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Abstract—In this paper, we study zero-shot learning in audio
classification via semantic embeddings extracted from textual
labels and sentence descriptions of sound classes. Our goal is to
obtain a classifier that is capable of recognizing audio instances
of sound classes that have no available training samples, but only
semantic side information. We employ a bilinear compatibility
framework to learn an acoustic-semantic projection between
intermediate-level representations of audio instances and sound
classes, i.e., acoustic embeddings and semantic embeddings. We
use VGGish to extract deep acoustic embeddings from audio clips,
and pre-trained language models (Word2Vec, GloVe, BERT) to
generate either label embeddings from textual labels or sentence
embeddings from sentence descriptions of sound classes. Audio
classification is performed by a linear compatibility function
that measures how compatible an acoustic embedding and a
semantic embedding are. We evaluate the proposed method on
a small balanced dataset ESC-50 and a large-scale unbalanced
audio subset of AudioSet. The experimental results show that
classification performance is significantly improved by involving
sound classes that are semantically close to the test classes in
training. Meanwhile, we demonstrate that both label embeddings
and sentence embeddings are useful for zero-shot learning. Classi-
fication performance is improved by concatenating label/sentence
embeddings generated with different language models. With their
hybrid concatenations, the results are improved further.

Index Terms—audio classification, semantic embedding, zero-
shot learning.

I. INTRODUCTION

ZERO-SHOT learning (ZSL), which was first coined in
[1], refers to problems that aim at recognizing instances

of classes that have no available training samples but only
class side information (e.g., textual descriptions). In contrast to
supervised classification, samples from only predefined classes
are used to train a classifier while new classes get involved
at testing or usage stage. In this paper, these new classes are
referred to as the zero-shot classes.

Supervised learning has been well-studied for audio classifi-
cation for decades. To obtain classifiers with satisfactory per-
formance, conventional supervised learning methods require
large amounts of annotated training samples from target sound
classes. Due to the high cost of data collection and manual
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annotation, most of the existing audio datasets [2] have limited
numbers of audio samples and sound classes, such as ESC-50
[3] (2,000 labeled audio clips from 50 environmental sound
classes) and UrbanSound8K [4] (8,732 labeled audio clips
from 10 urban sound classes). In recent years, several research
works have been conducted to construct large audio datasets
with increased number of sound classes, including AudioSet
[5] (over 2 million weakly labeled audio clips covering 527
sound classes), Freesound Dataset [6] (over 290,000 labeled
audio clips covering 632 sound classes). However, with the
increasing number of observed sound classes, it becomes even
more challenging for humans to manually collect sufficient
annotated samples for all possible sound classes. To tackle
the lack of adequate training data, recent works [7]–[10] in
the audio literature mainly apply data augmentation [11], meta
learning [12] and few-shot learning [13] methods. However, a
considerable amount of representative training samples from
target classes is still indispensable to make these methods
work. Furthermore, to classify audio instances from new sound
classes, supervised learning classifiers require retraining and
exhaustive parameter tuning for the new sound classes, which
can be time-consuming. With the emergence of zero-shot
learning techniques, there is the potential to develop audio
classifiers for new sound classes with existing audio datasets
[1], [3]–[5].

In recent years, zero-shot learning has received increasing
attention in computer vision. The key idea of zero-shot learn-
ing is to transfer knowledge from training classes to zero-
shot classes. Due to the lack of training samples from zero-
shot classes, side information (e.g., textual descriptions) is
required for exploring relationship between training and zero-
shot classes to make zero-shot learning possible. Fu et al. [14]
reviewed the commonly used side information of visual classes
for zero-shot recognition by categorizing them into two sets:
semantic attributes and beyond. Semantic attributes refer to
the intrinsic properties of classes, such as human-defined at-
tributes [15], [16]. Side information beyond semantic attributes
includes concept ontology [17], and textual descriptions [18],
[19], etc. Based on this side information, both training and
zero-shot classes can be projected into the same representation
space, which enables knowledge transfer between training
and zero-shot classes. Xian et al. [20] reviewed three main
kinds of methods for zero-shot image recognition. A simple
method [15] was to learn individual classifiers for indepen-
dent visual attributes and perform zero-shot classification by
combining the predicted attributes of the learned individual
classifiers. Some sophisticated methods [18], [19] were de-
veloped by leveraging intermediate-level representations for
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images and classes. In these methods, a linear/non-linear
compatibility function was learned to associate images with
classes through their intermediate-level representations. For
instance, Akata et al. [18] proposed a bilinear compatibility
framework to associate images with classes by learning a
linear compatibility function. Xian et al. [19] developed this
method to explore non-linear compatibilities between images
and classes. The other methods [21], [22], mentioned as
hybrid models, fall between independent attribute classifiers
and compatibility learning frameworks.

In contrast to the steady growth of zero-shot learning
methods in computer vision, only limited work has been done
in the audio field. Prior works [23]–[25] studied compatibility
functions for zero-shot learning in audio classification. They
mapped audio signals into a low-dimensional acoustic space
through an acoustic embedding learning module, such as
siamese network [26] or VGGish [27]. Sound classes were
represented by word embeddings in a semantic space, which
were learned from their semantic side information (e.g., textual
labels) with pre-trained language embedding models, such as
Word2Vec [28]. Then, a compatibility learning module was
used to associate acoustic embeddings with semantic embed-
dings. For instance, Islam et al. [23] employed a two-layer
fully-connected neural network to model a nonlinear compat-
ibility function. In our previous work [25], we adapted the
bilinear compatibility framework [18] from computer vision
for zero-shot learning in audio classification. Compared with
[23], [25], Choi et al. [24] integrated the acoustic embedding
learning module into the compatibility learning module to
optimize them holistically. Thus, a nonlinear compatibility
function was inherently built into their method.

