the Gaussian case ν = 2, but it is possible to generalise into the

non-Gaussian stable variables.

Let Equation (5.4) be replaced by (5.2), and replace ρ(t) with ϕ(t) (to

distinguish from the autocorrelation function in Gaussian case), then (5.8)

changes into

C2(λ, µ;ϕ) = exp [−A(|λ+ ϕµ|ν + (1− ϕν)|µ|ν)] , (5.9)

where ϕ(t) will be defined presently. C2(λ, µ;ϕ) is the characteristic function

of a bivariate stable distribution, and the general expression for the charac-

teristic function of multivariate stable distributions can be found in [42] and

[44]. The thesis concentrates on the two dimensional bivariate case which is

appropriate for modeling two successive zero-crossing points. On the other

hand, Equation (5.9) satisfies the conditions for any joint-characteristic func-

tions:

C2(λ, 0;ϕ) = C(λ) (5.10)

C2(0, µ;ϕ) = C(µ) (5.11)

C2(λ, µ; 0) = C(λ)C(µ) (5.12)

C2(λ, µ; 1) = C(λ+ µ). (5.13)

(5.10) and (5.11) show that the single-variable characteristic function can

be obtained from the joint characteristic function. (5.12) and (5.13) indi-

cate that the process is ‘uncorrelated’ or fully ‘correlated’ at two different

times. Therefore, these equations indicate that ϕ(t) plays the similar role to

the autocorrelation function ρ(t), whose value lies between [0, 1]. The func-

tion ϕ(t), however, is not the autocorrelation function ρ(t) appearing in the

Gaussian process, and its meaning is defined by a suitable function later.

The derivation of the joint density function (5.6) in fact uses the Markov
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property because one can derive the same result by considering the condi-

tional joint probability density function. Hence, it implies the structure is

time ordered. Notice that the thesis considers the zero-crossing problem

with the finite zero-crossing rate β. If the process has the Markov property,

then β is infinite [87]. The underlying process can be made invariant to

time-ordering by a linear transformation.

Let (X, Y ) denote the joint random variable with the characteristic func-

tion (5.9). Consider the random variable pair (W,Z) given by the linear

transformation W = cX + dY and Z = eX + fY where

c = (1 + ϕν)−1/ν(1− ϕ2(1− ϕν)−1/ν)

d = (1 + ϕν)−1/ν(1− ϕν)−1/νϕ

e = (1 + ϕν)−1/ν(1− (1− ϕν)−1/ν)ϕ

f = (1 + ϕν)−1/ν(1− ϕν)−1/ν .

Then the joint characteristic function of (W,Z) is

CWZ(ω, γ;ϕ) = 〈exp(−i(ωW + γZ))〉

= 〈exp[i((cω + eγ)X + (dω + fγ)Y )]〉

= exp

[
− A

1 + ϕν
(|ω + ϕγ|ν + |γ + ϕω|ν)

]
.

In order to make it consistent with the symbols used in Equation (5.9), we

write CWZ(ω, γ;ϕ) as

C2(λ, µ;ϕ) = exp

[
− A

1 + ϕν
(|λ+ ϕµ|ν + |µ+ ϕλ|ν)

]
, (5.14)

which also satisfies the conditions (5.10)-(5.13). Equation (5.14) is symmet-

ric to the interchange of λ and µ, and is insensitive to the time ordering.

Let ν = 1 and ϕ = 1, then Equation (5.14) reduces to C2(λ, µ; 1) =
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exp[−A|λ + µ|], which is the joint characteristic function for the bivariate

Cauchy distribution [88]. If set ν = 2 in (5.14) and compare with the joint-

Gaussian density function (5.7), then we can identify the autocorrelation

function as

ρ(t) =
2ϕ(t)

1 + ϕ2(t)
, (5.15)

which indicates that ϕ(t) is not equal to ρ(t), but is nevertheless a measure

of the coherence between values adopted by the process at different times. If

t = 0, then ρ(t) = 1, so ϕ(0) = 1. The autocorrelation function ρ(t) tends

to zero as t → ∞, as does ϕ(t). Hopcraft and Jakeman called ϕ(t) as the

‘coherence function’. The exact meaning in terms of a fractional structure

function can be found in Appendix C.

The coherence function

The coherence function ϕ(t) and the autocorrelation function ρ(t) both mea-

sure the relations between values of the underlying process at different times.

It must emphasise that ϕ(t) is not ρ(t), but they are related to each other by

Equation (5.15). The coherence function ϕ(t) can be of any type that falls

between [0, 1] and tends to zero for large t. When it comes to the zero-

crossing analysis, however, the further restriction on the coherence function

is required, which is shown in the following section.

5.2.3 Generalisation of Rice’s formula

Hopcraft and Jakeman [15] evaluated Equation (2.22) and (2.23) in Chapter

2 by inverting (5.14), and showed that if ϕ(t) has the expansion near the

origin

ϕ(t) = 1− at+O(t2),
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then the zero-crossing rate

β =
4aν

π2

∫ 1

0

dp
pν−1

(1 + pν)2
ln

∣∣∣∣1 + p

1− p

∣∣∣∣ . (5.16)

We can examine the validity of Equation (5.16) by comparing it with Rice’s

formula (2.25). Putting the expansions of ϕ(t) and ρ(t) near the origin

ϕ(t) = 1− at+O(t2)

ρ(t) = 1− ρ′′(0)

2
t2 +O(t3)

into Equation (5.15) gives that

ϕ(t) ≈ 1− at+O(t2) ≈ 1−
√
−ρ′′(0) t+O(t2).

Hence, one identifies the constant a for the Gaussian case. With ν = 2 and

a =
√
−ρ′′(0), Equation (5.16) yields

β =
1

π

√
−ρ′′(0),

which is in accord with Rice’s formula (2.25).

5.2.4 Generalization of the Van Vleck theorem

To calculate the clipped autocorrelation function R(t) for the symmetric sta-

ble process, the bivariate characteristic function C2(λ, µ) (5.14) plays an im-

portant role, because its Fourier inverse defines the joint probability density

function. Using the similar method which obtains the Van Vleck theorem

(2.16) in Chapter 2, Hopcraft and Jakeman [15] showed that

R(t) =
4[ϕ(t)]ν

π2

∫ ∞
0

pν−1

1 + [ϕ(t)]νpν
ln

(
1 + p

|1− p|

)
dp, (5.17)
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which depends on the coherence function ϕ(t) and the stable index ν. When

ν = 2 and ρ = 2ϕ/(1+ϕ2), Equation (5.14) reduces to the joint characteristic

function of the Gaussian process, and then (5.17) becomes the Van Vleck

theorem or the arcsine law (2.16).

The integral (5.17) has no closed forms except for the cases ν = 1 and

ν = 1/2. When ν = 1, Equation (5.17) is simplified:

R(t) =
4ϕ(t)

π2

∫ ∞
0

1

1 + ϕp
ln

(
1 + p

|1− p|

)
dp.

The above integral can be rearranged as follows:

R(t) =
4

π2

∫ ∞
0

ln

(
1 + p

|1− p|

)
d ln(1 + ϕp).

Then evaluating the p-integral from [0, 1] and [1,∞] respectively, one can

obtain that

R(t) =
4

π2

∫ ∞
0

log(1 + ϕp)
2

p2 − 1
dp.

Then it yields that

R(t) = 2− 2 Φ(ϕ−2, 2, 2−1)

π2ϕ
− 8 log(ϕ) coth−1(ϕ)

π2
, (5.18)

where

Φ(z, a, b) =
∞∑
k=0

zk

(k + b)a

is the Lerch transcendent function [77].

When ν = 1/2, Equation (5.17) reduces to

R(t) =
4
√
ϕ

π2

∫ ∞
0

1

1 +
√
ϕ
√
p

1
√
p

ln

(
1 + p

|1− p|

)
dp.

The above integral can be rearranged as follows:

R(t) =
8

π2

∫ ∞
0

ln

(
1 + p

|1− p|

)
d ln(1 +

√
ϕ
√
p).
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We can simplify the above integral by considering the p-integral from [0, 1]

and [1,∞], which gives that

R(t) =
8

π2

∫ ∞
0

ln(1 +
√
ϕ
√
p)

2

p2 − 1
dp.

Then we can write the integral as

R(t) =
2

π2

(
π(π − 4 arccot(

√
ϕ)) +

Φ(ϕ2, 2, 2−1)

ϕ
+ 4 arccoth(ϕ) ln(ϕ)

)
,

where Φ(z, a, b) is the Lerch transcendent function defined above.

5.3 Mean and variance of the zero-crossing in-

terval τ

Two Equations (5.16) and (5.17) are used to investigate statistical properties

of zero-crossing intervals of symmetric stable processes. The following sec-

tions consider zero-crossing intervals given the exponential coherence func-

tion ϕe(t) = exp(−at), which has the expansion 1−at+O(t2) near the origin,

ensuring that the zero-crossing rate β is finite. The exponential coherence

function ϕe(t) is considered as it represents a short-term memory process,

which is already seen for the Gaussian case. In practical problem, such a

process is often found in river flows [58], ecology [59] and telecommunica-

tion networks [60]. Clearly, the autocorrelation function ρe(t) in Chapter 2

is generated from ϕe(t) by Equation (5.15).

