7,318 research outputs found

    Spaceborne sensors (1983-2000 AD): A forecast of technology

    Get PDF
    A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given

    Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy Efficiency

    Get PDF
    abstract: Static CMOS logic has remained the dominant design style of digital systems for more than four decades due to its robustness and near zero standby current. Static CMOS logic circuits consist of a network of combinational logic cells and clocked sequential elements, such as latches and flip-flops that are used for sequencing computations over time. The majority of the digital design techniques to reduce power, area, and leakage over the past four decades have focused almost entirely on optimizing the combinational logic. This work explores alternate architectures for the flip-flops for improving the overall circuit performance, power and area. It consists of three main sections. First, is the design of a multi-input configurable flip-flop structure with embedded logic. A conventional D-type flip-flop may be viewed as realizing an identity function, in which the output is simply the value of the input sampled at the clock edge. In contrast, the proposed multi-input flip-flop, named PNAND, can be configured to realize one of a family of Boolean functions called threshold functions. In essence, the PNAND is a circuit implementation of the well-known binary perceptron. Unlike other reconfigurable circuits, a PNAND can be configured by simply changing the assignment of signals to its inputs. Using a standard cell library of such gates, a technology mapping algorithm can be applied to transform a given netlist into one with an optimal mixture of conventional logic gates and threshold gates. This approach was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier in 65nm LP technology. Simulation and chip measurements show more than 30% improvement in dynamic power and more than 20% reduction in core area. The functional yield of the PNAND reduces with geometry and voltage scaling. The second part of this research investigates the use of two mechanisms to improve the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM devices for low voltage operation. The third part of this research focused on the design of flip-flops with non-volatile storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated with both conventional D-flipflop and the PNAND circuits to implement non-volatile logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of system locally when a power interruption occurs. However, manufacturing variations in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading to an overly pessimistic design and consequently, higher energy consumption. A detailed analysis of the design trade-offs in the driver circuitry for performing backup and restore, and a novel method to design the energy optimal driver for a given yield is presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented, in which the backup time is determined on a per-chip basis, resulting in minimizing the energy wastage and satisfying the yield constraint. To achieve a yield of 98%, the conventional approach would have to expend nearly 5X more energy than the minimum required, whereas the proposed tunable approach expends only 26% more energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are designed with the same backup and restore circuitry in 65nm technology. The embedded logic in NV-TLFF compensates performance overhead of NVL. This leads to the possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and- accumulate (MAC) unit is designed to demonstrate the performance benefits of the proposed architecture. Based on the results of HSPICE simulations, the MAC circuit with the proposed NV-TLFF cells is shown to consume at least 20% less power and area as compared to the circuit designed with conventional DFFs, without sacrificing any performance.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Security Aspects of Printed Electronics Applications

