
ALGORITHMIC TECHNIQUES FOR NANOMETER VLSI DESIGN AND

MANUFACTURING CLOSURE

A Dissertation

by

SHIYAN HU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2008

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4273964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ALGORITHMIC TECHNIQUES FOR NANOMETER VLSI DESIGN AND

MANUFACTURING CLOSURE

A Dissertation

by

SHIYAN HU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jiang Hu
Committee Members, Charles J. Alpert

Mosong Cheng
Donald K. Friesen
Weiping Shi

Head of Department, Costas N.Georghiades

May 2008

Major Subject: Computer Engineering

iii

ABSTRACT

Algorithmic Techniques for Nanometer VLSI Design and Manufacturing Closure.

(May 2008)

Shiyan Hu, B.S., Beijing University of Aeronautics and Astronautics;

M.S., Polytechnic University, Brooklyn, NY

Chair of Advisory Committee: Dr. Jiang Hu

As Very Large Scale Integration (VLSI) technology moves to the nanoscale

regime, design and manufacturing closure becomes very difficult to achieve due to

increasing chip and power density. Imperfections due to process, voltage and tem-

perature variations aggravate the problem. Uncertainty in electrical characteristic of

individual device and wire may cause significant performance deviations or even func-

tional failures. These impose tremendous challenges to the continuation of Moore’s

law as well as the growth of semiconductor industry.

Efforts are needed in both deterministic design stage and variation-aware design

stage. This research proposes various innovative algorithms to address both stages for

obtaining a design with high frequency, low power and high robustness. For determin-

istic optimizations, new buffer insertion and gate sizing techniques are proposed. For

variation-aware optimizations, new lithography-driven and post-silicon tuning-driven

design techniques are proposed.

For buffer insertion, a new slew buffering formulation is presented and is proved

to be NP-hard. Despite this, a highly efficient algorithm which runs > 90× faster

than the best alternatives is proposed. The algorithm is also extended to handle

continuous buffer locations and blockages.

For gate sizing, a new algorithm is proposed to handle discrete gate library in

contrast to unrealistic continuous gate library assumed by most existing algorithms.

iv

Our approach is a continuous solution guided dynamic programming approach, which

integrates the high solution quality of dynamic programming with the short runtime

of rounding continuous solution.

For lithography-driven optimization, the problem of cell placement considering

manufacturability is studied. Three algorithms are proposed to handle cell flipping

and relocation. They are based on dynamic programming and graph theoretic ap-

proaches, and can provide different tradeoff between variation reduction and wire-

length increase.

For post-silicon tuning-driven optimization, the problem of unified adaptivity

optimization on logical and clock signal tuning is studied, which enables us to signif-

icantly save resources. The new algorithm is based on a novel linear programming

formulation which is solved by an advanced robust linear programming technique.

The continuous solution is then discretized using binary search accelerated dynamic

programming, batch based optimization, and Latin Hypercube sampling based fast

simulation.

v

To my parents Changxin Hu and Xiaoyu Hu.

vi

ACKNOWLEDGMENTS

I would like to express my great thanks to my advisor Dr. Jiang Hu for his

kind guidance for my Ph.D. study. Dr. Jiang Hu introduced me the field of VLSI

Computer-Aided Design. He shared his deep knowledge and research experience with

me and constantly provided invaluable advise to me. I truly appreciate all of his

academic, moral and financial support to me.

Many thanks to my Ph.D. dissertation committee members, Dr. Charles Alpert,

Dr. Mosong Cheng, Dr. Donald Friesen, Dr. Jiang Hu and Dr. Weiping Shi. I really

appreciate their invaluable assistance to my dissertation.

In addition, I would like to thank Dr. Weiping Shi for instructing great courses on

physical design where I learned a lot. He also spent much time in discussing various

CAD problems with me. I really appreciate Dr. Charles Alpert in IBM Austin

Research Lab for being my mentor and manager when I was an intern there. He

shared his great academic and industrial experience with me. Special thanks to Dr.

Mosong Cheng and Dr. Donald Friesen for giving many highly valuable comments on

my preliminary examination, proposal and dissertation. I would also like to thank the

graduate students Ganesh Venkataraman, Zhuo Feng, Pratik Shah, Zhanyuan Jiang

and Nikhil Jayakumar in Computer Engineering group at Texas A&M University for

their helps on my research.

Last, but not least, I would like to express my greatest gratefulness to my family

for their long-lasting encouragement and support.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Preliminaries and Motivation 1