The previous studies [23], [25] used small audio datasets
with 2–10 zero-shot classes for evaluation, which would
lead to a limited evaluation of zero-shot learning in audio
classification. In contrast, Choi et al. [24] studied zero-shot
learning for music classification and tagging with large music
datasets. As a complement, it would be necessary to investigate
zero-shot learning in large-scale general audio classification.
Secondly, only textual labels consisting of 1–3 words were
used as the semantic side information of sound classes in
[23]–[25]. Compared with textual labels, long pieces of textual
descriptions (e.g., sentence descriptions and documents) would
convey richer semantic information, which could be useful
for improving zero-shot learning performance. Thirdly, a pre-
trained acoustic embedding model was used for generating
acoustic embeddings of audio instances in [25]. Since a pre-
trained acoustic embedding model could have already embed-
ded acoustic information about zero-shot classes, using it to
generate acoustic embeddings at training stage would lead to
a biased evaluation of zero-shot learning.

In this paper, the present study is extended from our
previous work [25]. The main contributions of this work are
the following:

• We evaluate zero-shot learning in-depth on both a small
environmental dataset ESC-50 [3] and a large general
dataset AudioSet [5].

• We consider textual labels and additional sentence de-
scriptions as the side information of sound classes for

zero-shot learning in audio classification. Three kinds of
semantic representations of sound classes are studied:
label embeddings, sentence embeddings, and their con-
catenations.

• We investigate generating semantic embeddings with
different pre-trained language models: Word2Vec [28],
GloVe [29], and BERT [30].

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of the proposed method for zero-
shot learning in audio classification. Section III introduces
the implementation details of generating acoustic embeddings
and semantic embeddings. Section IV describes the bilinear
compatibility learning framework used for associating acoustic
embeddings with semantic embeddings. Section V describes
the evaluation experiments, and Section VI discusses the
results. Section VII concludes this paper.

II. PROPOSED METHOD

In this section, we present an overview of the proposed
method for zero-shot learning in audio classification, as illus-
trated in Fig.1. Sound classes are represented by semantic em-
beddings, which are learned from their semantic side informa-
tion with a language embedding module. Acoustic embeddings
are extracted from audio instances through an acoustic embed-
ding module, and then projected onto semantic embeddings
through an acoustic-semantic projection. A compatibility func-
tion is defined to measure how similar/compatible an projected
acoustic embedding and a semantic embedding are. During
training, the acoustic-semantic projection is optimized with
training data. For prediction, an audio instance is classified
into a sound class, the semantic embedding of which has the
maximal compatibility with its projected acoustic embedding.

We denote by X an audio sample space, Y a set of training
classes, and Z a set of zero-shot classes. Note that Y ∩Z = ∅.
We define ty , tz as the semantic side information of sound
classes y ∈ Y and z ∈ Z, respectively. We are given a set of
training samples Str = {(xn, yn) ∈ X × Y |n = 1, . . . , N},
where xn is an annotated audio sample belonging to a
training class yn. Our goal is to obtain an audio classifier
f : X → Z that can recognize zero-shot classes Z, which
have no available training samples but only semantic side
information. In the proposed method, zero-shot learning is
done by leveraging intermediate-level representations of audio
instances and sound classes, i.e., acoustic embeddings and
semantic embeddings. We denote by θ(x) ∈ Rda the acoustic
embedding of an audio instance x ∈ X . We denote by ϕ(y) ∈
Rds , ϕ(z) ∈ Rds the semantic embedding extracted from
semantic side information ty and tz , respectively. With these
embeddings, an acoustic-semantic projection T : Rda → Rds

is exploited to associate audio instances with sound classes.
Given an audio instance x ∈ X belonging to a sound class

z ∈ Z, we assume that the projected acoustic embedding
T (θ(x)) in the semantic embedding space is more similar to
the semantic embedding ϕ(z) rather than those of other sound
classes. A similarity scoring function F : Rds ×Rds → R, as
known as the compatibility function, is then defined to measure
how similar/compatible an projected acoustic embedding and
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Fig. 1. Zero-shot learning via semantic information in audio classification: sound classes y ∈ Y and z ∈ Z are represented by semantic embeddings extracted
from their respective semantic side information ty and tz . 1) At training stage (solid line), an acoustic-semantic projection T is optimized with every audio
sample (xn, yn) ∈ Str . 2) At testing stage (dashed line), an audio classifier f will classify an audio instance x ∈ X into a sound class z ∈ Z that has the
maximal compatibility value F (T (θ(x)), ϕ(z)).

a semantic embedding are. Possible choices of F could be
Euclidean distance [23], cosine similarity [24], etc. Therefore,
the audio classifier f : X → Z is formulated as1

f(x) = argmax
z∈Z

F (T (θ(x)), ϕ(z)). (1)

At training stage, f is trained with every audio sample
(xn, yn) ∈ Str, and is expected to generalize to new classes
Z as in (1) at testing stage.