We first evaluate the mean 〈τ〉 and variance σ2 of the zero-crossing inter-

val τ , as these two basic quantities provide information about the average

length and fluctuations of zero-crossing intervals.

84



Chapter 5

0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

12

14

Ν

a XΤ\
Π

Figure 5.1: The normalised mean a〈τ〉/π of the zero-crossing interval τ is plotted

as a function of the stable index ν. It can be seen that the Gaussian case (ν = 2) is

the smallest compared with the non-Gaussian stable cases (0 < ν < 2), and a〈τ〉/π

diverges as the stable index ν tends to 0.

5.3.1 Mean 〈τ〉

It has been seen in Chapter 2 that 〈τ〉 is the reciprocal of the zero-crossing

rate β: 〈τ〉 = 1/β, where here β is given by Equation (5.16), which does not

depend on the coherence function, and is a function of the stable index ν and

the time-scale parameter a. Since Equation (5.16) exists for all 0 < ν ≤ 2,

then it implies that 〈τ〉 is finite. For the Gaussian case, β = a/π, and then 〈τ〉

is π/a. This fact suggests that an appropriate way to plot 〈τ〉 is to normalise

it to the Gaussian value. If ν = 1, the zero-crossing rate is 2a/π2. For the

others ν, the rate has to be evaluated numerically. If ν decreases to 0, the

normalised mean behaves as

a〈τ〉
π
→ 4

πν
, ν → 0.

This behaviour indicates that for the non-Gaussian stable cases (0 < ν < 2),

〈τ〉 is infinite with vanishing ν.
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Figure 5.1 shows the normalized mean a〈τ〉/π as a function of the stable

index ν. It can be seen that a〈τ〉/π is the smallest for Gaussian case, and

increases to infinity as ν → 0. One implication is that the number of zero-

crossings of the Gaussian process is more than that for the non-Gaussian sta-

ble process in a similar interval of time. This property is caused by the heavy

tails of the symmetric stable distributions, which means that the underlying

process spends longer times away from the zero level and takes more time

before returning. Since the returning time increases, it leads to the length

between two successive zero-crossings becomes large, as seen in Figure 5.1.

5.3.2 Variance σ2

The variance σ2 of the zero-crossing interval τ is given by Equation (2.12):

σ2 =
2

β

∫ ∞
0

R(t) dt,

where here R(t) is given by (5.17). Unlike the mean 〈τ〉, σ2 depends not

only on the stable index ν, but also on the coherence function ϕ(t). To eval-

uate fluctuations of the zero-crossing intervals, the normalised variance is

considered again:
σ2

〈τ〉2
= 2β

∫ ∞
0

R(t) dt, (5.19)

which measures the fluctuations of the lengths of the zero-crossing intervals.

If σ2/〈τ 2〉 < 1, then the fluctuations are considered to be weak, implying that

the zero-crossing intervals are not dispersed significantly far away from its

mean. Inserting ϕe(t) (5.1) into Equation (5.19), then we have

σ2

〈τ〉2
=

8β

π2

∫ ∞
0

{∫ ∞
0

pν−1 ln

(
1 + p

|1− p|

)
1

eaνt + pν
dp

}
dt,

which is an improper double integral that cannot be evaluated analytically.

Hence, the Composite Simpson Quadrature method [83] is used for the nu-
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merical solution. By letting u = aνt in the above integral, the constant a can

be scaled out, so a is set to be 1 for calculation simplicity in the following

section.

Figure 5.2 shows the behaviour of the normalised variance σ2/〈τ〉2 as a

function of the stable index ν. It can be seen that σ2/〈τ〉2 is less than 1 for all

ν, implying that the fluctuations of the lengths of the zero-crossing intervals

are ‘weak’. Furthermore, σ2/〈τ〉2 shows nearly a straight line, implying that

it is approximately independent of the stable index ν. The accuracy of the

numerical method can be examined by considering the behaviour of σ2/〈τ〉2

when ν → 0. For the exponential coherence function ϕe(t), given by (5.1),

the clipped autocorrelation function R(t) is

R(t) =
4

π2

∫ ∞
0

pν−1

eaνt + pν
ln

1 + p

|1− p|
dp. (5.20)

Then integrating from zero to infinity gives that

∫ ∞
0

R(t) dt =
4

π2

∫ ∞
0

pν−1 ln
1 + p

|1− p|
dp

∫ ∞
0

1

eaνt + pν
dt.

Evaluating the t-integral yields

∫ ∞
0

R(t) dt =
4

π2aν

∫ ∞
0

ln
1 + p

|1− p|
ln(1 + pν)

dp

p
. (5.21)

Let ν → 0, then Equation (5.21) has the limit

∫ ∞
0

R(t) dt→ 2 ln 2

aν

and the zero-crossing rate β (5.16) becomes

β → 1

4
aν. (5.22)
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Figure 5.2: The normalised variance σ2/〈τ〉2 of the zero-crossing interval τ for the

exponential coherence function ϕe(t), which is given by Equation (5.1), is plotted as

a function of the stable index ν. It can be seen that σ2/〈τ〉2 is less than 1 and shows

less dependence on the stable index ν.

Now evaluating the normalised variance σ2/〈τ〉2 gives

σ2

〈τ〉2
→ ln 2 ≈ 0.7

as ν → 0, which is consistent with Figure 5.2.

5.4 The persistence parameter

To determine the persistence parameter θ, we need to evaluate the pole in

Equation (2.9) in Chapter 2: 1 − g(−θ) = 0, where g(s) = L{R′′(t)/(4β)}.

In general, the closed forms for g(s) are unknown, since the Laplace trans-

form of L{R′′(t)/(4β)} is complex: differentiating twice with respect to t in

Equation (5.17), it gives that

R′′(t) =
4 ν ϕν−2

π2

∫ ∞
0

U +W

(1 + ϕνpν)3
pν−1 ln

(
1 + p

|1− p|

)
dp,
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where

U = (ν − 1− pν(1 + ν)ϕν)(ϕ′)2

W = (1 + pνϕν)ϕϕ′′.

Hence, the general expression for g(s) is obtained by Laplace transforming

R′′(t)/(4β):

g(s) =
ν

βπ2

∫ ∞
0

e−st dt

∫ ∞
0

(U +W )ϕν−2

(1 + ϕνpν)3
pν−1 ln

(
1 + p

|1− p|

)
dp.

However, for the exponential coherence function ϕe(t) = exp(−at), g(s) can

be obtained analytically for the cases ν = 1 and ν = 1/2. These two analytical

expressions serve to benchmark the general numerical evaluations.

Closed-forms for g(s)

This section evaluates the Laplace transform of R′′(t)/(4β) if the symmetric

stable process is with the exponential coherence function ϕe(t). When ν = 1,

Equation (5.20) is

R(t) =
4

π2

∫ ∞
0

1

eat + p
ln

(
1 + p

|1− p|

)
dp. (5.23)

Differentiating (5.23) twice with respect to t gives that

R′′(t) =
4

π2
a2eat

∫ ∞
0

eat − p
(eat + p)3

ln

(
1 + p

|1− p|

)
dp.

For simplicity setting c = exp(at) and integrating by parts with respect to p,

we obtain that

R′′(t) =
4

π2
a2c

[∫ ∞
0

2

(p+ c)(p2 − 1)
dp− c

∫ ∞
0

2

(p+ c)2(p2 − 1)
dp

]
.
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Then integrating with respect to p gives that

R′′(t) =
4a2

π2

at coth(at)− 1

sinh(at)
,

which can also obtain by differentiating twice with respect to t in Equation

(5.18). Now Laplace transforming R′′(t)/(4β) yields

g(s) =
2

a

[
a2 + s2

a(a− s)2
− s

2a2
ψ′(

s− a
2a

)

]

where ψ(·) is the logarithmic derivative of the gamma function [77]

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
.

When ν = 1/2, we can obtain g(s) by the similar method, details for which

is shown in Appendix E. As for other stable indices, no analytical forms have

been identified. It is shown in Appendix D that a is a scale parameter to θ,

and θ can be rescaled by dividing a, hence, set a = 1 without loss of gen-

erality. These two analytical forms for g(s) are used to find the persistence

parameter θ, which is shown in the following section.

The persistence parameter θ for general ν

The persistence parameter θ is the pole of Equation (2.9) in Chapter 2, as

seen before. In other words, θ is the root of Equation 1 − g(−θ) = 0, where

g(s) = L{R′′(t)/(4β)}. By using Newton-Raphson method [83], we obtain

the following results. When ν = 1, it gives θ = 0.246; when ν = 1/2, θ

is 0.145. These two solutions are served to verify the numerical method:

the Composite Simpson Quadrature method [83] is used for evaluating the

general cases ν. Figure 5.3 shows the scaled persistence parameter θ/a as

a function of the stable index ν given the exponential coherence function

ϕe(t). For all ν, θ exists and is finite. It can be seen that the curve increases
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Figure 5.3: The scaled persistence parameter θ/a is plotted against the stable index

ν for the exponential coherence function ϕe(t), which is given by Equation (5.1).