B. Contribution . 4

1. Fast Algorithms for Slew Constrained Minimum

Cost Buffering . 4

2. Gate Sizing for Cell Library-Based Designs 5

3. Pattern Sensitive Placement for Manufacturability . . 7

4. Unified Adaptivity Optimization of Clock and Logic

Signals . 9

II FAST ALGORITHMS FOR SLEW CONSTRAINED

MINIMUM COST BUFFERING 11

A. Introduction . 11

B. Preliminaries . 15

C. Complexity of Slew Buffering Problem 18

D. Slew Constrained Minimum Cost Buffering Algorithms . . 20

1. Overview of Classic Timing-Driven Buffering 20

2. Discrete Slew Buffering Assuming Fixed Input Slew . 22

a. Algorithm . 22

b. Critical Differences from Timing Buffering 24

c. Implementation Experiences 25

3. Discrete Buffering without Input Slew Assumptions . 28

a. Basic Modifications 28

b. Reduction to Maximum Bipartite Matching . . . 30

4. Continuous Slew Buffering 32

5. Buffer Blockage Avoidance 37

E. Discussion of Related Approaches 40

1. Minimum Cost Slew Constrained Timing Buffering . . 40

2. Capacitance-Based Buffering 41

F. Experimental Results . 41

1. Experiment Setup . 41

2. Comparison with Timing Buffering 43

3. Slew Buffering with Non-Fixed Input Slew 46

viii

CHAPTER Page

4. Continuous Slew Buffering 47

5. Handling Blockage . 49

6. Comparison with Capacitance-Based Buffering 50

G. Conclusion . 51

III GATE SIZING FOR CELL LIBRARY-BASED DESIGNS . . . 52

A. Introduction . 52

B. Problem Formulation . 54

C. Optimization Methodology 55

1. Error Due to Nearest Rounding 55

2. Proposed Methodology 58

D. Discretization Algorithm 59

1. Explore Gate Sizes Close to the Continuous Solution . 61

2. Solution Pruning . 62

3. Solution Clustering by LSH 65

E. Experimental Results . 68

F. Conclusion . 72

IV PATTERN SENSITIVE PLACEMENT FOR MANUFAC-

TURABILITY . 74

A. Introduction . 74

B. Preliminaries . 78

1. Motivation . 78

2. Pattern . 78

3. Lookup Table for Manufacturability Cost 81

4. Problem Formulation 82

C. Cell Flipping . 84

1. Algorithmic Overview 84

2. Solution Characterization 85

3. Solution Propagation 85

4. Solution Pruning . 85

D. Single Row Optimization and Multiple Row Optimization . 88

1. Algorithmic Overview (Single Row Optimization) . . . 88

2. Unconstrained Optimal Manufacturability-Driven

Placement . 89

3. Manufacturability-Wirelength Tradeoff 91

4. Extension to Multiple Row Optimization 94

E. Experimental Results . 96

ix

CHAPTER Page

1. Experiment Setup . 96

2. Experiments with ISCAS’89 Benchmark Circuits . . . 97

3. Experiments with ISPD’04 Benchmark Circuits 100

F. Conclusion . 102

V UNIFIED ADAPTIVITY OPTIMIZATION OF CLOCK AND

LOGIC SIGNALS . 105

A. Introduction . 105

B. Preliminaries and Motivation 109

C. Overall Flow . 113

D. Continuous Optimization 113

1. Linear Programming Formulation 113

2. Robust Linear Programming 116

3. Adaptive Application of Robust Linear Programming 118

E. Discretization . 119

1. Discretizating PST Clock Buffers 120

a. Solution Characterization 121

b. Solution Propagation 121

c. Acceleration by Pruning 121

2. Discretizing Logic Circuits 122

3. Fast Simulations for Timing Yield Estimation 124

4. Time Complexity . 126

F. Experiments . 127

1. Continuous Adaptivity Optimization 128

2. Discretization . 129

G. Conclusion . 135

VI CONCLUSION . 136

REFERENCES . 138

VITA . 147

x

LIST OF TABLES

TABLE Page

I Technology trend for VLSI chips [1]. 1

II C, Q values for sinks [19]. 19

III C, R,W values for each buffer type [19]. 20

IV Comparison of discrete slew buffering (SB) and slew constrained

timing buffering (VGL+S). #S refers to the average number of

non-dominated solutions at driver. Slack is in ns. CPU time is in

seconds. 43

V Slew constrained buffering with pruning based on (C, W), CWB.

#S: the number of non-dominated solutions at driver. Area Sav-

ing is obtained comparing to SB. 45

VI The comparison of SB and VGL+S+PSP (VGL+S incorporated

with pre-buffer slack pruning [19]). Speed up refers to the runtime

difference between SB and VGL+S+PSP. 47

VII Comparison of discrete slew buffering (SB) and slew constrained

timing buffering (VGL+SB+PSP) on 100 large-degree nets. Slack

is in ns. 47

VIII Results of slew buffering with non-fixed input slew. Area sav-

ing is obtained by comparing to SB. Degrad. refers to the slack

degradation obtained by comparing to VGL+S. 48

IX Results of continuous slew buffering. Area saving is obtained by

comparing to SB. Degrad. refers to the slack degradation obtained

by comparing to VGL+S. 49

X Handling blockage. Each net has 30% blockage area. Area saving

is obtained by comparing to SB. 50

xi

TABLE Page

XI Capacitance-based buffering (CBB). Only a single typical buffer

is used. Area saving is obtained by comparing to SB. 50

XII Comparisons using a library with 10 sizes per gate type. Timing

constraints and slack are in ps. CPU in seconds is runtime. Area

refers to area cost. Area red. refers to the area reduction ratio

between NEW and [6]. 69

XIII Comparisons using a sparser library with 6 sizes per gate type.

Timing constraints and slack are in ps. CPU in seconds is runtime.