III. INTERMEDIATE-LEVEL REPRESENTATIONS

In this section, we describe our approaches of generat-
ing intermediate-level representations of audio instances and
sound classes, i.e., acoustic embeddings and semantic embed-
dings.

A. Semantic Embeddings

In this work, we use three pre-trained language embedding
models to extract semantic embeddings from semantic side
information of sound classes. Specifically, we adopt Word2Vec
[28] and GloVe [29] as word embedding models to tackle
textual labels, and we employ BERT [30] as a sentence
embedding model to process sentence descriptions.

Word2Vec (Skip-gram model) is a two-layer fully-connected
neural network, which is capable of learning word embeddings
that are useful for predicting surrounding words in a sentence
or a document [28], [31]. For the sake of simplicity, we use a
publicly available pre-trained Word2Vec [32], which is trained
on Google News dataset. It consists of 300-dimensional word
embeddings for 3 million case-sensitive English words and
phrases. To represent sound classes, we take the average of
word embeddings of individual words/phrases contained in
their textual labels.

GloVe is a statistical language model, which learns word
embeddings based on the statistical information of global

1Note that the argmin operation should be considered for other compati-
bility functions, such as Euclidean distance, etc.

word-word co-occurrence and local context of words [29].
We adopt a publicly available pre-trained GloVe [33], which is
trained on documents from Common Crawl dataset. It contains
300-dimensional word embeddings for roughly 2.2 million
case-sensitive English words. Similarly, we average GloVe
word embeddings to obtain semantic embeddings for sound
classes.

BERT [30], which stands for Bidirectional Encoder Rep-
resentations from Transformers, is a contextual language un-
derstanding model that is capable of learning deep semantic
embeddings of contiguous texts, such as sentences and doc-
uments. It obtains state-of-the-art results on a broad set of
natural language processing tasks [30]. In this work, we use a
pre-trained BERT model [34] to produce semantic embeddings
of sound classes from their sentence descriptions. The pre-
trained model consists of 24 layers, 1024 hidden states and
16 heads, and it is trained on a large lowercased text corpus
(Wikipedia + BookCorpus). At usage stage, it outputs a 1024-
dimensional embedding for a sentence description.

B. Acoustic Embeddings

In this work, we use VGGish [27] to generate acoustic
embeddings from audio clips. VGGish [27] is a convolutional
neural network, which is derived from an VGGNet with
Configuration A [35] by adopting the following changes:

• The input size is changed to 96 × 64 for audio log mel
spectrograms.

• The last group of convolutional and max-pool layers is
dropped.

• The last fully connected layer is replaced with a 128-wide
fully connected layer.

The authors in [27] used VGGish to perform feature extraction
for large-scale audio classification tasks and defined the output
embeddings of the last 128-wide fully connected layer as
acoustic features. It was shown that audio classification per-
formance was improved by using these acoustic embeddings
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instead of traditional hand-crafted features (e.g., log mel
spectrogram) [27].

In zero-shot learning, it is assumed that there is no available
acoustic data from zero-shot classes at training stage. In [25],
we extracted acoustic embeddings from audio clips with a pre-
trained VGGish. We realize that the pre-trained VGGish may
have already embedded acoustic information about zero-shot
classes and using it to generate acoustic embeddings at training
stage can lead to a biased evaluation of zero-shot learning. In
this work, we train VGGish from scratch and ensure that test
classes are excluded from training data.

To obtain acoustic embeddings with VGGish, we follow the
processing in [27]. At first, all the audio clips are resampled
to 16 kHz mono. Each mono clip is split into non-overlapping
segments of 960 ms. For each segment, short-time Fourier
transform is then computed on 25 ms Hanning windowed
frames with a step size of 10 ms. After that, the power
spectrogram is aggregated into 64 mel bands. Finally, a 96×64
log mel spectrogram is generated and fed into VGGish to
obtain a 128-dimensional embedding vector for every audio
segment. To generate a clip-level acoustic embedding for an
audio clip, we simply average the 128-dimensional embedding
vectors of its 960 ms segments.

IV. BILINEAR COMPATIBILITY LEARNING FRAMEWORK

In this section, we describe the bilinear compatibility learn-
ing framework adapted from computer vision [18] to tackle
zero-shot learning in audio classification in this work.

A. Bilinear Compatibility

As illustrated in Fig.1, acoustic embeddings are extracted
from audio instances through an acoustic embedding module.
Similarly, sound classes are represented by semantic embed-
dings learned from their semantic side information with a
language embedding module. After that, acoustic embeddings
are projected onto semantic embeddings through a simple
linear projection T :

T (θ(x)) = WT θ(x), (2)

where W is the projection matrix to be learned. For compati-
bility function F , a natural parameterization is the dot product
between T (θ(x)) and ϕ(z). Therefore, F is writen as

F (T (θ(x)), ϕ(z)) = T (θ(x))Tϕ(z). (3)

By substituting (2) into (3), F is reformulated as

F (T (θ(x)), ϕ(z)) = θ(x)TWϕ(z), (4)

which is bilinear with respect to acoustic/semantic embed-
dings. For zero-shot learning, the audio classifier f : X → Z
is then defined as

f(x) = argmax
z∈Z

θ(x)TWϕ(z). (5)

B. Training Algorithm

In this section, we introduce the algorithm for optimizing W
in (2) with training data Str. Given an audio sample (xn, yn) ∈
Str, we consider the task of sorting sound classes y ∈ Y
in descending order according to their compatibility values
F (T (θ(xn)), ϕ(y)). Our objective is to optimize W so that
yn will be ranked at top of the sorted class list, i.e., having
the maximal compatibility value for xn.