This figure implies that θ exists for all 0 < ν ≤ 2. When ν = 2 (Gaussian case), θ is

the largest, indicating that the tail is less extended. For general ν, θ is determined by

the numerical method. The square at ν = 1 and the circle at ν = 1/2 are obtained

from the exact results.

monotonically from zero with increasing ν, implying the tail becomes steep.

The square and the circle represent the ν = 1 and ν = 1/2 cases, respec-

tively, which are obtained from the exact results. When ν = 2, which cor-

responds to the Gaussian case, the persistence parameter θ is approximated

to be 0.37. This result is consistent with that shown in Chapter 2 and 3 for

the exponential autocorrelation function ρe(t), where θ is directly evaluated

from the Gaussian case. This fact implies that the autocorrelation function

ρe(t) is identified by the coherence function ϕe(t), and for the case ν = 2, if

the persistence parameter θ exists, then it can be obtained from either the

non-Gaussian stable or directly the Gaussian case.
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5.5 Probability density functions

The two closed forms for g(s) = L{R′′(t)/(4β)} for the cases ν = 1 and

ν = 1/2 are used to obtain the probability density function P0(τ) of the

zero-crossing interval τ . We numerically invert the Laplace transform p0(s),

which is given by Equation (2.9), through the Tablot method that is used

many times in the previous chapters.

Figure 5.4 shows the probability density functions P0(τ) of zero-crossing

intervals of the symmetric stable process with the exponential coherence

function ϕe(t). Figure 5.4 (a) is for ν = 1 and (b) plots for ν = 1/2. It can

be seen that all the probability density functions show the similar shape, and

there is a maximum value for both curves. Furthermore, all curves emerge

from the origin, and increase towards a peak, implying that zero-crossings

are anti-bunched (repelled by each other).

To justify the persistence parameter θ is consistent with the tail behaviour

of the zero-crossing intervals, the numerical data is plotted on the log-linear

scale. All inner figures show a straight line, indicating that the probability

density function P0(τ) is of exponential form exp(−Aτ) for large τ . To be ex-

act, the value A is 0.246 for ν = 1, and is 0.145 for ν = 1/2. These two slopes

are the same as persistence exponents (the square and the circle) shown in

Figure 5.3. This result confirms that the persistence parameter θ can be de-

termined by the large τ behaviour of the probability density function P0(τ)

of the zero-crossing interval τ . Although the persistence parameter and the

probability density functions are evaluated in different ways, their asymp-

totic values agree nevertheless.

Recall that Figure 2.1 in Chapter 2 shows the probability density function

P0(τ) of the zero-crossing interval τ with the exponentially bounded autocor-

relation function ρe(t), which is generated from the exponential coherence

function ϕe(t). Now we compare these two figures 5.4 and 2.1. It can be

seen that all the probability density functions of the zero-crossing interval τ
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Figure 5.4: The probability density function P0(τ) of the zero-crossing interval τ

for the exponential coherence function ϕe(t) with the stable index ν = 1 (a) and

ν = 1/2 (b). P0(τ) is obtained by using the Tablot method. The inner figures are

plotted on a log-linear scale, and the straight lines imply that the tail of the zero-

crossing interval τ is exponential. The slopes agree with the persistence parameter θ

shown in Figure 5.3, which is marked by the square (ν = 1) and the circle (ν = 1/2).
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show the similar behaviour, and the tail is of exponential form. However,

for the non-Gaussian case, the index of the tail is smaller than that of the

Gaussian case, implying that the tail of the zero-crossing interval τ is much

extended. This is as expected since the probability density functions for the

non-Gaussian stable random variables have long power-law tails.

5.6 Summary

This chapter has considered statistical properties of zero-crossing intervals of

the symmetric stable process with the exponential coherence function ϕe(t),

which is given by Equation (5.1). Results are obtained by assuming that

the successive zero-crossing intervals are independent. Although the thesis

does not consider simulations for the stable processes, the analytical results

of zero-crossing intervals can be treated as an attempt and preparations for

future work.

It is found that the mean 〈τ〉 of the zero-crossing interval τ does not

depend on the coherence functions, but on the stable index ν, which is shown

in Figure 5.1. For the Gaussian case, 〈τ〉 is the smallest, but for the general

ν, 〈τ〉 increases as ν → 0, implying that the underlying symmetric stable

process spends much more time away from the zero level. The normalised

variance σ2/〈τ〉2 is determined by Equation (5.19), which is related to the

coherence functions. Figure 5.2 shows that the fluctuations of σ2/〈τ〉2 are

weak and approximately invariant with the stable index ν.

The persistence parameter θ is obtained by solving the equation for the

pole of the Laplace transform of the zero-crossing interval probability density

function: 1−g(−θ) = 0, where g(s) = L{R′′(t)/(4β)}. For the cases ν = 1 and

ν = 1/2, the closed forms for g(s) are obtained, which enable θ to be solved

analytically. The solutions for θ provide a check for the numerical evaluations

for other values of ν. The full behaviours of the persistence parameter θ are
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plotted in Figure 5.3, which shows that θ is the largest for the Gaussian case,

and agrees with the analytical result.

The probability density function P0(τ) of the zero-crossing interval τ for

selected stable indices ν was also obtained, which is shown in Figure 5.4. All

the probability density functions show the similar shape, and the tail of the

zero-crossing interval τ is of exponential form P0(τ) ∼ exp(−Aτ), where A

is identical to the persistence parameter θ.
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Zero-crossing Intervals and

Power-law Coherence Functions

6.1 Introduction

Zero-crossing intervals of the symmetric stable process with the exponen-

tial coherence function ϕe(t) = exp(−at) were considered in Chapter 5. This

chapter continues the same problem, but with the power-law coherence func-

tion

ϕγ(t) = (1 + at/γ)−γ, (6.1)

and the cut-off power-law coherence function

ϕb(t) = (1 + at/γ)−γ exp

(
− t
b

)
. (6.2)

ϕγ(t) is considered because it has the power-law asymptote ϕγ(t) ∼ t−γ for

large t, hence Equation (6.1) implies that the underlying process has long-

term coherence, similar to the Gaussian process with the power-law autocor-

relation function, whose zero-crossing intervals show various properties. The

cut-off model ϕb(t) is considered because we have already seen the effects of

the cut-off term on the zero-crossing intervals for the Gaussian case. These
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two coherence functions are motivated by results of zero-crossing intervals

of Gaussian processes.

The main purpose of this chapter is to derive statistical properties of zero-

crossing intervals given the independence assumption since it is the only

theory which is available. It has been seen that Gaussian variables are a

special case in the stable random variables. Hence, it is expected to see that

given the stable process with the power-law decaying coherence function

and the independent assumption, the tail of the probability density function

P0(τ) of the zero-crossing interval τ is of power-law type and the persistence

exponent θ does not exist. These two results will be shown in this chapter

later. Due to the difficulty of simulating stable processes, which was stated

in Chapter 5, this chapter still does not compare with the simulation results.

However, if there exists the simulated stable process with the power-law

type coherence function; and based on the fact that the Gaussian random

variable belongs to the class of stable random variables, it is expected to

obtain the analogous simulation results for the non-Gaussian stable cases.

Namely, the simulation results show that the independence approximation

between successive zero-crossing intervals is not satisfied, and the tail of

the probability density function P0(τ) of the zero-crossing interval τ is of

exponential from, which were already met in the Gaussian case with the

power-law autocorrelation functions shown in Chapter 3.

The chapter first shows the results of zero-crossing intervals for the power

law model ϕγ(t), then for the cut-off model ϕb(t). Quantities to be calculated

include the mean 〈τ〉, the variance σ2, the probability density function P0(τ)

of the zero-crossing interval τ , and the persistence parameter θ when exists.
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6.2 Power-law coherence function ϕγ(t)

The expansion of ϕγ(t), which is given by Equation (6.1), near the origin is

1− at+O(t2). This fact confirms the existence of the zero-crossing rate β for

the symmetric stable process, introduced in Chapter 5. Appendix D shows

that the constant a is a scale parameter, so in the following section, set a = 1

for computational simplicity.

6.2.1 Mean and variance of the zero-crossing interval τ

For the symmetric stable process, the zero-crossing rate β is given by Equa-

tion (5.16), which does not depend on the coherence function. Hence, the

mean 〈τ〉 of the zero-crossing interval τ is 1/β, which is shown in Figure 5.1

in Chapter 5.