Area refers to area cost. Area red. refers to the area reduction

ratio between NEW and [6]. 69

XIV Performance of each algorithm on ISCAS’89 benchmark circuits.

W.I. refers to the wirelength increase and V.D. refers to the vari-

ation reduction. CPU time is in seconds. 99

XV Cell flipping using pruning technique in [51]. 101

XVI Single Row Optimization results without considering wirelength

constraint. 102

XVII Statistics of ISPD’04 benchmark circuits [53]. 103

XVIII Performance of each algorithm on ISPD’04 benchmark circuits.

CPU time is in seconds. 104

XIX Statistics of ISCAS’89 benchmark circuits. #Bk refers to the

number of blocks and #Buf refers to the number of clock buffers. . . 131

XX Continuous optimizations on ISCAS’89 benchmark circuits. #Bk

refers to the number of blocks and #Buf refers to the number of

clock buffers. Area reduction is obtained by comparing the area

of Our Discrete Solution with the minimum area of Logic Signal

Adaptivity and Clock Signal Adaptivity. 132

XXI Discrete Solutions for ISCAS’89 benchmark circuits with large

tuning step. Runtime for computing nearest rounding and discrete

solution includes the runtime for computing continuous solutions.

Area reduction and speedup are obtained by comparing to binary batch.132

xii

TABLE Page

XXII Discrete Solutions for ISCAS’89 benchmark circuits with small

tuning step. Runtime for computing nearest rounding and discrete

solution includes the runtime for computing continuous solutions.

Area reduction and speedup are obtained by comparing to binary batch.134

xiii

LIST OF FIGURES

FIGURE Page

1 The power consumption for a system-on-chip design [1]. 2

2 The slew-capacitance curve of an inverter. 16

3 Underlying routing tree and buffer positions [19]. 19

4 Slew constrained minimum cost buffering algorithm with fixed

buffer input slew. 26

5 Procedure of updating solution set for slew buffering with fixed

buffer input slew. 27

6 An example of handling non-fixed input slew. 29

7 Slew constrained minimum cost buffering algorithm with non-

fixed buffer input slew. 33

8 Procedure for updating solution set for slew buffering with non-

fixed buffer input slew. 34

9 Continuous slew constrained minimum cost buffering algorithm

with fixed buffer input slew. 35

10 Procedure of updating solution set for continuous slew buffering

with fixed buffer input slew. 36

11 Continuous slew constrained minimum cost buffering algorithm

with non-fixed buffer input slew. 38

12 Procedure of updating solution set for continuous slew buffering

with non-fixed buffer input slew. 39

13 Illustration of time complexity of SB. +: log (number of buffer

positions) v.s. log (CPU time) for slew buffering with slew con-

straint 1.0ns. Line: best linear fit. 46

xiv

FIGURE Page

14 An example for illustrating rounding error bound due to nearest

rounding. 57

15 Pseudocode for discretization algorithm 60

16 A cutline. 64

17 Illustration of concepts in LSH. 66

18 Gate size histogram for the whole circuit and the critical path of

C432 benchmark circuit. 71

19 Gate size histogram for the whole circuit and the critical path of

C1908 benchmark circuit. 72

20 Delay-cost tradeoff curves for optimizing two ISCAS benchmark

circuits. The results of NEW and Coudert’s approach [6] are

shown. 73

21 Lithography optimization through cell flipping. This design is ex-

tracted from an ISCAS’89 benchmark circuit, where an NAND, an

inverter and an XNOR gate are placed in series. Though flipping

the middle inverter, average CD variation for boundary gate polys

is reduced from 9.4% of the nominal value to 6.9% of the nominal

value. Rectangles shown are polys. CD variation is obtained from

Calibre LFD which considers OPC effects. 79

22 Definition of manufacturability cost for cells. Rectangles shown

are polys. 80

23 Solution pruning: (a) before pruning (b) inferiority check when

the fifth cell is unflipped (c) inferiority check when the fifth cell

is flipped. The triangle denotes the cell orientation. A cell with

triangle on the right denotes an unflipped cell and with triangle

on the left denotes a flipped cell. 86

24 Cell flipping algorithm for a single row. 87

25 A placement with three cells. 90

26 Graph G corresponding to Figure 25. 90

xv

FIGURE Page

27 Obtaining tradeoff between manufacturability cost and wirelength:

(a) two initial solutions with best manufacturabiliy cost (Optimal

Litho) and best wirelength (Original) (b) an intermediate solu-

tion is obtained by exchanging cells with maximum link crossings

(which are C, E in this case). 92

28 Single row optimization algorithm. 93

29 Group optimization algorithm. 94

30 An example of multiple row optimization: (a) original circuit (b)

an intermediate solution in single row optimization (c) an inter-

mediate solution in multiple row optimization. 95

31 Multiple row optimization algorithm. 97

32 Tradeoff between CD variation reduction and wirelength increase

using single row optimization for s15850. 100

33 A sequential circuit where the arrows show the signal flow direc-

tions. The central square is the clock source and the triangles are

clock buffers. 111

34 Part of a sequential circuit. The dotted region is the circuit block. . . 115

35 Left: random sampling. Right: LH sampling. × denotes a sample. . . 126

36 A three-level clock tree. Dotted region refers to the covered circuit

by the clock buffer. 126

37 Cost-Yield tradeoff curve for s1423 by the unified optimization. . . . 130

1

CHAPTER I

INTRODUCTION

A. Preliminaries and Motivation

As Very Large Scale Integration (VLSI) technology moves to the nanoscale regime,

feature size keeps shrinking which results in large chip density (refer to Table I).