Let ryn
be the rank of sound class yn, which refers to the

number of incorrect classes placed before yn. Usunier et al.
[36] proposed a ranking error function that transformed rank
ryn

into loss β(ryn
):

β(ryn
) =

ryn∑
i=1

αi, (6)

with α1 ≥ α2 ≥ · · · ≥ 0 and β(0) = 0. Specifically, β(ryn
)

defines a ranking penalty for yn, and αi measures the penalty
incurred by losing a rank from i − 1 to i. In this work, we
follow previous work in [18], [36] and choose αi = 1/i.

Inspired by [36], Weston et al. [37] introduced the hinge
loss l into (6) to add a margin and make it continuous, and then
proposed the so-called weighted approximate-rank pairwise
loss function

1

N

N∑
n=1

β(ryn
)

ryn

∑
y∈Y

max{0, l(xn, yn, y)}, (7)

with the convention 0/0 = 0 when ryn
= 0, i.e., yn was

top-ranked. We define the hinge loss l(xn, yn, y) as

l(xn, yn, y) = ∆(yn, y) + F (T (θ(xn)), ϕ(y))

− F (T (θ(xn)), ϕ(yn)),
(8)

where ∆(yn, y) = 0 if yn = y and 1 otherwise.
The loss function (7) is convex and can be optimized

through stochastic gradient descent. By minimizing (7), the
correct class of an audio sample will be top-ranked, i.e.,
having the maximal compatibility. To prevent over-fitting, we
regularize (7) with the squared Frobenius norm of W . The
final objective function is

1

N

N∑
n=1

β(ryn
)

ryn

∑
y∈Y

max{0, l(xn, yn, y)}+ λ∥W∥2, (9)

where λ is the coefficient of the regularization term. In this
work, we select λ from {0, 0.01, 1, 10} with a validation
dataset at training stage.

V. EXPERIMENTS

In this section, we describe the evaluation experiments on
two audio datasets: ESC-50 [3] and AudioSet [5].

A. Datasets

ESC-50 [3] is a small balanced audio dataset, which in-
cludes 2,000 single-label 5-second audio clips covering 50
environmental sound classes, as shown in Table I. These sound
classes are arranged into five high-level sound categories with
10 classes per category: animal sounds, natural soundscapes &
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TABLE I
SOUND CATEGORY GROUPS IN ESC-50

Sound Category Sound Classes

Animal sounds dog, rooster, pig, cow, frog, cat, hen, insects,
sheep, crow

Natural sounds rain, sea waves, crackling fire, crickets, chirp-
ing birds, water drops, wind, pouring water,
toilet flush, thunderstorm

Human sounds crying baby, sneezing, clapping, breathing,
coughing, footsteps, laughing, brushing teeth,
snoring, drinking sipping

Interior/domestic
sounds

door wood knock, mouse click, keyboard typ-
ing, door wood creaks, can opening, washing
machine, vacuum cleaner, clock alarm, clock
tick, glass breaking

Exterior/urban
noises

helicopter, chainsaw, siren, car horn, engine,
train, church bells, airplane, fireworks, hand
saw

water sounds, human (non-speech) sounds, interior/domestic
sounds, and exterior/urban noises. Each class is described
using a textual class label, such as “dog”, “door wood knock”.

AudioSet [5] is an unbalanced large general audio dataset,
which contains roughly 2 million multi-label audio clips
covering over 527 sound classes. For the sake of simplicity,
we consider only single-label classification in this work and
select single-label audio clips from AudioSet. To make a
trade-off between least populated classes (i.e., have no more
than 50 audio samples) and most populated classes (i.e., have
more than 1,000 audio samples), we randomly under-sample
the most populated classes until each of them has at most
1,500 audio samples. The final audio subset extracted from
AudioSet contains 112,774 single-label 10-second audio clips
and 521 sound classes. Each of these classes is defined by a
textual label. Meanwhile, AudioSet [5] provides an additional
sentence description for every sound class as an explanation
of its meaning and characteristics.

B. Experiments on ESC-50

In this section, we introduce our experimental setups on
ESC-50 [3].

1) Dataset Splits: We conduct zero-shot learning with 5-
fold cross-validation on ESC-50 sound classes. First, we split
sound classes into five disjoint class folds with two partition
strategies: based on sound categories and randomly. In the
category-based strategy, sound classes belonging to the same
high-level category are organized as one class fold, which
is shown as “Sound Category” in Table I. In the random-
based strategy, we group sound classes at random into five
class folds, as shown in Table II. For each partition strategy,
we apply 5-fold cross-validation. Four class folds (40 sound
classes with 1,600 audio samples) are used to train the bilinear
compatibility framework (in Section IV). After that, zero-shot
learning is conducted on the remaining class fold (10 sound
classes with 400 audio samples).