    Get PDF
    Gedruckte Elektronik (Printed Electronics (PE)) ist eine neu aufkommende Technologie welche komplementär zu konventioneller Elektronik eingesetzt wird. Dessen einzigartigen Merkmale führten zu einen starken Anstieg von Marktanteilen, welche 2010 \$6 Milliarden betrugen, \$41 Milliarden in 2019 und in 2027 geschätzt \$153 Milliarden. Gedruckte Elektronik kombiniert additive Technologien mit funktionalen Tinten um elektronische Komponenten aus verschiedenen Materialien direkt am Verwendungsort, kosteneffizient und umweltfreundlich herzustellen. Die dabei verwendeten Substrate können flexibel, leicht, transparent, großflächig oder implantierbar sein. Dadurch können mit gedruckter Elektronik (noch) visionäre Anwendungen wie Smart-Packaging, elektronische Einmalprodukte, Smart Labels oder digitale Haut realisiert werden. Um den Fortschritt von gedruckten Elektronik-Technologien voranzutreiben, basierten die meisten Optimierungen hauptsächlich auf der Erhöhung von Produktionsausbeute, Reliabilität und Performance. Jedoch wurde auch die Bedeutung von Sicherheitsaspekten von Hardware-Plattformen in den letzten Jahren immer mehr in den Vordergrund gerückt. Da realisierte Anwendungen in gedruckter Elektronik vitale Funktionalitäten bereitstellen können, die sensible Nutzerdaten beinhalten, wie zum Beispiel in implantierten Geräten und intelligenten Pflastern zur Gesundheitsüberwachung, führen Sicherheitsmängel und fehlendes Produktvertrauen in der Herstellungskette zu teils ernsten und schwerwiegenden Problemen. Des Weiteren, wegen den charakteristischen Merkmalen von gedruckter Elektronik, wie zum Beispiel additive Herstellungsverfahren, hohe Strukturgröße, wenige Schichten und begrenzten Produktionsschritten, ist gedruckte Hardware schon per se anfällig für hardware-basierte Attacken wie Reverse-Engineering, Produktfälschung und Hardware-Trojanern. Darüber hinaus ist die Adoption von Gegenmaßnahmen aus konventionellen Technologien unpassend und ineffizient, da solche zu extremen Mehraufwänden in der kostengünstigen Fertigung von gedruckter Elektronik führen würden. Aus diesem Grund liefert diese Arbeit eine Technologie-spezifische Bewertung von Bedrohungen auf der Hardware-Ebene und dessen Gegenmaßnahmen in der Form von Ressourcen-beschränkten Hardware-Primitiven, um die Produktionskette und Funktionalitäten von gedruckter Elektronik-Anwendungen zu schützen. Der erste Beitrag dieser Dissertation ist ein vorgeschlagener Ansatz um gedruckte Physical Unclonable Functions (pPUF) zu entwerfen, welche Sicherheitsschlüssel bereitstellen um mehrere sicherheitsrelevante Gegenmaßnahmen wie Authentifizierung und Fingerabdrücke zu ermöglichen. Zusätzlich optimieren wir die multi-bit pPUF-Designs um den Flächenbedarf eines 16-bit-Schlüssels-Generators um 31\% zu verringern. Außerdem entwickeln wir ein Analyse-Framework basierend auf Monte Carlo-Simulationen für pPUFs, mit welchem wir Simulationen und Herstellungs-basierte Analysen durchführen können. Unsere Ergebnisse haben gezeigt, dass die pPUFs die notwendigen Eigenschaften besitzen um erfolgreich als Sicherheitsanwendung eingesetzt zu werden, wie Einzigartigkeit der Signatur und ausreichende Robustheit. Der Betrieb der gedruckten pPUFs war möglich bis zu sehr geringen Betriebsspannungen von nur 0.5 V. Im zweiten Beitrag dieser Arbeit stellen wir einen kompakten Entwurf eines gedruckten physikalischen Zufallsgenerator vor (True Random Number Generator (pTRNG)), welcher unvorhersehbare Schlüssel für kryptographische Funktionen und zufälligen "Authentication Challenges" generieren kann. Der pTRNG Entwurf verbessert Prozess-Variationen unter Verwendung von einer Anpassungsmethode von gedruckten Widerständen, ermöglicht durch die individuelle Konfigurierbarkeit von gedruckten Schaltungen, um die generierten Bits nur von Zufallsrauschen abhängig zu machen, und damit ein echtes Zufallsverhalten zu erhalten. Die Simulationsergebnisse legen nahe, dass die gesamten Prozessvariationen des TRNGs um das 110-fache verbessert werden, und der zufallsgenerierte Bitstream der TRNGs die "National Institute of Standards and Technology Statistical Test Suit"-Tests bestanden hat. Auch hier können wir nachweisen, dass die Betriebsspannungen der TRNGs von mehreren Volt zu nur 0.5 V lagen, wie unsere Charakterisierungsergebnisse der hergestellten TRNGs aufgezeigt haben. Der dritte Beitrag dieser Dissertation ist die Beschreibung der einzigartigen Merkmale von Schaltungsentwurf und Herstellung von gedruckter Elektronik, welche sehr verschieden zu konventionellen Technologien ist, und dadurch eine neuartige Reverse-Engineering (RE)-Methode notwendig macht. Hierfür stellen wir eine robuste RE-Methode vor, welche auf Supervised-Learning-Algorithmen für gedruckte Schaltungen basiert, um die Vulnerabilität gegenüber RE-Attacken zu demonstrieren. Die RE-Ergebnisse zeigen, dass die vorgestellte RE-Methode auf zahlreiche gedruckte Schaltungen ohne viel Komplexität oder teure Werkzeuge angewandt werden kann. Der letzte Beitrag dieser Arbeit ist ein vorgeschlagenes Konzept für eine "one-time programmable" gedruckte Look-up Table (pLUT), welche beliebige digitale Funktionen realisieren kann und Gegenmaßnahmen unterstützt wie Camouflaging, Split-Manufacturing und Watermarking um Attacken auf der Hardware-Ebene zu verhindern. Ein Vergleich des vorgeschlagenen pLUT-Konzepts mit existierenden Lösungen hat gezeigt, dass die pLUT weniger Flächen-bedarf, geringere worst-case Verzögerungszeiten und Leistungsverbrauch hat. Um die Konfigurierbarkeit der vorgestellten pLUT zu verifizieren, wurde es simuliert, hergestellt und programmiert mittels Tintenstrahl-gedruckter elektrisch leitfähiger Tinte um erfolgreich Logik-Gatter wie XNOR, XOR und AND zu realisieren. Die Simulation und Charakterisierungsergebnisse haben die erfolgreiche Funktionalität der pLUT bei Betriebsspannungen von nur 1 V belegt