Consequently, a chip often consists of millions of gates and circuit design becomes in-

creasingly complex. Design automation techniques are essential to meet the challenge

of tightening time-to-market pressure and shortening semiconductor product cycles.

Table I. Technology trend for VLSI chips [1].

Technology node 130nm 90nm 65nm 45nm

Chip density (Million transistors
cm2) 25 77 154 309

Gate length (nm) 90 53 25 18

Tolerable variation (nm) 5.3 3.75 2.5 2

Wavelength (nm) 248 193 193 193

In spite of the advances in design automation techniques, design closure is in-

creasingly difficult to achieve. A critical issue is to close the timing with low power

consumption. Prevailing Integrated Circuit (IC) designs often have higher power dis-

sipation than before due to greater device density, more metal layers and faster clock

frequency, etc. This trend can be seen from Figure 1 which shows the power con-

sumption of a class of system-on-ship designs. High power consumption has been a

crucial concern for both portable electronics and non-mobile systems. For portable

The journal model is IEEE Transactions on Automatic Control.

2

electronics, low power dissipation may elongate battery lifetime. For non-mobile sys-

tems, large amount of heat due to high power dissipation imposes great difficulties to

the packaging and cooling systems. Clearly, both circuit performance and reliability

substantially depend on the solution to the power-heat problem.

2005 2006 2007 2008 2009 2010 2011 2012
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Year

N
or

m
al

iz
ed

 D
yn

am
ic

 P
lu

s
S

ta
tic

 P
ow

er

Fig. 1. The power consumption for a system-on-chip design [1].

Power issues must be addressed in circuit design. For example, when performing

buffer insertion to the circuit for timing and slew optimization, a significant part of

the performance of the design depends on using as little buffering resources as pos-

sible since buffers themselves are a drain on power and can cause other gates to be

sized to higher power levels. As power can be modeled by a generic cost function,

cost minimization needs to be considered during circuit optimization. This disserta-

tion explores two widely used optimization techniques, namely buffer insertion and

gate sizing, and proposes several innovative algorithmic techniques for performance

optimization with cost minimization.

On the other hand, with fast technology scaling, imperfections due to process,

3

voltage and temperature variations impose a tremendous challenge to the continuation

of Moore’s law as well as the growth of semiconductor industry. With increasingly

shrinking features on the die, uncertainty in electrical characteristic of each individual

device and wire significantly increases. Consequently, circuit performance is no longer

determined solely by deterministic values and many previously negligible variations

start to manifest, which may cause performance deviations or even functional failures.

Even for 180nm technology, variations up to 20× in leakage and 30% in frequency

have been reported in industrial chip designs [2].

Since variations may significantly divert circuit performance from the desired

values, optimizations need to be performed to mitigate variation effects to achieve

design and manufacturing closure. One way is to perturb the design to mitigate the

variations it may receive. For example, an existing layout can be modified to be

lithography friendly and then variations can be significantly reduced in fabrication

process. Since there are always variations even after strongest variation mitigation

techniques, it is also necessary to enable a circuit to be tunable after fabrication to

further compensate for variations. These two classes of techniques are complementary

to each other and this dissertation explores both of them to address the variation

issues.

Clearly, to achieve design and manufacturing closure, efforts are needed in both

deterministic design stage and variation-aware design stage. Deterministic design

stage refers to the traditional circuit design without handling variations. With in-

creasing design complexity, innovative effective and efficient algorithmic techniques

are needed to compute a high quality design in terms of both timing and power. After

that, variation-aware techniques are performed to the obtained deterministic design

to improve the robustness of the design and the productivity.

4

B. Contribution

This dissertation heavily addresses both design stages and proposes various algorithms

to address the challenge of obtaining a design with high frequency, low power and

high robustness. For deterministic optimizations, new buffer insertion and gate sizing

techniques are proposed. For variation-aware optimizations, new lithography-driven

design techniques and post-silicon tuning-driven techniques are proposed.

1. Fast Algorithms for Slew Constrained Minimum Cost Buffering

As interconnect scales slower than device, interconnect delay has become a significant

bottleneck for circuit performance [3, 4]. As an effective technique to reduce inter-

connect delay, buffer insertion has been widely used in practice. For example, it has

been well documented [3, 5] that the number of buffers on a chip is rising dramati-

cally. Osler [5] cites two IBM ASIC designs where 25% of the gates are buffers. In

addition, interconnect resistivity causes signal integrity to degrade more quickly with

advancing technologies. Thus, buffers also need to be inserted on long interconnects

to meet slew constraints, even if these nets are not timing critical.