The variance σ2 is given by Equation (2.12), and the normalised variance

is considered again

σ2

〈τ〉2
=

8β

π2

∫ ∞
0

pν−1 ln

(
1 + p

|1− p|

)
dp

∫ ∞
0

1

(1 + at/γ)γν + pν
dt, (6.3)

which does not converge if γν ≤ 1. Figure 6.1 shows the behaviour of σ2/〈τ〉2

as a function of ν, which is obtained by numerically evaluating Equation

(6.3). The Composite Simpson Quadrature method [83] is used. Two ex-

amples for γ are illustrated. All shown curves display similar behaviours,

and σ2/〈τ〉2 is finite when ν > 1/γ. For small γ, which is characterised the

memory of the power-law coherence function ϕγ(t), σ2/〈τ〉2 shows strong

fluctuations.

Comparing with Figure 5.2 in Chapter 5, which shows the behaviour of

σ2/〈τ〉2 for the exponential coherence function ϕe(t) = exp(−at), it can be

seen that the fluctuations of the lengths of zero-crossing intervals are much

stronger for the power-law coherence function ϕγ(t) as γν → 1.
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Figure 6.1: This figure plots the normalised variance σ2/〈τ〉2 for the power-law

coherence function ϕγ(t) (6.1). Two examples are illustrated. The red-solid one is

γ = 2, and the dashed-blue is for γ = 1. The normalised variances lie above each

other with decreasing γ, implying fluctuations of the lengths of intervals become

stronger as γ declines. The two vertical lines are threshold values when the variance

becomes infinite at γν ≤ 1.

6.2.2 The persistence parameter θ

The persistence parameter θ is obtained by solving the pole of Equation

(2.9) in Chapter 2. That is, to determine θ satisfying 1 − g(−θ) = 0, where

g(s) = L{R′′(t)/(4β)}. Inserting ϕγ(t) into Equation (5.17) in Chapter 5 and

differentiating twice with respective to t, the large t behaviour of R′′(t) is

obtained by expanding the integrand around p = 1, which gives that

R′′(t) ∼ 1

(1 + at/γ)2+γν
, t→∞. (6.4)

By using the similar analysis introduced in Chapter 2, the behaviour (6.4)

implies that there does not exist the persistence parameter θ. Furthermore, it

means that the tail of the probability density function of the zero-crossing in-
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terval τ is of power-law type: P0(τ) ∼ τ−(2+γν) for large τ . The tail behaviour

involves the stable index ν, which is inherited from the stable distribution,

and the index γ appearing in the power-law coherence function ϕγ(t); the

factor 2 ensures that the mean 〈τ〉 of the zero-crossing interval τ exists. This

result is consistent with the fact that if γν > 1, the variance is finite, which

agrees with Figure 6.1.

6.2.3 The initial value P0(0)

This section determines the initial value P0(0), as it is related to the be-

haviour of zero-crossings (anti-bunched or bunched), which we have already

seen in Chapter 2. The initial value theorem [76]

lim
τ→0

P0(τ) = lim
s→∞

s p0(s)

is used again, but the calculation is slightly complex for the non-Gaussian

stable case. To simplify the analysis in the following sections, we first intro-

duce a class of integrals that frequently occurs, which is defined through:

Jm,n =

∫ ∞
0

qmν−1

(1 + qν)n
ln

1 + q

|1− q|
dq, (6.5)

where the stable index 0 < ν ≤ 2, and both m ≥ 1 and n ≥ 1 are integers.

For example, the zero crossing β (Equation (5.16)) can be written as

β =
2aν

π2
J1,2.

There is a degree of degeneracy in the integrals for special combinations of

m and n. The integral Jm,n can be simplified as follows. First write

Jm,n =

∫ 1

0

qmν−1

(1 + qν)n
ln

1 + q

1− q
dq +

∫ ∞
1

qmν−1

(1 + qν)n
ln
q + 1

q − 1
dq.
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The substitution q = 1/q in the second integral of the right hand side allows

the integral to be performed yielding

Jm,n =

∫ 1

0

qmν−1(1− qnν−2mν)
(1 + qν)n

ln
1 + q

1− q
dq,

which has the following relationship:

Jm,2m = 2Jm,2m+1,

Jm,2m+1 = Jm+1,2m+1,

Jm+1,2(m−1) = Jm,2m−1.

Now consider properties of the Laplace transform. The large s behaviour

of L{R′′(t)} corresponds to the small t behaviour of R′′(t). Thus writing

R′′(t) = k0 + k1t+ k2t
2 + · · · ,

then

L{R′′(t)} =
k0
s

+
k1
s2

+
2k2
s3

+ · · · ,

where

k0 =
4(aν)2

π2

{
2J1,3 − (1− 1

γν
)J1,2

}
and

k1 =
a3ν2

γ

(
−4J1,3 − 2γν(J1,4 − 2J2,4) +

(
1− 1

γν

)
(2J1,2 + γν(J1,3 − J2,3))

)

with the integral Jm,n is defined by Equation (6.5). Therefore the expansion

for g(s) is of the form

g(s) =
g0
s

+
g1
s2

+ · · · .
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By the initial-value theorem and g(s) = L{R′′(t)/4β}, we can obtain that

P0(0) =
aν

2

[
2
J1,3
J1,2
−
(

1− 1

γν

)]
.

Hence, the initial value P0(0) has the simple form

P0(0) =
a

2γ
. (6.6)

This result shows that the value of P0(0) is non-zero for the power-law coher-

ence function ϕγ(t). Note that let γ → ∞, then ϕγ(t) → ϕe(t) = exp(−at),

and the initial value P0(0)→ 0, which agrees with Figure 5.4 in Chapter 5.

Using the initial value theorem twice, we can obtain P ′0(0) as well:

P ′0(0) = lim
s→∞

s
(
s
(g0
s

+
g1
s2

+ · · ·
)
− P0(0)

)
= g1.

That is

P ′0(0) = (aν)2
(

2J2,4 − J1,4
J1,2

− 1

(γν)2

)
. (6.7)

The sign of P ′0(0) is determined by terms in parentheses in (6.7). It is found

that if γν > 1.4, then P ′0(0) is positive, which indicates that zero-crossings

are anti-bunched (repelled by each other). Otherwise, P ′0(0) is negative, im-

plying zero-crossings are bunched (attracted to each other). The behaviour

of P ′0(0) indicates that P0(0) is non-zero, which agrees with Equation (6.6).

The combinations of γν for which makes P ′0(0) positive are plotted in Figure

6.2. The shaded region shows that P ′0(0) is positive, and two examples of

combinations of γν are also shown. The red-dashed line is for γν = 3, which

represents the positive sign of P ′0(0), and the blue dashed is for γν = 1, which

is an example for the negative P ′0(0).

To check this analysis, two examples of the probability density functions

P0(τ) of zero-crossing intervals are shown in the following section. In Figure

6.2, the star is for the combination γ = 2 and ν = 3/2 and the triangle is for

102



Chapter 6

óó

**

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

1�Γ

Ν

Figure 6.2: This figure plots the sign of P ′0(0), which is determined by combinations

of γν. The value P ′0(0) indicates the behaviour of zero-crossings. The shaded region

represents for P ′0(0) > 0. The red dashed line is for γν = 3, and the blue dashed

is for γν = 1. The symbols are the locations of examples of the probability density

functions: the star is for γ = 2 and ν = 3/2 and the triangle is for γ = 2 and ν = 1/2.

γ = 2 and ν = 1/2. In these two cases, it is expected that the initial value

P0(0) is determined by Equation (6.6), and one of the probability density

functions P0(τ) increases from the origin, and the other one decreases.

6.2.4 Probability density functions

This section shows the probability density function P0(τ) of the zero-crossing

interval τ for the symmetric stable process with the power-law coherence

function ϕγ(t). The closed forms for g(s) = L{R′′(t)/(4β)} are not easy to

determine, so the approximated function G(s) to g(s) is used, which has

already been seen in Chapter 2. The exact forms for G(s) are shown in Ap-

pendix F. All probability density functions are obtained from the numerical
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inversion of the Laplace transform with the independence assumption.

The first example is with the combination value γν = 1, where γ = 2

and ν = 1/2. Since γν = 1, it implies that the variance and high-order

moments of the zero-crossing interval τ are infinite. The probability density

function P0(τ) is shown in Figure 6.3 (a). It can be seen that P0(τ) begins

with the initial value P0(0) = a/(2γ) and monotonically decays to zero. This

behaviour implies that zero-crossings are bunched. The behaviour P ′0(0) < 0

can be traced back to the blue-dashed line in Figure 6.2, which is marked

by the triangle. The location of the triangle indicates that the value P ′0(0) is

negative, implying that P0(τ) decreases from the origin, in agreement with

Figure 6.3. The inset plot of Figure 6.3 (a) is on a double-logarithmic scale,

indicating that the tail is of power-law form P0(τ) ∼ τ−(2+γν) for large τ ,

which is consistent with what was deduced in Section 6.2.2.

The second example is the combination γν = 3, for which the variance

of the zero-crossing interval τ is finite, but the high-order moments are not.