2) VGGish Training: We train VGGish from scratch with
the same class folds that are used for training the bilinear com-
patibility framework. In total, there are 1,600 audio samples

TABLE II
RANDOM-BASED CLASS FOLDS IN ESC-50

Class Fold Sound Classes

Fold0 brushing teeth, church bells, clock tick, cow,
drinking sipping, fireworks, helicopter, mouse
click, pig, washing machine

Fold1 clapping, crickets, glass breaking, hand saw,
keyboard typing, laughing, siren, sneezing,
thunderstorm, vacuum cleaner

Fold2 breathing, chainsaw, chirping birds, coughing,
door wood creaks, door wood knock, frog,
pouring water, rain, train

Fold3 airplane, can opening, crying baby, engine,
footsteps, hen, insects, rooster, snoring, toilet
flush

Fold4 car horn, cat, clock alarm, crackling fire, crow,
dog, sea waves, sheep, water drops, wind

of 40 sound classes from four class folds. Each audio sample
is split into five 960 ms segments annotated with its sound
class. We obtain 8,000 audio segments, and then randomly
divide them into two sets with a class-specific proportion
of 80/20: 6,400 segments for training and 1,600 segments
for parameter validation. During the 5-fold cross-validation,
a separate VGGish is trained from scratch at each step, using
Adam [38] optimizer with a learning rate of 1e−4. Training
is terminated by early stopping, i.e., once performance stops
increasing on the validation partition.

3) Class Semantic Embeddings: There are only textual la-
bels of sound classes available in ESC-50. Hence, we consider
zero-shot learning via class label embeddings on ESC-50.
With the pre-trained Word2Vec [32] and GloVe [33] (in
Section III-A), we obtain three sets of class label embeddings:
Word2Vec label embeddings (WLE), GloVe label embeddings
(GLE), and their concatenations (WLE+GLE).

C. Experiments on AudioSet

In this section, we introduce our experimental setups on the
extracted subset of AudioSet [5].

1) Dataset Splits: We split the extracted subset (in Sec-
tion V-A) into five disjoint class folds, which have similar
number of sound classes and audio samples, as shown in
Table III. First, all sound classes are arranged into nine
class bins according to their number of audio samples. Fig.2
illustrates the number of sound classes and total audio samples
in the nine class bins. Then, each class bin is randomly split
into five groups of sound classes with equal size. After that,
we randomly select one group from each class bin without
replacement, and merge the nine selected groups into one class
fold.

With the increased number of sound classes and audio
samples in the extracted subset, we explore the effect of train-
ing VGGish with different class folds on generating acoustic
embeddings for zero-shot learning. Table IV presents two data
settings for training VGGish from scratch. In Setting 1, we
train an VGGish model with class folds “Fold0” and “Fold1”,
which are excluded from zero-shot learning. As a comparison,
another VGGish model is trained in Setting 2 with class
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Fig. 2. Number of sound classes and total audio samples of class bins in the extracted subset of AudioSet.

TABLE III
CLASS FOLDS IN THE EXTRACTED SUBSET OF AUDIOSET

Class Fold Total Sound Classes Total Audio Samples

Fold0 104 23007

Fold1 104 22889

Fold2 104 22762

Fold3 104 22739

Fold4 105 21377

TABLE IV
TWO DATA SETTINGS WITH THE EXTRACTED SUBSET OF AUDIOSET

Model Setting 1 Setting 2

VGGish training + validation Fold0, Fold1 Fold2, Fold3

ZSL training Fold2

ZSL validation Fold3

ZSL test Fold4

folds “Fold2” and “Fold3”, which are used for training and
validating the bilinear compatibility framework. For test, zero-
shot learning is conducted on class fold “Fold4”.

2) VGGish Training: We train an VGGish from scratch
with two class folds in each data setting. Audio samples
are randomly divided into training/validation partitions with
a class-specific proportion of 75/25. As described in Sec-
tion III-B, we split audio clips into non-overlapping 960 ms
segments and extract a 96× 64 log mel spectrogram for each
segment. Then, log mel spectrograms belonging to the same
audio sample is fed into VGGish as a single input batch.
During training, we use Adam optimizer with a learning rate
of 1e−4. We terminate training by early stopping, i.e., once
performance stops increasing on the validation partition.

3) Class Semantic Embeddings: In addition to textual la-
bels, AudioSet provides an sentence description for every
sound class as an explanation of its meaning and characteris-
tics. We consider these sentence descriptions as a complement
of the semantic side information of sound classes for zero-

TABLE V
SEMANTIC EMBEDDINGS FOR AUDIOSET SOUND CLASSES

Semantic Embedding Type Dimensionality

WLE Label 300
GLE Label 300

WLE+GLE Label 600
WSE Sentence 300
GSE Sentence 300
BSE Sentence 1024

WSE+GSE Sentence 600
WSE+BSE Sentence 1324
GSE+BSE Sentence 1324

WSE+GSE+BSE Sentence 1624
WLE+WSE Hybrid 600
GLE+GSE Hybrid 600
WLE+BSE Hybrid 1324
GLE+BSE Hybrid 1324