In reality, slew constraint is much more prevalent than timing constraint: it is

reported in [5] that only a fraction (roughly 5-10%) of nets need to be re-buffered

for delay optimization; for the remaining fraction (roughly 90-95%), the slew based

buffer insertion was sufficient to meet the net’s timing constraint. In other words,

it is sufficient to buffer all nets to fix slew violations without worrying about delay.

Those small fraction of buffered nets that subsequently show up as critical can then

be re-buffered with a delay based objective function. As the sheer number of buffers

can degrade overall design performance by forcing the rest of the logic to be spread

further apart to accommodate those buffers, one also wishes to use as little buffering

5

resources as possible.

We first formulate the problem as to find the minimum area buffering solution

such that slew constraints are satisfied. Based on the new formulation, the general

slew buffering problem is shown to be NP-Complete. Despite the difficulty of the

problem, some highly efficient and practical algorithms are proposed. First, for a

single buffer type, an optimal linear time solution is achievable. Second, for multi-

ple buffer types, a very efficient dynamic programming based optimal slew buffering

algorithm is designed under the assumption that the input slew to each buffer is

fixed. Experiments show that compared to slew constrained timing buffering, > 90×
speedup is achieved while still saving area. Third, if the input slew to each buffer

is not fixed, the dynamic programming cannot be easily applied since the upstream

knowledge is needed to compute the input slew. We propose a maximum matching

based new algorithm to handle this difficult case. Experimental results demonstrate

that up to 21.9% buffer area can be further saved. Fourth, when buffer positions can

be freely chosen, slew buffering may allow more efficient buffer usage. A continuous

slew buffering algorithm incorporating adaptive buffer selection idea is proposed for

this purpose. It handles 1000 nets in only 30 seconds and often extra 5% buffer area

saving can be obtained. The algorithm is further extended to handle blockages which

makes it ready for practical use. Refer to Chapter II for the details of the project.

2. Gate Sizing for Cell Library-Based Designs

In addition to interconnect optimizations, gate delay optimizations are studied in the

dissertation. With increasing time-to-market pressure and shortening semiconductor

product cycles, more and more chips are being designed with library-based method-

ologies. In cell library based designs, a handful set of gate sizing techniques exist.

However, most of them handle the continuous gate sizing problem which is based on

6

the assumption that gate sizes can be any values within certain range. When gate

implementations are restricted to discrete sizes, as in reality, the problem becomes

much more difficult and very few approaches (see, e.g., [6]) are known. On the other

hand, a large number of realistic cell libraries are “sparse”. For example, when the cell

sizes are geometrically spaced instead of uniformly spaced, significant sparseness is

introduced. Refer to [7] for some realistic sparse libraries. Geometrically spaced gate

sizes are desired because uniformly spaced gate sizes would result in a large number

of gate sizes and managing this large volume of data is difficult [7]. Furthermore, it is

proven in [7] that under certain conditions, the set of optimal gate sizes must satisfy

the geometric progression.

In this project, we propose a novel gate sizing technique which directly handles

discrete gate sizes. As many efficient solutions exist for the continuous gate sizing

problem, one might think of obtaining a discrete solution through rounding a continu-

ous solution. This is very fast but often results in large timing violations. In contrast,

the method proposed by Coudert [6], which is based on the multi-dimensional descent

optimization, directly handles the discrete sizes. However, it has some trial-and-error

flavor and has room for further improvement. A dynamic programming approach

can search solutions more systematically and thus has the potential to generate high

quality solutions. However, it may suffer from large computation overhead, which

imposes a great challenge to our problem.

The key idea of the new algorithm is to integrate the solution quality of dy-

namic programming with the short runtime of rounding continuous solution. That

is, we narrow down the searching space of dynamic programming under the guidance

from a best continuous solution. Thus instead of checking every implementation, our

algorithm only investigates a number of discrete implementations around the best

continuous solution. This enables us to find solutions with quality close to the best

7

continuous case and at the same time obtain huge speedup in computation. Our ex-

perimental results demonstrate that nearest rounding often leads to significant timing

violations and compared to [6], our algorithm saves up to 21% area while satisfying

the timing constraint. Refer to Chapter III for the details of the project.

3. Pattern Sensitive Placement for Manufacturability

Lithography-induced variation is a main source of variations. It is due to the fact

that with technology scaling, demands for minimum feature sizes have outpaced the

advances in lithography hardware solutions and smaller amount of variations can

be tolerated, which are evident from Table I. These impose great challenges on

manufacturing reliability. In current lithography technology, 193nm wavelength is

used to print 45nm features. This leads to a lot of refractive effects and images on

wafer have remarkable mismatches from mask layouts. Lithography-induced variation

also aggravates. As more variations are presented with e.g., gate length, timing and

power of circuits are significantly affected.

Currently, semiconductor industry heavily relies on resolution enhancement tech-

niques (RETs) for improving printability. Roughly speaking, printability refers to the

difficulty in obtaining a good match between the intended image and the printed im-

age in lithography process. Printability is often measured by critical dimension (CD)

accuracy, which refers to the size of thin features which are difficult to print reliably.