Figure 6.3 (b) shows the probability density function P0(τ) of zero-crossing

intervals with γ = 2 and ν = 3/2. It can be seen that the initial value P0(0)

is still P0(0) = a/(2γ), however, there is an obvious difference compared

with the γν = 1 case: P0(τ) increases from the initial value, implying that

P ′0(0) is positive. This behaviour refers the red-dashed line in Figure 6.2.

The star represents for γ = 2 and ν = 3/2, and its location means that P ′0(0)

is positive, which is in agreement with Figure 6.3 (b). The inner double-

logarithmic plot in Figure 6.3 (b) confirms that the tail of the zero-crossing

interval τ is also of power-law form P0(τ) ∼ τ−(2+γν) for large τ .

6.3 Power-law cut-off coherence function ϕb(t)

The cut-off power-law autocorrelation function ρb(t) was used to investigate

zero-crossing intervals of Gaussian processes in Chapter 4. This section is to
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Figure 6.3: This figure shows the probability density function P0(τ) of the zero-

crossing interval τ for the power-law coherence function ϕγ(t). Figure (a) is for

γν = 1 with γ = 2 and ν = 1/2, and (b) is for γν = 3 with γ = 2 and ν = 3/2. All

density functions have the initial value a/(2γ), but the sign of P ′0(0) is different. The

behaviour of P ′0(0) agrees with Figure 6.2, where the triangle denotes the case with

γ = 2 and ν = 1/2, and the star represents the case with γ = 2 and ν = 3/2.

105



Chapter 6

complete the cut-off power-law theory corresponding to the power-law co-

herence function. That is to show the behaviour of the zero-crossing intervals

if the symmetric stable process has the cut-off power-law coherence function

ϕb(t), given by Equation (6.2), which has the expansion near the origin

ϕb(t) = 1−
(
a+

1

b

)
t+O(t2).

As a result, it implies that the zero-crossing rate changes into

β =
2ν

π2

(
a+

1

b

)
J1,2, (6.8)

where J1,2 is the integral given by Equation (6.5). Clearly, Equation 6.8 is

similar to the original zero-crossing rate for large b.

The following sections evaluate relevant properties of the zero-crossing

intervals. The choice of the parameter b > 0 is arbitrary. The main aim of

this section is to show that with the cut-off term exp(−t/b), the probability

density function P0(τ) of zero-crossing intervals is not of power-law form,

and the persistence parameter θ exists. Hence, two examples for b = 10 and

b = 5 are considered in the following sections, as it is sufficient to compare

the effect of b on the zero-crossing intervals.

6.3.1 Mean and variance of zero-crossing intervals

Mean 〈τ〉

The mean 〈τ〉 of the zero-crossing interval τ is still 1/β, where now the zero-

crossing rate β is given by Equation (6.8). Comparing with the usual zero-

crossing rate given by Equation (5.16), the difference is that the scale param-

eter changes from a to a + 1/b. Hence, the behaviour of 〈τ〉 is little affected

and is similar to that shown in Figure 5.1 in Chapter 5.
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Variance σ2

The normalised variance is considered again, which now is given as

σ2

〈τ〉2
=

8β

π2

∫ ∞
0

pν−1 ln

(
1 + p

|1− p|

)
dp

∫ ∞
0

1

(1 + at/γ)γνeνt/b + pν
dt. (6.9)

The above integral does converge for all γ and ν as can be demonstrated by

using the comparison test:

∫ ∞
0

1

(1 + at/γ)γνeνt/b + pν
dt <

∫ ∞
0

1

eνt/b + pν
dt,

where the right-hand side integral is finite. Comparing Equation (6.9) with

Equation (6.3), which is the normalised variance for the power-law coher-

ence model ϕγ(t), the difference is that the variance is always finite and exists

for the cut-off coherence model ϕb(t).

The normalised variance (Equation (6.9)) is evaluated numerically, and

Figure 6.4 shows the normalised variance σ2/〈τ〉2 as a function of the stable

index ν for the cut-off power-law coherence model ϕb(t). The two blue curves

are for the case γ = 1, where b = 10 is the dashed one, and b = 5 is the solid

one; and the two red curves stand for the case γ = 2 with b = 10 (dashed)

and b = 5 (solid).

These four curves show the similar behaviour, which decreases from small

ν and eventually becomes insensitive to for large values of ν. For fixed γ, the

variance is large for large b. For fixed b, the variance is large for small γ.

These properties imply that both γ and b have effects on the variance of the

zero-crossing interval τ .

Now compare Figure 6.4 with Figure 6.1. The red curve in Figure 6.1 is

for the pure power-law coherence function ϕγ(t) with γ = 2, which shows

that the variance is infinite at ν = 1/2, but the two red curves for γ = 2 in

Figure 6.4 indicate that it is finite for all ν. The similar result is obtained

for the case γ = 1. These facts confirm that the cut-off term affects the
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Figure 6.4: This figure plots the normalised variance σ2/〈τ〉2 of zero-crossing in-

tervals against the stable index ν for the cut-off power-law coherence model ϕb(t).

The two red curves are for the case γ = 2 with b = 10 (dashed) and b = 5 (solid);

and the two blue ones are for the case γ = 1 with b = 10 (dashed) and b = 5

(solid). Comparing with Figure 6.1, the aim is to show that the variance is finite

if the power-law coherence model ϕγ(t) has the exponential cut-off term exp(−t/b)

even b is large.

properties of zero-crossing intervals, and its variance becomes a finite value

for arbitrary γ and ν.

6.3.2 The persistence parameter θ

The persistence parameter θ is of interest in this thesis. It has been seen that

given the independence assumption and the power-law coherence function

ϕγ(t), there does not exist θ. This fact, however, is not true for the cut-off

power-law coherence function ϕb(t).

To determine the persistence parameter θ, we need to evaluate the pole

in Equation (2.9) in Chapter 2: 1− g(−θ) = 0, where g(s) = L{R′′(t)/(4β)}.

However, the closed forms for g(s) are not known in general, so the Laplace

transform has to be evaluated numerically. Note that for the cut-off power-
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law coherence function ϕb(t), the zero-crossing rate is given by Equation

(6.8), then the Composite Simpson Quadrature method [83] is used again.

Figure 6.5 shows the persistence parameter θ as a function of ν for selected γ

and b. It has to be mentioned that now there exists θ, which is different from

that for the power-law coherence function ϕγ(t). The existence of θ leads to

the tail of the zero-crossing interval τ changing to the exponential form.

The shown values for γ and b can be divided into two groups. The first

group (blue) includes (γ = 1, b = 10) and (γ = 1, b = 5), and the second

group (red) is (γ = 2, b = 10) and (γ = 2, b = 5). It can be seen that all curves

start from zero, and increase as the stable index ν increases. Each group

shows that the persistence parameter θ depends on the value b. If γ is fixed,

then θ becomes small when b is large. This fact means that the exponential

tail is less significant, and the power-law tail takes over, as shown in the

previous section. If b is fixed, then θ increases as γ increases. This fact is

because (1 + at/γ)−γ tends to exp(−at) as γ → ∞. The symbols are used to

indicate the tail index of the zero-crossing interval τ in the following section.
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Figure 6.5: This figure plots the persistence parameter θ against the stable index

ν for the cut-off power-law coherence function ϕb(t). Four examples are shown,

and all curves start from zero. The aim of this figure is to demonstrate that given

the cut-off term exp(−t/b), θ is finite and exists for all ν and γ. This behaviour is

different from that for the pure power-law coherence model ϕγ(t), for which θ does

not exist.

6.3.3 The probability density function

This section shows the probability density function P0(τ) of the zero-crossing

interval τ for the symmetric stable process with the cut-off power-law coher-

ence function ϕb(t). The density functions are obtained by using the Tal-

bot method as before. The closed forms for g(s) = L{R′′(t)/(4β)} are not

known in general, so the asymptotic analysis is used to obtain the approxi-

mation function G(s) to g(s), which combines the large and small behaviour

of L{R′′(t)/(4β)}, as seen in Chapter 2. By using the similar analysis in-

troduced in the previous section, it is found that for the cut-off power-law

coherence model ϕb(t), we have

R′′(t) ∼ e−νt/b

(1 + at/γ)γν
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for large t. Note that this large t behaviour is different from that for the

power-law model ϕγ(t), which is shown in Equation (6.4). Furthermore, this

asymptotic behaviour indicates that the tail of the zero-crossing interval τ

has the form P0(τ) ∼ (1 + aτ/γ)−γν exp(−ντ/b) for large τ . The exact forms

of the function G(s) are given in Appendix F.

Figure 6.6 shows two examples of the probability density function P0(τ)

of the zero-crossing interval τ given the cut-off power-law coherence func-

tion ϕb(t). Figure (a) is with the combination γν = 3, where γ = 2, ν = 3/2

and b = 5; and Figure (b) is with γν = 1, where γ = 2, ν = 1/2 and

b = 10. The inset plots are produced on a log-linear scale, and straight lines

are shown, implying the tail is of exponential form. Comparing with Figure

6.3, we conclude that the tail is not the power-law type, even though the

combination of γν is the same. This fact implies that the cut-off term affects

the nature of the zero-crossing interval τ . The index of the tail can refer

to Figure 6.5, which agrees with the locations of the square and the circle

respectively.