WLE+GLE+BSE Hybrid 1624

shot learning. Therefore, sound classes have two types of
semantic embeddings: label embeddings, which are extracted
from their textual labels, and sentence embeddings, which are
generated from their sentence descriptions. We obtain three
sets of label embeddings (i.e., WLE, GLE and WLE+GLE)
by using the pre-trained Word2Vec [32] and GloVe [33] (in
Section III-A). For sentence embeddings, we first use the pre-
trained BERT [30] to tackle sentence descriptions and obtain a
set of BERT sentence embeddings (BSE). As a comparison, we
experiment on generating sentence embeddings with the pre-
trained Word2Vec [32] and GloVe [33]. An Word2Vec/GloVe
sentence embedding (WSE/GSE) is defined as the average
of Word2Vec/GloVe word embeddings of individual words
in a sentence description. Since stop words usually contain
useless semantic information, we exclude them from calcu-
lating WSE/GSE. Furthermore, we experiment with concate-
nating semantic embeddings to obtain concatenated sentence
embeddings (e.g., WSE+GSE) and hybrid embeddings (e.g.,
WLE+BSE) as shown in Table V.
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TABLE VI
ZERO-SHOT CLASSIFICATION ON ESC-50 WITH CATEGORY PARTITION STRATEGY

Test Class Fold
WLE GLE WLE+GLE

mAP Top-1 mAP Top-1 mAP Top-1

Animal sounds 0.43 0.26 0.37 0.18 0.38 0.20

Natural sounds 0.52 0.33 0.42 0.24 0.42 0.24

Human sounds 0.33 0.18 0.35 0.20 0.34 0.18

Interior/domestic sounds 0.37 0.21 0.38 0.21 0.38 0.21

Exterior/urban noises 0.38 0.19 0.40 0.21 0.39 0.21

TABLE VII
ZERO-SHOT CLASSIFICATION ON ESC-50 WITH RANDOM PARTITION STRATEGY

Test Class Fold
WLE GLE WLE+GLE

mAP Top-1 mAP Top-1 mAP Top-1

Fold0 0.47 0.28 0.45 0.26 0.46 0.26

Fold1 0.56 0.39 0.61 0.46 0.61 0.45

Fold2 0.50 0.33 0.50 0.33 0.52 0.34

Fold3 0.51 0.31 0.50 0.31 0.52 0.33

Fold4 0.50 0.29 0.47 0.26 0.46 0.27

TABLE VIII
AVERAGED PERFORMANCE ON ESC-50 WITH DIFFERENT PARTITION STRATEGIES

Semantic Embedding
Category-based Strategy Random-based Strategy
mAP Top-1 mAP Top-1

WLE 0.41 0.23 0.51 0.32

GLE 0.38 0.21 0.51 0.32

WLE+GLE 0.38 0.21 0.52 0.33

D. Evaluation Metrics

For evaluation, we calculate the classification accuracy
(Top-1) and mean average precision (mAP) over samples.
Top-1 is the proportion of correctly classified samples to
the total samples. mAP is the mean over samples of the
average precision (AP), which is the average of precisions
at all positions where correct classes are placed in a sorted
class list [39]. In this work, mAP is inversely proportional to
the ranks of corrected classes (in Section IV-B), and perfect
classification achieves a mAP of 1.0 when all correct classes
are top-ranked.

VI. RESULTS AND ANALYSIS

In this section, we discuss the experimental results of zero-
shot learning via semantic embeddings on ESC-50 [3] and
AudioSet [5].

A. Zero-Shot Learning on ESC-50

We report the results of the category-based strategy in Ta-
ble VI, and the ones of the random-based strategy in Table VII,
respectively. For 5-fold cross-validation, the averaged results
of these strategies are compared in Table VIII.

Overall, we obtain better results than random guess, which
should give a mAP / Top-1 of 0.29 / 0.10 in these experiments.
The classification performance varies dramatically across dif-
ferent test class folds in both partition strategies regardless of

label embeddings, which indicates that the partition strategy of
training classes and test classes has a significant influence on
zero-shot learning. Furthermore, we observe that all the three
sets of label embeddings have best results on the “Natural
sounds” in the category-based strategy and the “Fold1” fold
in the random-based strategy. Among these label embeddings,
WLE achieves the best mAP / Top-1 of 0.52 / 0.33 on the
“Natural sounds” while GLE reaches the best mAP of 0.61
and Top-1 of 0.46 on the “Fold1” fold.

On average, WLE achieves better performance in the
category-based strategy with a mAP / Top-1 of 0.41 / 0.23
while WLE+GLE in the random-based strategy reaches a
mAP / Top-1 of 0.52 / 0.33. Considering the performance
on training data, we obtain an averaged training Top-1 of
0.76 with WLE+GLE, 0.64 with WLE and 0.66 with GLE
in the category-based strategy. In the random-based strategy,
the averaged training Top-1 is 0.81 with WLE+GLE, 0.76
with WLE and 0.83 with GLE. It indicates that over-fitting
occurs with WLE+GLE in the category-based strategy and
the partition strategy has an influence on the effectiveness of
semantic embeddings.