Thus, achieving high CD accuracy means that the printed patterns well match the

desired ones. RETs are effective in improving CD accuracy. However, increasingly

shrinking features on the die and increasing complexity of the design over-stretch the

capability of RETs. This problem aggravates when RETs are applied to the layouts

which are not lithography friendly. Furthermore, RETs often complicate photomark

shapes and introduce large additional cost to photomask fabrication, which makes

8

RETs expensive to apply. To attack the above issues, efforts are needed in all process

and design stages. With respect to physical design, manufacturability-aware method-

ologies would be performed in order to reduce the burden of manufactures and make

RETs less expensive to apply. Furthermore, since variability has big impact on power,

design for manufacturability also tends to mitigate the lithography-induced variations

on power.

Placement of cells has remarkable effect on printability. This is due to the fact

that gate lengths for transistors on the boundary regions of a cell significantly de-

pend on its neighboring cells. Although sound library cell design can achieve high

printability for internal transistors, it cannot handle the boundary transistors. On

the other hand, as the gate length keeps shrinking with technologies, the placement

will affect deeper and deeper regions of the cells.

In this project, the problem of cell placement considering manufacturability is

studied. Instead of designing a new cell placer, our goal is to tune any existing cell

placement solution to be lithography friendly. For this purpose, three algorithms

are proposed, which are cell flipping algorithm, single row optimization approach

and multiple row optimization approach. These algorithms are based on dynamic

programming and graph theoretic approaches, and can provide different tradeoff be-

tween critical dimension (CD) variation reduction and wirelength increase. Using

lithography simulations, our experimental results on realistic netlists and cell library

demonstrate that over 15% CD variation reduction can be obtained by the new ap-

proaches while only less than 1% additional wire is introduced. Refer to Chapter IV

for the details of the project.

9

4. Unified Adaptivity Optimization of Clock and Logic Signals

In addition to lithography-driven optimizations, statistical optimization approaches

are a class of effective approaches to handle variations and improve yield. In statistical

optimizations, each gate or wire delay is modeled as a probabilistic density function

(PDF) in contrast to a deterministic value. Based on that, the goal of the circuit

optimizations is to optimize the PDF of the whole circuit delay. They are performed

in the pre-silicon phase (e.g., [8, 9, 10]). That is, circuit parameters are determined

in design time for yield optimization. With statistical variation models, they obtain

the statistically optimized design and apply the design to all the dies. Although the

optimized design is of good quality in statistical sense, the design is not necessarily

ideal for each individual fabricated chip. Specific circuit parameter variations on the

die cannot be mitigated. In addition, reliable statistical variation models are not easy

to obtain [11].

In contrast to pre-silicon statistical optimizations, post-silicon tuning methodol-

ogy can tune some circuit parameters after the chip is fabricated. This enables us to

mitigate the specific circuit parameter variations on the individual chip to satisfy the

design target. As a result, the timing yield can be significantly improved [12, 11].

Clearly, it is highly desirable to perform circuit adaptivity optimization for post-

silicon tuning. Since making a circuit element post-silicon tunable necessarily intro-

duces overhead, adaptivity optimization for post-silicon tuning aims to provide large

tunability with small overhead. Previous works focus on either logic signal tuning

(e.g., [12, 13, 11]) or clock signal tuning (e.g., [14, 15]). These approaches are effec-

tive, however, the resource utilization is not necessarily efficient since the interaction

between logic circuit and clock network is not explored. Performing unified adaptiv-

ity optimization on clock and logic signals has the potential to significantly reduce

10

overhead while still having large tunability for achieving yield target.

Our unified optimization is based on a novel linear programming formulation

which can be efficiently solved by an advanced robust linear programming technique.

Due to the discrete nature of the problem, the continuous solution obtained from lin-

ear programming is then efficiently discretized. This procedure involves binary search

accelerated dynamic programming, batch based optimization, and Latin Hypercube

sampling based fast simulation. Our experimental results demonstrate that up to

50% area cost reduction can be obtained by the unified optimization compared to op-

timization on logic or clock alone. In addition, the proposed discretization approach

significantly outperforms the alternatives in terms of solution quality and runtime.

Refer to Chapter V for the details of the project.

11

CHAPTER II

FAST ALGORITHMS FOR SLEW CONSTRAINED

MINIMUM COST BUFFERING

As a prevalent constraint, sharp slew rate is often required in circuit design which

causes a huge demand for buffering resources. This problem requires ultra-fast buffer-

ing techniques to handle large volume of nets, while also minimizing buffering cost.

This problem is intensively studied in this paper. First, a highly efficient algorithm

based on dynamic programming is proposed to optimally solve slew buffering with

discrete buffer locations. Second, a new algorithm using the maximum matching

technique is developed to handle the difficult cases in which no assumption is made

on buffer input slew. Third, an adaptive buffer selection approach is proposed to effi-

ciently handle slew buffering with continuous buffer locations. Fourth, buffer blockage

avoidance is handled, which makes the algorithms ready for practical use.

Experiments on industrial netlists demonstrate that our algorithms are very ef-

fective and highly efficient: we achieve about 90× speed up and save up to 20% buffer

area over the commonly-used van Ginneken style buffering. The new algorithms also

significantly outperform previous works that indirectly address the slew buffering

problem1.