6.4 Summary

This chapter considers zero-crossing intervals of symmetric stable processes

with the power-law coherence function ϕγ(t) (6.1) and the cut-off power-law

coherence function ϕb(t) (6.2) respectively given the independence assump-

tion, which is the only available theory to analyse zero-crossing intervals.

Although the thesis does not consider simulations for the stable processes,

the analytical results of zero-crossing intervals can be treated as an attempt

and preparations for future work.

For the power-law coherence function ϕγ(t), it is found that the mean 〈τ〉

of the zero-crossing interval τ is finite, but the variance σ2 does depend on

the combinations of γν. If γν ≤ 1, then σ2 is infinite. As a consequence,
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Figure 6.6: This figure shows the probability density function P0(τ) of zero-crossing

intervals for the symmetric stable process with the cut-off power-law coherence

model ϕb(t). The aim of this figure is to show that given the cut-off term exp(−t/b),

the tail is of exponential form, not the power-law form as was shown in Figure 6.3.

Plot (a) is with γ = 2, b = 5 and ν = 3/2 (corresponding to γν = 3); and Plot (b)

is with γ = 2, b = 10 and ν = 1/2 (corresponding to γν = 1). The index of the tail

agrees with the symbols in Figure 6.5. The square is for Plot (a), and the circle is for

Plot (b).
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it indicates that there does not exist the persistence parameter θ, and the

probability density function P0(τ) does not have an exponential tail. The

analysis shows that the tail is of power-law form P0(τ) ∼ τ−(2+γν) for large

τ , which implies that the zero-crossing interval τ is influenced by the stable

index ν and the value γ adopted from ϕγ(t). This confirms the fact that σ2 is

infinite if γν ≤ 1.

The cut-off power-law coherence function ϕb(t) is considered, which is

motivated by the cut-off power-law autocorrelation function of the Gaussian

process shown in Chapter 4. The cut-off term exp(−t/b) in ϕb(t) does affect

the properties of zero-crossing intervals. It is found that the large b has a

small effect on the zero-crossing rate. More important is that the variance σ2

of the zero-crossing interval τ becomes finite for all γ and ν, which is shown

in Figure 6.4. Another difference is that the persistence parameter θ exists,

implying the tail is of exponential form. The behaviour of θ is shown in Fig-

ure 6.5, which increases monotonously from zero, but depends on the value

b. Two examples of the probability density functions of the zero-crossing in-

tervals are shown. The combinations of γν are the same as those used for

the pure power-law coherence function ϕγ(t), but now the tail of the zero-

crossing interval τ is of exponential form, not the power-law.
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Conclusion

This thesis has considered zero-crossing intervals of Gaussian and symmetric

stable processes. The main aim is to explore the probability density func-

tion P0(τ) of the zero-crossing interval τ , and to determine the persistence

parameter θ, which describes the asymptotic behaviour of P0(τ).

Chapter 2 used the independence approximation to analytically investi-

gate zero-crossing intervals of Gaussian processes with three different au-

tocorrelation functions. The independence assumption is a gross approxi-

mation, but is a simple and analytically tractable choice. The independence

results can serve as the benchmark to the simulation results. If the simulation

results, which were shown in Chapter 3, does not agree with the analytical

results, it implies we must reject the independence approximation of succes-

sive zero-crossing intervals. The first one is the exponentially bounded auto-

correlation function ρe(t). It is found that the mean 〈τ〉 of the zero-crossing

interval τ is π/a, where a is a time-scale constant appeared in ρe(t), and the

variance σ2 of τ is a finite value. The persistence parameter θ is calculated by

solving the pole of the Laplace transform of P0(τ). Moreover, the probability

density function P0(τ) is obtained by using the Tablot method. It is found

that P0(τ) is of exponential form, whose index is the same as the persistence

parameter θ.
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The two power-law autocorrelation functions ργ(t) and φγ(t) were then

considered, where γ > 0 is the power-law index. It is found that results of

zero-crossing intervals have certain features in common. The mean 〈τ〉 of τ

is also π/a, but the variance σ2 varies according to the value of γ. Given the

independent approximation, the analytical calculation shows that for both

power-law autocorrelation functions, the variance σ2 is a finite value if γ > 1,

and does not exist if 0 < γ ≤ 1. As a consequence, it leads to a change in the

tail behaviour of the probability density function P0(τ) of the zero-crossing

interval τ . Moreover, it was analytically shown that there does not exist

the persistent parameter θ. Furthermore, it was also shown that P0(τ) is of

power-law form τ−(2+γ) for large τ . For these two power-law autocorrelation

functions, the difference, however, lies in the initial value P0(0). For the

model ργ(t), P0(0) is always zero, but for φγ(t), it is not and depends on the

value γ.

Chapter 3 and 4 aim to examine the validity of the independence ap-

proximation by comparison with the simulations. It is found that for the

exponentially bounded autocorrelation function ρe(t), the simulated proba-

bility density function P0(τ) of the zero-crossing interval τ is close to that

obtained from the independence model. This fact implies that the indepen-

dence assumption is adequate. Furthermore, this thesis also examined the

correlations of zero-crossing intervals. It was found that the correlations of

zero-crossings intervals were were very close to zero.

For the power-law autocorrelation functions ργ(t) and φγ(t), however,

the simulations show that the independence assumption is not valid, which

implies that we cannot use the independent results shown in Chapter 2 to

model statistical properties of zero-crossing intervals. It was also found that

the correlations of the zero-crossing intervals show the alternating behaviour,

and is power-law correlated. The fact implies that the correlations of zero-

crossing intervals cannot be neglected. On the other hand, although there
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exists the disagreement between the simulation results and the analytical

results, the analytical derivation methods used in Chapter 2 can be used to

explore other interested autocorrelation functions.

The simulation results for the power-law bounded autocorrelation func-

tions ργ(t) and φγ(t) showed similar behaviours. It was found that the tail

of the zero-crossing interval τ is of exponential from when γ > 1. For the

regime 0 < γ ≤ 1, the thesis claimed that the simulation results were not

physically realisable at the first place, because the spectral density function

S(ω) of the power-law bounded autocorrelation functions is not finite at

ω = 0. This property implies that the process has infinite power, which

is not physically realisable. Notwithstanding with, a computer ’experiment’

with such autocorrelation function can be conducted, but it does not corre-

spond a realization of a valid Gaussian process. To remedy this behaviour,

the thesis investigated the power-law autocorrelation function ργ(t) provided

with a cut-off term. That is the cut-off power-law autocorrelation function

ρb(t), where b determines the correlation length of the cut-off term. Al-

though the asymptotic behaviour of the cut-off model ρb(t) is different from

the power-law autocorrelation function ργ(t), the model ρb(t) truncates the

infinite power. Furthermore, the model ρb(t) takes the finite data length into

consideration, because the power-law type correlations do not always sustain

in the simulated processes for large correlated time lags due to the finite ca-

pacity or storage of the digital computer. The cut-off autocorrelation function

was considered, because the thesis required to construct an autocorrelation

function that is effectively power-law in an intermediate regime (of arbitrary

length), but contain an exponential cut-off in the far tail. The value b has to

be large, because the aim of the cut-off term is to make the process have the

finite power and does not interfere with the power-law type correlations. If

b increases, the cut-off model ρb(t) is close to ργ(t). Furthermore, the cut-off

time t = tc can be solved and deicides where the autocorrelation function
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ρb(t) transits from the power-law type to exponential behaviour. Then it is

found that for large b, the simulated probability density functions are very

close to that for the pure power-law function ργ(t), but the tail of the zero-

crossing intervals is of exponential form. It has to be noted that Eichiner

et al. [89] claimed that the tail of the probability density function P0(τ) of

the zero-crossing interval τ is of the stretched exponential, but it has to be

mentioned that the simulated processes he used is of infinite power, which is

not practically realizable at the first place.

In Chapter 5, zero-crossing intervals of symmetric stable processes with

the exponential coherence function ϕe(t) were investigated. The methodol-

ogy is inherited from the Gaussian case. Results of this chapter were obtained

under the independence assumption of successive zero-crossing intervals. It

is expected to derive the analogous results that the independence approx-

imation is valid, because the exponential coherence function of symmetric

stable processes corresponds to the exponentially bounded autocorrelation

of Gaussian processes, where the independence assumption was shown to be

valid. It was found that the zero-crossing interval τ has the exponential tail

and the initial value P0(0) is 0. Note that the behaviour is the same as the

exponentially bounded autocorrelation function ρe(t), which in fact is gener-

ated from ϕe(t). The mean 〈τ〉 of the zero-crossing interval τ is larger than

that for the Gaussian case because of the heavy tails of the stable distribu-

tions. The normalised variance σ2/〈τ〉2 is less than 1 and nearly independent

of the stable index ν, indicating that the interval length has less fluctuations.