    Dynamically Controllable Integrated Radiation and Self-Correcting Power Generation in mm-Wave Circuits and Systems

    Get PDF
    This thesis presents novel design methodologies for integrated radiators and power generation at mm-wave frequencies that are enabled by the continued integration of various electronic and electromagnetic (EM) structures onto the same substrate. Beginning with the observation that transistors and their connections to EM radiating structures on an integrated substrate are essentially free, the concept of multi-port driven (MPD) radiators is introduced, which opens a vast design space that has been generally ignored due to the cost structure associated with discrete components that favors fewer transistors connected to antennas through a single port. From Maxwell's equations, a new antenna architecture, the radial MPD antennas based on the concept of MPD radiators, is analyzed to gain intuition as to the important design parameters that explain the wide-band nature of the antenna itself. The radiator is then designed and implemented at 160 GHz in a 0.13 um SiGe BiCMOS process, and the single element design has a measured effective isotropic radiated power (EIRP) of +4.6 dBm with a total radiated power of 0.63 mW. Next, the radial MPD radiator is adapted to enable dynamic polarization control (DPC). A DPC antenna is capable of controlling its radiated polarization dynamically, and entirely electronically, with no mechanical reconfiguration required. This can be done by having multiple antennas with different polarizations, or within a single antenna that has multiple drive points, as in the case of the MPD radiator with DPC. This radiator changes its polarization by adjusting the relative phase and amplitude of its multiple ports to produce polarizations with any polarization angle, and a wide range of axial ratios. A 2x1 MPD radiator array with DPC at 105 GHz is presented whose measurements show control of the polarization angle throughout the entire 0 degree through 180 degree range while in the linear polarization mode and maintaining axial ratios above 10 dB in all cases. Control of the axial ratio is also demonstrated with a measured range from 2.4 dB through 14 dB, while maintaining a fixed polarization angle. The radiator itself has a measured maximum EIRP of +7.8 dBm, with a total radiated power of 0.9 mW, and is capable of beam steering. MPD radiators were also applied in the domain of integrated silicon photonics. For these designs, the driver transistor circuitry was replaced with silicon optical waveguides and photodiodes to produce a 350 GHz signal. Three of these optical MPD radiator designs have been implemented as 2x2 arrays at 350 GHz. The first is a beam forming array that has a simulated gain of 12.1 dBi with a simulated EIRP of -2 dBm. The second has the same simulated performance, but includes optical phase modulators that enable two-dimensional beam steering. Finally, a third design incorporates multi-antenna DPC by combining the outputs of both left and right handed circularly polarized MPD antennas to produce a linear polarization with controllable polarization angle, and has a simulated gain of 11.9 dBi and EIRP of -3 dBm. In simulation, it can tune the polarization from 0 degrees through 180 degrees while maintaining a radiated power that has a 0.35 dB maximum deviation from the mean. The reliability of mm-wave radiators and power amplifiers was also investigated, and two self-healing systems have been proposed. Self-healing is a global feedback method where integrated sensors detect the performance of the circuit after fabrication and report that data to a digital control algorithm. The algorithm then is capable of setting actuators that can control the performance of the mm-wave circuit and counteract any performance degradation that is observed by the sensors. The first system is for a MPD radiator array with a partially integrated self-healing system. The self-healing MPD radiator senses substrate modes through substrate mode pickup sensors and infers the far-field radiated pattern from those sensors. DC current sensors are also included to determine the DC power consumption of the system. Actuators are implemented in the form of phase and amplitude control of the multiple drive points. The second self-healing system is a fully integrated self-healing power amplifier (PA) at 28 GHz. This system measures the output power, gain and efficiency of the PA using radio frequency (RF) power sensors, DC current sensors and junction temperature sensors. The digital block is synthesized from VHDL code on-chip and it can actuate the output power combining matching network using tunable transmission line stubs, as well as the DC operating point of the amplifying transistors through bias control. Measurements of 20 chips confirm self-healing for two different algorithms for process variation and transistor mismatch, while measurements from 10 chips show healing for load impedance mismatch, and linearity healing. Laser induced partial and total transistor failure show the benefit of self-healing in the case of catastrophic failure, with improvements of up to 3.9 dB over the default case. An exemplary yield specification shows self-healing improving the yield from 0% up through 80%.</p

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Adaptive Integrated Circuit Design for Variation Resilience and Security