A. Introduction

As VLSI technology moves to the 65 nm node and beyond, it has been well docu-

mented [3, 5] that the number of buffers on a chip is rising dramatically. Osler [5]

1Copyright c©2007 IEEE. Reprinted, with permission, from S. Hu, C. J. Alpert, J.
Hu, S. Karandikar, Z. Li, W. Shi and C. N. Sze, Fast algorithms for slew constrained
minimum cost buffering, IEEE Transactions on Computer-Aided Design, Vol. 26, No.
11, pp. 2009-2022, November, 2007.

12

cites two IBM ASIC designs where one-fourth of the gates are buffers. For some

multi-million gate ASICs, more than a million buffers are required today. This is

a surprise to no one as devices continue to scale more quickly than interconnects.

Higher relative interconnect resistance forces buffers to be placed closer together to

achieve optimal performance. In addition, interconnect resistivity also causes signal

integrity to degrade more quickly with each advancing technology. Thus, buffers need

to be inserted on long interconnects to meet slew constraints, even if these nets are

not timing critical.

In reality, slew constraint is much more prevalent than timing constraint: it is

reported in [5] that only a fraction (roughly 5-10%) of nets need to be re-buffered

for delay optimization; for the remaining fraction (roughly 90-95%), the slew based

buffer insertion was sufficient to meet the net’s timing constraint. In other words,

it is sufficient to buffer all nets to fix slew violations without worrying about delay.

Those small fraction of buffered nets that subsequently show up as critical can then

be re-buffered with a delay based objective function. In the IBM physical synthesis

methodology [5], buffers are inserted for satisfying slew constraints early, so that

timing analysis uses legal slew constraints. Later, buffers on critical nets are ripped

up and re-buffered for delay.

The sheer number of buffers can degrade overall design performance by forcing

the rest of the logic to be spread further apart to accommodate those buffers. The

buffers themselves are a drain on power and can cause other gates to be sized to higher

power levels since they are now further apart on the chip. Therefore, a significant

part of the performance of the design depends on using as little buffering resources as

possible. van Ginneken’s algorithm [16] and its derivative extensions [17, 18, 19, 20,

21, 22] are very effective for delay optimization. Further, Lillis’ data structure [17]

allows trading off delay for cost to more efficiently use buffer resources, yet this is

13

still suboptimal for area.

From a practical point of view, slew buffering should be as important as timing

driven buffering. Unfortunately, there is very little previous work on it. For related

works that consider slew and/or noise constraints [17, 23, 18, 24], they still optimize

for delay instead of handling these constraints separately. Buffering of non-critical

nets using these techniques may result in unnecessary runtime and resource overhead.

Note that the work of [25] also addresses slew constraints without regards to delay.

However, that work does not actually model slew; it simplifies the slew constraint to

be equivalent to a capacitance constraint which means that interconnect resistivity

is not modelled. While appropriate for very large fanout nets (e.g., over 1000 sinks),

it essentially becomes equivalent to length-based buffering [26]. Length-based buffer-

ing [26] tries to achieve a similar result of slew buffering in spirit. However, we show

that it can be area inefficient especially in handling multi-fanout nets.

This work proposes a new buffering formulation: find the minimum area (or cost)

buffering solution such that slew constraints are satisfied. In this formulation, one

does not need to know required arrival time at sinks, so it can be used earlier in the

design flow than traditional buffering. It can be done totally independently of timing

analysis, i.e., incremental timing is not required between buffering of individual nets.

Based on the new formulation, the general slew buffering problem is shown to be NP-

Complete. Despite the difficulty of the problem, some highly efficient and practical

algorithms are proposed in this paper:

1. For a single buffer type, an optimal linear time solution is achievable by greedy

algorithm under the assumption that the input slew to each buffer is fixed.

2. For multiple buffer types, a very efficient optimal slew buffering algorithm is

designed under the assumption that the input slew to each buffer is fixed. Ex-

14

periments show that compared to slew constrained timing buffering, about 90×
speedup is achieved while still saving area.

3. If the input slew to each buffer is not fixed, the dynamic programming cannot

be easily applied since the upstream knowledge is needed to compute the input

slew. We propose a maximum matching based new algorithm to handle this

difficult case. Experimental results demonstrate that up to 21.9% buffer area

can be further saved.

4. When buffer positions can be freely chosen, slew buffering may allow more effi-

cient buffer usage. A continuous slew buffering algorithm incorporating adaptive

buffer selection idea is proposed for this purpose. It handles 1000 nets in only

30 seconds and often extra 5% buffer area saving can be obtained.

5. Buffering with blockage is handled in this paper, which makes the algorithms

ready for practical use.

Although there is a close relationship between slew buffering and timing buffer-

ing, the two buffering algorithms are actually very different. For example, in slew

buffering, inserting one buffer may only generate one new non-dominated solution.

However, in timing buffering, numerous new non-dominated solutions can be intro-

duced. Refer to Section b for details.

The rest of the chapter is organized as follows: Section B formulates the slew

buffering problem. Section C presents the NP-Completeness proof for the general slew

buffering problem. Section D describes the proposed slew buffering algorithms. Sec-

tion E describes two related buffering algorithms for comparison. Section E presents

the experimental results with analysis. A summary of work is given in Section G.