On the other hand, we notice that classification performance
increases significantly in the random-based strategy in contrast
to the category-based strategy. In the random-based strategy,
sound classes from the same high-level category are distributed
across training and test data. We conclude that classification
performance can be improved by including classes that are
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TABLE IX
ZERO-SHOT CLASSIFICATION ON THE EXTRACTED SUBSET OF AUDIOSET VIA DIFFERENT SEMANTIC EMBEDDINGS WITH TWO DATA SETTINGS

Type Semantic Embedding
Setting 1 Setting 2

mAP Top-1 mAP Top-1

Label
WLE 0.15 0.06 0.15 0.06
GLE 0.14 0.06 0.14 0.06

WLE+GLE 0.17 0.08 0.19 0.08

Sentence

WSE 0.16 0.07 0.16 0.07
GSE 0.15 0.06 0.15 0.06
BSE 0.17 0.08 0.14 0.07

WSE+GSE 0.16 0.08 0.17 0.09
WSE+BSE 0.14 0.08 0.17 0.08
GSE+BSE 0.18 0.08 0.17 0.09

WSE+GSE+BSE 0.16 0.08 0.18 0.09

Hybrid

WLE+WSE 0.18 0.07 0.18 0.07
GLE+GSE 0.17 0.07 0.21 0.11
WLE+BSE 0.21 0.10 0.19 0.10
GLE+BSE 0.20 0.11 0.20 0.11

WLE+GLE+BSE 0.20 0.12 0.20 0.11

semantically close to the test classes at training stage. Addi-
tionally, for the category-based strategy with WLE, we used
a pre-trained VGGish to generate acoustic embeddings in our
previous work [25] and obtained an averaged Top-1 of 0.26,
which is better than the reported result (0.23) in Table VIII. It
would be possible that the pre-trained VGGish already has
acoustic information about the test classes, which leads to
improved performance.

B. Zero-Shot Learning on AudioSet

The results of different semantic embeddings on two data
settings are presented in Table IX. Overall, we obtain better
results than random guess, which should give a mAP / Top-1 of
0.05 / 0.01 in these experiments. We discuss the effectiveness
of different semantic embeddings in the following paragraphs.

Comparison of label embeddings. We first compare dif-
ferent label embeddings. For WLE and GLE, similar mAPs
(around 0.15) and accuracies (about 0.06) are obtained in
both data settings. By concatenating WLE and GLE, better
results are reached with a mAP / Top-1 of 0.17 / 0.08 in
Setting 1 and 0.19 / 0.08 in Setting 2, respectively. It shows
that classification performance is improved by concatenating
individual label embeddings.

Comparison of sentence embeddings. We experiment
with seven sets of sentence embeddings: individual embed-
dings (i.e., WSE, GSE and BSE), which are generated with
individual language models, and their concatenations (i.e.,
WSE+GSE, WSE+BSE, GSE+BSE, and WSE+GSE+BSE).
For the sake of comparing individual embeddings and their
concatenations, we average the results across these embed-
dings. For individual embeddings, an averaged mAP / Top-1
of 0.16 / 0.07 is achieved in Setting 1, and 0.15 / 0.07 in
Setting 2. In contrast, their concatenations reach an averaged
mAP / Top-1 of 0.16 / 0.08 in Setting 1, and 0.17 / 0.09 in
Setting 2. It shows that classification accuracy is improved by
concatenating individual sentence embeddings.

Comparison of hybrid embeddings. For comparing hybrid
embeddings, we divide them into two groups according to their
concatenated sentence embeddings (i.e., WSE/GSE and BSE).
For hybrid embeddings with WSE/GSE (i.e, WLE+WSE and
GLE+GSE), an averaged mAP / Top-1 of 0.18 / 0.07 is
achieved in Setting 1, and 0.20 / 0.09 in Setting 2. On the
other hand, we observe that hybrid embeddings with BSE (i.e.,
WLE+BSE, GLE+BSE and WLE+GLE+BSE) achieve an av-
eraged mAP / Top-1 of 0.20 / 0.11 in both data settings, which
is better than those of hybrid embeddings with WSE/GSE.

Similarly to label/sentence embeddings, it shows that con-
catenating semantic embeddings generated with different lan-
guage models helps improve classification performance. Since
different language models can learn different aspects (in
Section III-A) of semantic information from textual labels
and sentence descriptions, concatenated embeddings will con-
tain richer semantic information than individual embeddings,
which results in an improvement on the performance.

Comparison of label/sentence/hybrid embeddings. First,
we compare individual label embeddings (i.e., WLE and GLE)
and their hybrid embeddings (i.e., WLE+WSE/WLE+BSE and
GLE+GSE/GLE+BSE). The results in Table IX show that
classification performance is improved for WLE and GLE
by concatenating them with individual sentence embeddings.
Secondly, we compare individual sentence embeddings (i.e.,
WSE, GSE and BSE) and their hybrid embeddings (i.e.,
WLE+WSE, GLE+GSE, and WLE+BSE/GLE+BSE). We ob-
serve that WLE+WSE reaches a better mAP (0.18) than WSE
(0.16) but has the same Top-1 (0.07) in both settings. For GSE,
classification performance is improved by combining it with
GLE (i.e., GLE+GSE) in both settings. Particularly, GLE+GSE
achieves a mAP / Top-1 of 0.21 / 0.11 in Setting 2. Similarly,
we obtain better results with the hybrid embeddings containing
BSE (i.e., WLE+BSE and GLE+BSE) than the individual
BSE. Therefore, we conclude that classification performance
can be improved by concatenating individual label embeddings
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TABLE X
AVERAGED PERFORMANCE ACROSS SEMANTIC EMBEDDINGS ON TWO