The persistence parameter θ for general ν is also considered. It is found that

θ increases from zero when ν increase from 0 to 2, implying the tail of prob-

ability density functions of zero-crossing intervals is much extended. When

ν = 2, the persistence parameter θ agrees with each other, either calculating

from ρe(t) of the Gaussian case or ϕe(t) of the stable case. The probability

density functions of the zero-crossing intervals are shown for ν = 1/2 and
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1. Both show the similar shape, and the tail indices are the same as the

persistence parameter θ. Note that results shown in this chapter were de-

rived from the independent approximation. As Gaussian random variables

belong to the stable random variables, and the independent assumption is

satisfied to explore zero-crossing intervals of Gaussian processes with the ex-

ponentially bounded autocorrelation function as shown in previous chapters,

it is expected to obtain the similar results that the independent assumption is

also valid to investigate zero-crossing intervals of stable processes with expo-

nentially bounded coherence functions, because such type coherence func-

tions decay to zero sufficiently quick, which indicates that the correlations

between zero-crossing intervals are negligible.

Chapter 6 showed statistical properties of zero-crossing intervals of sym-

metric stable processes with either the power-law coherence function ϕγ(t)

or the cut-off power-law coherence function ϕb(t) under the independence

assumption. The cut-off type coherence function ϕb(t) was investigated, be-

cause it corresponds to the cut-off power-law autocorrelation function ρb(t)

in the Gaussian case, which was considered in Chapter 4. For the power-law

model ϕγ(t), the persistence parameter θ does not exist, and the tail of the

zero-crossing intervals τ is of power-law form P0(τ) ∼ τ−(2+γν) for large τ ,

which depends on the stable index ν, as well as the memory index γ. This

fact implies that the zero-crossing interval τ is related to the underlying sym-

metric stable process and the power-law coherence function. For the cut-off

model ϕb(t), zero-crossing intervals show different features. Note that ϕb(t)

is close to ϕγ(t) if b is large. It is found that the persistence parameter θ ex-

ists, and the tail of τ is of exponential form. The cut-off power-law coherence

function ϕb(t) was considered, as it is parallel with the cut-off power-law au-

tocorrelation function ρb(t) in the Gaussian case. The results in this chapter

were derived from the independent assumption and can serve as benchmark

to the simulation results, which can be considered as the further work. How-
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ever, it is expected to see that given the power-law bounded coherence func-

tion and a valid simulation algorithm, the independent approximation is not

satisfied to model statistical properties of zero-crossing intervals, which is

similar to that of Gaussian processes with power-law bounded autocorrela-

tion function.

7.1 Further Work

Chapter 2 has examined only the positive autocorrelation functions, but one

could consider the oscillatory autocorrelation function. The simulation re-

sults of Chapter 3 and 4 indicate that the correlations of the zero-crossing in-

tervals are not significant, implying that the dependence of the zero-crossing

intervals may be determined by higher order correlations.

In Chapter 5 and 6, it considered zero-crossing intervals of symmetric

stable processes with different coherence functions given the independence

assumption; however, the results are required to compare with simulations.

That is how to simulate the non-independence symmetric stable process with

a specific coherence function. Then it will be possible to explore the validity

of the independence assumption.

Another quantity that may be calculated is to determine the probability

p(n, t) that finds exactly n zeros in the given interval (t′, t′ + t). The function

p(n, t) is important because it can also be used to determine the probability

density function P0(τ) of the zero-crossing interval τ .

To model the correlations of successive zero-crossing intervals, McFadden

[23] generalized the independence model by defining pn(s) = an(s)pn+1
0 (s),

where assuming {an(s)} possess all the information about correlations. It is

felt that the best hope for further progress lies in the invention of {an(s)}

from the simulation data. Then the following equation may be summed up
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in n

g(s) =
∞∑
n=0

(−1)nan(s)pn+1
0 (s),

so that one could express p0(s) in terms of g(s) and {an(s)}. Then the inverse

Laplace transform of p0(s) could show the tail behaviour, which agrees with

the simulation data.
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Relations of zero-crossing

intervals

These equations (2.3)-(2.5) can be derived by considering the probabilities

of particular events. That is

p(n, τ) = Pr[find n crossings in the interval (t, t+ τ)]

= Pr[find n crossings in (t, t+ τ) and none in (t+ τ, t+ τ + dτ)]

+ Pr[find n crossings in (t, t+ τ) and one in (t+ τ, t+ τ + dτ)].

Note that the last term, which was considered by McFadden [23], is the

probability of the event finding n crossings in (t, t+τ) and one in (t+τ, t+τ+

dτ), not the event finding n−1 crossings in (t, t+τ) and one in (t+τ, t+τ+dτ)

because of the total probability. Similarly, McFadden wrote

p(n, τ + dτ) = Pr[find n points in the interval (t, t+ τ + dτ)]

= Pr[find n points in (t, t+ τ) and none in (t+ τ, t+ τ + dτ)]

+ Pr[find n− 1 points in (t, t+ τ) and one in (t+ τ, t+ τ + dτ)].
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Then McFadden assumed that p(n, τ) is continuous and wrote the difference

as

p(n, τ + dτ)− p(n, τ) ≈ p′(n, τ) dτ.

Thus it follows that

p′(n, τ) dτ = Pr[find n− 1 points in (t, t+ τ) and one in (t+ τ, t+ τ + dτ)]

− Pr[find n points in (t, t+ τ) and one in (t+ τ, t+ τ + dτ)].

(A.1)

Take the second term on the right-hand side of Equation (A.1) as an example,

McFadden wrote this expression as

Pr[no more than n points in (t, t+ τ) and one in (t+ τ, t+ τ + dτ)]

− Pr[no more than n− 1 points in (t, t+ τ) and one in (t+ τ, t+ τ + dτ)].

(A.2)

The probability that there are no more than n zeros in (t, t+ τ) is the proba-

bility that the time to the nth zero is greater than τ , i.e.

∫ ∞
τ

Pn(υ) dυ.

Then Equation (A.2) becomes

βdτ

∫ ∞
τ

Pn(υ) dυ − βdτ

∫ ∞
τ

Pn−1(υ) dυ. (A.3)

Similar consideration to the first term on the right-hand side of Equation

(A.1) gives that

βdτ

∫ ∞
τ

Pn−1(υ) dυ − βdτ

∫ ∞
τ

Pn−2(υ) dυ. (A.4)
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Inserting Equations (A.3) and (A.4) into Equation (A.1), and assuming the

second derivative p′′(n, τ) exists and provided that for n = 0 and n = 1,

Pn(τ) = 0, then Equations (2.3), (2.4) and (2.5) are the results.
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Moments of zero-crossing

intervals

From the definition of the Laplace transform, the moments of the zero-

crossing interval τ may be obtained from the derivatives of the transform

p0(s), evaluated at s = 0. If the function p0(s) and g(s) are regular functions

of s, then the expansions of g(s) and p0(s) near the origin are

p0(s) = 1− 〈τ〉s+ 〈τ 2〉s2/2− · · · , (B.1)

g(s) = g(0) + g′(0)s+ g′′(0)s2/2 + · · · .

The above expansion for p0(s) implies that all the moments for τ exist, how-

ever, it is not always this case because the expansion of p0(s) will be affected

by the type of the autocorrelation function r(t) of the underlying process

x(t). For example, if r(t) is of power-law form and x(t) is a Gaussian process,

then the expansion of p0(s) has another form. This issue is seen in Chapter

2.

Three constants in the expansion of g(s) can be identified [23]. Now

consider g(0) first. For sufficiently small t, we have R(t) ≈ 1 + R′(0)t, then

the probability that x(t′) and x(t′ + t) are of opposite sign is [1 − R(t)]/2
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([23]). For small t, this probability becomes the expected number of zeros

per unit time multiplied by t,

βt =
1

2
[1−R(t)],

therefore R′(0) = −2β. If R(t) and its derivative vanish at infinity, then

g(0) =

∫ ∞
0

R′′(t)

4β
dt (by parts)

= − 1

4β
R′(0)

=
1

2
.

Note from (2.9), this result confirms that p0(0) = 1, which states that P0(τ)

is correctly normalised. The value of g′(0) and g′′(0) can be calculated using

integration by parts. For example,

g′(0) = −
∫ ∞
0

t
R′′(t)

4β
dt

= − 1

4β

∫ ∞
0

t dR′(t)

= − 1

4β

[
tR′(t)|∞0 −

∫ ∞
0

R′(t) dt

]
= − 1

4β
[tR′(t)|∞0 − R(t)|∞0 ]

= − 1

4β
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where it is assumed that tR′(t)→ 0 as t→∞, and

g′′(0) =
1

4β

∫ ∞
0

t2R′′(t) dt

=
1

4β

[
t2R′′(t)

∣∣∞
0
−
∫ ∞
0

2tR′(t) dt

]

=
1

4β

[
t2R′′(t)

∣∣∞
0
− 2

[
tR(t)|∞0 −

∫ ∞
0

R(t) dt

]]

=
1

2β

∫ ∞
0

R(t) dt,

where it is assumed that tR(t)→ 0 and t2R′(t)→ 0 as t→∞.

