1,781 research outputs found

    Zero-Shot Audio Classification via Semantic Embeddings

    Get PDF
    In this paper, we study zero-shot learning in audio classification via semantic embeddings extracted from textual labels and sentence descriptions of sound classes. Our goal is to obtain a classifier that is capable of recognizing audio instances of sound classes that have no available training samples, but only semantic side information. We employ a bilinear compatibility framework to learn an acoustic-semantic projection between intermediate-level representations of audio instances and sound classes, i.e., acoustic embeddings and semantic embeddings. We use VGGish to extract deep acoustic embeddings from audio clips, and pre-trained language models (Word2Vec, GloVe, BERT) to generate either label embeddings from textual labels or sentence embeddings from sentence descriptions of sound classes. Audio classification is performed by a linear compatibility function that measures how compatible an acoustic embedding and a semantic embedding are. We evaluate the proposed method on a small balanced dataset ESC-50 and a large-scale unbalanced audio subset of AudioSet. The experimental results show that classification performance is significantly improved by involving sound classes that are semantically close to the test classes in training. Meanwhile, we demonstrate that both label embeddings and sentence embeddings are useful for zero-shot learning. Classification performance is improved by concatenating label/sentence embeddings generated with different language models. With their hybrid concatenations, the results are improved further.Comment: Submitted to Transactions on Audio, Speech and Language Processin

    Multimodal One-Shot Learning of Speech and Images

    Full text link
    Imagine a robot is shown new concepts visually together with spoken tags, e.g. "milk", "eggs", "butter". After seeing one paired audio-visual example per class, it is shown a new set of unseen instances of these objects, and asked to pick the "milk". Without receiving any hard labels, could it learn to match the new continuous speech input to the correct visual instance? Although unimodal one-shot learning has been studied, where one labelled example in a single modality is given per class, this example motivates multimodal one-shot learning. Our main contribution is to formally define this task, and to propose several baseline and advanced models. We use a dataset of paired spoken and visual digits to specifically investigate recent advances in Siamese convolutional neural networks. Our best Siamese model achieves twice the accuracy of a nearest neighbour model using pixel-distance over images and dynamic time warping over speech in 11-way cross-modal matching.Comment: 5 pages, 1 figure, 3 tables; accepted to ICASSP 201

    A Multimodal Prototypical Approach for Unsupervised Sound Classification

    Full text link
    In the context of environmental sound classification, the adaptability of systems is key: which sound classes are interesting depends on the context and the user's needs. Recent advances in text-to-audio retrieval allow for zero-shot audio classification, but performance compared to supervised models remains limited. This work proposes a multimodal prototypical approach that exploits local audio-text embeddings to provide more relevant answers to audio queries, augmenting the adaptability of sound detection in the wild. We do this by first using text to query a nearby community of audio embeddings that best characterize each query sound, and select the group's centroids as our prototypes. Second, we compare unseen audio to these prototypes for classification. We perform multiple ablation studies to understand the impact of the embedding models and prompts. Our unsupervised approach improves upon the zero-shot state-of-the-art in three sound recognition benchmarks by an average of 12%.Comment: Accepted to INTERSPEECH 202

    Audio-visual Generalised Zero-shot Learning with Cross-modal Attention and Language

    Get PDF

    Zero-Shot Audio Classification with Factored Linear and Nonlinear Acoustic-Semantic Projections

    Get PDF
    In this paper, we study zero-shot learning in audio classification through factored linear and nonlinear acoustic-semantic projections between audio instances and sound classes. Zero-shot learning in audio classification refers to classification problems that aim at recognizing audio instances of sound classes, which have no available training data but only semantic side information. In this paper, we address zero-shot learning by employing factored linear and nonlinear acoustic-semantic projections. We develop factored linear projections by applying rank decomposition to a bilinear model, and use nonlinear activation functions, such as tanh, to model the non-linearity between acoustic embeddings and semantic embeddings. Compared with the prior bilinear model, experimental results show that the proposed projection methods are effective for improving classification performance of zero-shot learning in audio classification.Comment: Accepted by ICASSP 202
    • …
    corecore