DATA SETTINGS OF THE EXTRACTED SUBSET OF AUDIOSET

Type
Setting 1 Setting 2

mAP Top-1 mAP Top-1

Label 0.15 0.07 0.16 0.07

Sentence 0.16 0.08 0.16 0.08

Hybrid 0.19 0.09 0.20 0.10

TABLE XI
CONTINGENCY TABLE FOR SEMANTIC EMBEDDINGS WLE+GLE+BSE

AND GLE+BSE IN AUDIOSET

Correct / Incorrect WLE+GLE+BSE
Predictions correct incorrect

GLE+BSE
correct 1854 381

incorrect 609 18533

and sentence embeddings.
Furthermore, we study the overall effectiveness of these

three types of semantic embeddings by calculating their aver-
aged mAP / Top-1 in Table X. For label embeddings, we obtain
an averaged mAP / Top-1 of 0.15 / 0.07 in Setting 1, and 0.16
/ 0.07 in Setting 2 across WLE, GLE and WLE+GLE. For the
seven sets of sentence embeddings, an averaged mAP / Top-1
of 0.16 / 0.08 is achieved in both data settings. Meanwhile, the
hybrid embeddings reach an averaged mAP / Top-1 of 0.19
/ 0.09 in Setting 1, and 0.20 / 0.10 in Setting 2. It shows
that sentence embeddings have better averaged accuracies
than label embeddings while hybrid embeddings have the
best performance. A possible interpretation for this would be
that sentence descriptions convey richer semantic information
than textual labels while their combination includes all their
semantic information, which results in an improvement on
classification performance.

Comparison of data settings. Table X shows that similar
averaged results (i.e., mAP and Top-1) are observed in both
data settings for different semantic embeddings. It would be
probably due to the sound classes in these AudioSet class folds
being comprehensive enough.

McNemar’s test. We apply McNemar’s test [40] to analyze
statistical significance of the differences between the results of
semantic embeddings. For the sake of simplicity, we compare
WLE+GLE+BSE and GLE+BSE, which achieve the best Top-
1 and the second best Top-1 in Setting 1. With the contingency
Table XI, we obtain a McNemar’s test statistic of 52.05 and
a p-value of 5.41e−13, which shows a significant difference
between the results of WLE+GLE+BSE and GLE+BSE.

Summary. The experimental results show that la-
bel/sentence embeddings of sound classes, such as WLE/GLE
and WSE/GSE/BSE, are useful for zero-shot learning in audio
classification. Classification performance can be improved
by concatenating individual label/sentence embeddings gen-
erated with different language models, such as WLE+GLE
and WSE+GSE. With hybrid embeddings (e.g., WLE+BSE,
GLE+BSE), which are obtained by concatenating individual
label embeddings and sentence embeddings, the results are

improved further.

C. Discussion

So far, zero-shot learning for audio classification has re-
ceived relatively little attention, for example, in comparison
to computer vision research. When formulated as a multi-
label classification problem with some feature inputs, these
two fields are very similar. On the other hand, there are some
factors that make the fields different. In computer vision, zero-
shot learning has been studied with even larger datasets (e.g.,
ImageNet with over 21,000 classes [41]), in comparison to
existing works (e.g., 1,126 classes used in [24] and 521 classes
in this work) in the audio field. With the fine-grained classes
in ImageNet, Xian et al. [20] conducted an in-depth study
of zero-shot learning with respect to the semantic similarity,
hierarchy and popularity between image classes. Meanwhile,
a wider set of semantic information has been explored for
zero-shot learning in computer vision. For instance, human-
defined visual attributes have been widely used as the seman-
tic information of visual classes [15], [16], [18], [20]. Class
hierarchies have also been studied for zero-shot learning
in [17], [18]. Another factor is about the intrinsic properties of
classes in these two fields, which are also present in supervised
classification. For example, in audio, multiple sound sources
are often present simultaneously, forming a complex mixture
of sounds. Visual objects may be partly occluded, but not
usually distorted by other sources. Furthermore, the presence
of visual objects in static image can be considered to be binary
(present or not), whereas the activities of sound classes are
almost always time-varying.

VII. CONCLUSION

In this paper, we present a zero-shot audio classification
method via semantic embeddings that are learned from either
textual labels or sentence descriptions of sound classes. The
experimental results on ESC-50 show that classification per-
formance is significantly improved by involving sound classes
that are semantically close to the test classes in training.
Furthermore, we explore zero-shot learning on a large-scale
audio dataset, which contains 521 sound classes extracted from
AudioSet. We demonstrate that both label and sentence embed-
dings are useful for zero-shot audio classification. Compared
with individual label/sentence embeddings, concatenating em-
beddings generated with language models improves the results.

There is plenty of room to explore for future work. For
instance, the pre-trained language models can be fine-tuned
with sound-specific text corpora for generating high-quality
semantic embeddings of sound classes. To improve label and
sentence embeddings, word embeddings can be aggregated
using advanced methodologies from natural language pro-
cessing literature instead of averaging them. We also notice
that different semantic embeddings result in learning variable
volumes of parameters in the bilinear compatibility function,
which would have an effect on classification performance.
Future studies on semantic embeddings should take these into
account. On the other hand, instead of averaging VGGish-
generated embeddings of non-overlapping segments, acoustic
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embeddings can be improved by generating them from the
entire audio clips with advanced models (e.g., attention mod-
els). Meanwhile, training acoustic/language embedding mod-
els jointly with the bilinear compatibility learning framework
would be beneficial to zero-shot learning. Furthermore, rather
than a simple linear acoustic-semantic projection, nonlinear
ones should be investigated in the future.
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