Substituting the expansion of g(s) near the origin into Equation (2.9) and

using g(0), g′(0) and g′′(0), it is found, by matching coefficients of the powers

of s, the first and second moment can be identified:

〈τ〉 =
1

β
,

and

〈τ 2〉 =
2

β

∫ ∞
0

R(t) dt+
1

β2
.

The expression for the mean 〈τ〉 of the zero-crossing interval τ verifies the

heuristic argument as shown before. With the second moment, the variance

σ2 of the zero-crossing interval τ is

σ2 =
2

β

∫ ∞
0

R(t) dt.
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Interpretation of the coherence

function

The interpretation of the coherence function ϕ(t) can be determined through

the fractional structure function of the process. Let m(x) denote the prob-

ability density function of a single symmetric stable random variable, and

m2(x, y) denote the joint probability density function for two symmetric sta-

ble random variables. The fractional moment of a stable random variable

can be defined as

〈|X|γ〉 =

∫ ∞
−∞

dx |x|γm(x),

where −1 < γ < ν in order for the integral to converge. Extending this to

a process, the structure function is defined to gauge the difference between

two values x and y at different times:

Sγν (A,ϕ) = 〈|X − Y |γ〉 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy |x− y|γm2(x, y;ϕ),

provided −1 < γ < ν. To evaluate 〈|X|γ〉 and Sγν (A,ϕ), one can express the

joint probability density functions m(x) and m2(x, y) in terms of the char-

acteristic function (5.2) and (5.14). One commonly seen example of the

structure function is obtained from the zero-mean Gaussian process with the
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variance σ2:

S2
2(σ, ρ) = 2σ2(1− ρ).

For the Gaussian case ν = 2, γ lies in the range −1 < γ < ∞ and m2(x, y) is

given by (5.5).

In order to identify the general relationship between the autocorrelation

function and the coherence function, Hopcraft and Jakeman [15] calculated

S
−1/2
2 (A,ϕ) =

Γ(1/4)√
2πσ

1

(1− ρ)1/4

and

S−1/2ν (A,ϕ) =
1

ν(2A)1/(2ν)

√
2

π
Γ

(
1

2ν

)(
1 + ϕν

(1− ϕ)ν

) 1
2ν

,

as these two quantities can be expressed in the closed forms and used to find

the relationship between the autocorrelation function ρ(t) and the coherence

function ϕ(t) without losing generality [15]. Then they defined a relation

between the coherence function ϕ and a notional quantity ϕ̃ by comparing

S
−1/2
2 (A,ϕ) and S−1/2ν (A,ϕ):

1

(1− ϕ̃)1/4
=

(
1 + ϕν

(1− ϕ)ν

) 1
2ν

,

yielding

ϕ̃(t) = 1−
(

(1− ϕ)ν

1 + ϕν

)2/ν

. (C.1)

Equation (C.1) implies the nonlinear relationship between the coherence

function ϕ(t) and a notional quantity ϕ̃(t). The notional quantity ϕ̃(t) can

be interpreted as the fractional correlation function expressed by the coher-

ence function, and this fractional correlation function turns into the usual

autocorrelation function ρ(t) for the Gaussian process by setting ν = 2 in
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Equation (C.1), giving

ϕ̃(t) = ρ(τ) =
2ϕ(t)

1 + ϕ2(t)
,

which is already seen in Equation (5.15). Equation (C.1) also shows that

the coherence function ϕ(t) is the fractional moments for the process, hence

it indicates that the coherence function is not the autocorrelation function.

However, by letting ν = 2 in Equation (C.1), it can be used to identify the

autocorrelation function ρ(t) by the coherence function ϕ(t).
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The time-scale parameter a

This appendix shows that the time-scale constant a appeared in the autocor-

relation function ρ(t) and the coherence function ϕ(t) is a scale parameter to

the persistence factor θ and to the probability density function P0(τ) of the

zero-crossing interval τ .

Consider the Laplace transform of L{R′′(t)/(4β)}. Since R(t) can be ex-

pressed in terms of either ρ(t) or ϕ(t) depended on the underlying process,

therefore R(t) can be thought as a function of the parameter a as well, that

is R(at). Now differentiating twice with respect to t and taking the Laplace

transform, it gives that

g(s) = L
{
R′′(t)

4β

}
=
a2

4β

∫ ∞
0

R′′(at)e−st dt. (D.1)

Set η = at, then Equation (D.1) becomes

g(s) =
a

4β

∫ ∞
0

R′′(η)e−ξη dη,

where ξ = s/a. If the persistence factor θ exists, one can obtain it by solving

equation 1− g(−θ) = 0, which means that

θ = −s
a
.
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This implies that the constant a is a scale parameter to the persistence fac-

tor θ. Furthermore, the Laplace transform p0(s) of the probability density

function is expressed as a function of g(s), implying that a is also a scaled

parameter to P0(τ).
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Another closed-form for g(s)

This Appendix evaluates the Laplace transform of R′′(t)/(4β) given the ex-

ponentially bounded coherence function ϕe(t) = exp(−at) when the stable

index ν = 1/2. It has been seen that

g(s) = L
{
R′′(t)

4β

}
,

where

R(t) =
4

π2

∫ ∞
0

(ϕ(t))ν pν−1

1 + (ϕ(t))ν pν
ln

(
1 + p

|1− p|

)
dp.

Substitute ϕe(t) into R(t), we have

R(t) =
4

π2

∫ ∞
0

pν−1

eaνt + pν
ln

(
1 + p

|1− p|

)
dp.

If ν = 1/2, then

R(t) =
4

π2

∫ ∞
0

1

eat/2 +
√
p

1
√
p

ln
1 + p

|1− p|
dp.

Differentiating twice with respect to t, one has

R′′(t) =
a2

π2
eat/2

∫ ∞
0

eat/2 −√p
(eat/2 +

√
p)3

1
√
p

ln
1 + p

|1− p|
dp.
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For simplicity, let c = eat/2 and evaluate the above integral, it gives

R′′(t) =
4a2

π2

1

sinh (at)

[
1− at coth (at) +

π

sinh(at)
(sinh(

at

2
))3
]

(E.1)

Taking the Laplace Transform of Equation (E.1), it yields that

g(s) = L
{
R′′(t)

4β

}
=

1

12βπ2(a− s)2
[
π2s3 − 2a(6 + (π − 3)π)s2 + a2π(π − 12)s

+6a3(π − 2) + 6s(a− s)2A(s)
]

where the function A(s) is

A(s) = π

[
H1

(
2s− 3a

4a

)
−H1

(
2s− a

4a

)]
−H2

(
s− 3a

2a

)
,

where

H1(x) = ψ(1 + x) + δ,

H2(x) = H1(x) + 2−x,

where ψ(x) is the digamma function and the constant δ = 0.5772 · · · is the

Euler-Mascheroni constant [77].
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Appendix F

The asymptotic approximation

function G(s)

This appendix shows the asymptotic approximated functions G(s), which are

used for numerically inverting Laplace transform. The exponential integral

function is defined as [77]

En(s) =

∫ ∞
1

e−stt−n dt.

For the Gaussian processes with the power-law autocorrelation function

ργ(τ), G(s) is given below.

1. For γ = 2:

G(s) =
0.39 + 6esE4(s)

4.79 + 5.25s+ 0.86s2
.

2. For γ = 1:

G(s) =
0.03 + esE3(s)

1 + 0.64s+ 0.05s2
.

3. For γ = 2/5:

G(s) =
0.15 + 0.23esE2.4(s)

0.64 + 0.31s+ 0.06s2
.

The above three G(s) are used to produced the probability density functions

shown in Figure 2.4 in Chapter 2.
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For symmetric stable processes with the power-law coherence function

ϕγ(τ), G(s) is given below.

1. For γ = 2 and ν = 1/2:

G(s) =
0.25 + 0.15e10sE3(10s)

0.65 + s
.

2. For γ = 2 and ν = 3/2:

G(s) =
0.25 + 6.56e1.8sE5(1.8s)

2.12 + s
.

These two G(s) are used to produce the probability density functions shown

in Figure 6.3 in Chapter 6.

For the symmetric stable processes with the cut-off power-law coherence

function ϕb(τ), G(s) is given below.

1. For γ = 2, b = 5 and ν = 3/2:

G(s) =
1 + 2.70.3+sE3(0.3 + s)

2.8 + 4s
.

2. For γ = 2, b = 10 and ν = 1/2:

G(s) =
2 + 2.70.05+sE1(0.05 + s)

9.2 + 8s
.

These two G(s) are used to produce the probability density functions shown

in Figure 6.6 in Chapter 6.
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