    Get PDF
    The past few decades witness the burgeoning development of integrated circuit in terms of process technology scaling. Along with the tremendous benefits coming from the scaling, challenges are also presented in various stages. During the design time, the complexity of developing a circuit with millions to billions of smaller size transistors is extended after the variations are taken into account. The difficulty of analyzing these nondeterministic properties makes the allocation scheme of redundant resource hardly work in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from severe performance degradations owing to their physical attributes which are vulnerable to aging effects. As such, the post-silicon calibration approach gains increasing attentions to compensate the performance mismatch. For the user-end applications, additional system failures result from the pirated and counterfeited devices provided by the untrusted semiconductor supply chain. Again analog circuits show their weakness to this threat due to the shortage of piracy avoidance techniques. In this dissertation, we propose three adaptive integrated circuit designs to overcome these challenges respectively. The first one investigates the variability-aware gate implementation with the consideration of the overhead control of adaptivity assignment. This design improves the variation resilience typically for digital circuits while optimizing the power consumption and timing yield. The second design is implemented as a self-validation system for the calibration of diverse analog circuits. The system is completely integrated on chip to enhance the convenience without external assistance. In the last design, a classic analog component is further studied to establish the configurable locking mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the difficulty of searching the unique unlocking pattern of non-Boolean variables

    Resource Management Algorithms for Computing Hardware Design and Operations: From Circuits to Systems

    Get PDF
    The complexity of computation hardware has increased at an unprecedented rate for the last few decades. On the computer chip level, we have entered the era of multi/many-core processors made of billions of transistors. With transistor budget of this scale, many functions are integrated into a single chip. As such, chips today consist of many heterogeneous cores with intensive interaction among these cores. On the circuit level, with the end of Dennard scaling, continuously shrinking process technology has imposed a grand challenge on power density. The variation of circuit further exacerbated the problem by consuming a substantial time margin. On the system level, the rise of Warehouse Scale Computers and Data Centers have put resource management into new perspective. The ability of dynamically provision computation resource in these gigantic systems is crucial to their performance. In this thesis, three different resource management algorithms are discussed. The first algorithm assigns adaptivity resource to circuit blocks with a constraint on the overhead. The adaptivity improves resilience of the circuit to variation in a cost-effective way. The second algorithm manages the link bandwidth resource in application specific Networks-on-Chip. Quality-of-Service is guaranteed for time-critical traffic in the algorithm with an emphasis on power. The third algorithm manages the computation resource of the data center with precaution on the ill states of the system. Q-learning is employed to meet the dynamic nature of the system and Linear Temporal Logic is leveraged as a tool to describe temporal constraints. All three algorithms are evaluated by various experiments. The experimental results are compared to several previous work and show the advantage of our methods

    Algorithmic techniques for nanometer VLSI design and manufacturing closure

    Get PDF
    As Very Large Scale Integration (VLSI) technology moves to the nanoscale regime, design and manufacturing closure becomes very difficult to achieve due to increasing chip and power density. Imperfections due to process, voltage and temperature variations aggravate the problem. Uncertainty in electrical characteristic of individual device and wire may cause significant performance deviations or even functional failures. These impose tremendous challenges to the continuation of Moore's law as well as the growth of semiconductor industry. Efforts are needed in both deterministic design stage and variation-aware design stage. This research proposes various innovative algorithms to address both stages for obtaining a design with high frequency, low power and high robustness. For deterministic optimizations, new buffer insertion and gate sizing techniques are proposed. For variation-aware optimizations, new lithography-driven and post-silicon tuning-driven design techniques are proposed. For buffer insertion, a new slew buffering formulation is presented and is proved to be NP-hard. Despite this, a highly efficient algorithm which runs > 90x faster than the best alternatives is proposed. The algorithm is also extended to handle continuous buffer locations and blockages. For gate sizing, a new algorithm is proposed to handle discrete gate library in contrast to unrealistic continuous gate library assumed by most existing algorithms. Our approach is a continuous solution guided dynamic programming approach, which integrates the high solution quality of dynamic programming with the short runtime of rounding continuous solution. For lithography-driven optimization, the problem of cell placement considering manufacturability is studied. Three algorithms are proposed to handle cell flipping and relocation. They are based on dynamic programming and graph theoretic approaches, and can provide different tradeoff between variation reduction and wire- length increase. For post-silicon tuning-driven optimization, the problem of unified adaptivity optimization on logical and clock signal tuning is studied, which enables us to significantly save resources. The new algorithm is based on a novel linear programming formulation which is solved by an advanced robust linear programming technique. The continuous solution is then discretized using binary search accelerated dynamic programming, batch based optimization, and Latin Hypercube sampling based fast simulation
    corecore