15

B. Preliminaries

The input to the slew buffering problem includes a routing tree T = (V, E), where

V = {s0} ∪ Vs ∪ Vn, and E ⊆ V × V . For simplicity, the routing tree is assumed

to be a binary tree in this paper. Trees in other topologies can be converted to a

binary tree (see, e.g., [20]). Vertex s0 is the source vertex, Vs is the set of sink vertices

and Vn is the set of internal vertices. Each sink vertex s ∈ Vs is associated with

sink capacitance Cs. Each edge e ∈ E is associated with lumped resistance Re and

capacitance Ce. A buffer library B contains different types of buffers. Each type of

buffer b has a cost Wb, which can be measured by area or any other metric, depending

on the optimization objective. Without loss of generality, we assume that the driver

at source s0 is also in B. A function f : Vn → 2B specifies the types of buffers allowed

at each internal vertex. That is, for each vertex v, f(v), which is a subset of 2B,

specifies the buffer types allowed at v.

The slew rate of a signal refers to the rising or falling time of a signal switching.

A commonly used definition of slew is the 10/90 slew and it is adopted in this paper,

where 10/90 slew refers to the time difference between when the waveform crosses

the 90% point and the 10% point. Some other definitions, such as 20/80 or 30/70

slew, are also used in practice when the waveform has slowly rising or falling tail.

The slew model employed in this work is chosen for its simplicity and is essentially

equivalent to the Elmore model for delay. More accurate wire and gate delay models

may be used if more accuracy is desired. Given that the motivation for the proposed

buffering formulation lies in the requirement to efficiently buffer a large number of

nets, this slew model is appropriate.

The slew model can be explained using a generic example which is a path p from

node vi (upstream) to vj (downstream) in a buffered tree. There is a buffer (or the

16

driver) bu at vi, and there is no buffer between vi and vj. The slew rate S(vj) at

vj depends on both the output slew Sbu,out(vi) at buffer bu and the slew degradation

Sw(p) along path p (or wire slew), and is given by [27]:

S(vj) =
È

Sbu,out(vi)2 + Sw(p)2. (2.1)

The slew degradation Sw(p) can be computed with Bakoglu’s metric [28] as

Sw(p) = ln 9 ·D(p), (2.2)

where D(p) is the Elmore delay from vi to vj.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Load Capacitance (pf)

S
le

w
 (

ns
)

Fig. 2. The slew-capacitance curve of an inverter.

The output slew of a buffer, such as bu at vi, depends on the input slew at

this buffer and the load capacitance seen from the output of the buffer. Usually,

the dependence is described as a 2-D lookup table. In addition to handling the

general case of arbitrary input slew, our work includes fast algorithms assuming a

fixed input slew which is normally a conservative estimation (the slew constraint).

17

This assumption allows us to process large volume of nets quickly with small solution

degradation. For fixed input slew, the output slew of buffer b at vertex v is then given

by

Sb,out(v) = Rb · C(v) + Kb, (2.3)

where C(v) is the downstream capacitance at v, Rb and Kb are empirical fitting

parameters. This is similar to empirically derived K-factor equations [29]. We call

Rb the slew resistance and Kb the intrinsic slew of buffer b. Figure 2 shows a slew

curve of one inverter generated by EinsTimer [30]. The linear order model is quite

reasonable as seen from Figure 2.

A buffer assignment γ is a mapping γ : Vn → B ∪ {b} where b denotes that no

buffer is inserted. The cost of a solution γ is W (γ) =
P

b∈γ Wb. With the above

notations, the basic slew buffering problem can be formulated as follows.

Discrete Slew Constrained Minimum Cost Buffer Insertion Problem: Given

a binary routing tree T = (V, E), possible buffer positions, and a buffer library B, to

compute a buffer assignment γ such that the total cost W (γ) is minimized such that

the input slew at each buffer or sink is no greater than a constant α.

Note that the continuous slew buffering problem is also considered in this paper

where buffer positions can be freely chosen in a routing tree. A first glance at the

above closed form model might suggest close relationship between timing buffering

and slew buffering, however, they actually significantly differ. A detailed analysis is

presented in Section b. Before closing this section, we note the following computa-

tional complexity result:

Theorem 1: The minimum cost slew buffering problem is NP-Complete, if the size

of the buffer library is not constant and the cost of each buffer can be an arbitrary

integer.

18

Refer to Section C for the proof. Since the size of the buffer library is bounded

and the buffer area is not an arbitrary value in reality, our algorithms perform very

well in practice.

C. Complexity of Slew Buffering Problem

Proof of Theorem 1:

The problem is clearly in NP. We reduce from the minimum cost timing buffering

problem with unbounded buffer library size1 to show that the minimum cost slew

buffering problem with unbounded buffer library size is NP-Complete. Let Q,R, C, W

denote the required arrival time (RAT), resistance, capacitance and cost, respectively.

It is shown in [19] that computing a timing buffering for the tree in Figure 3 with

RAT at driver Qs0 ≥ 0 and the total buffer cost at most M = N +
Pn

i=1 N i is NP-

Complete. Driver resistance is set to Rs0 = Nn, sink capacitance and sink RAT are

listed in Table II, and the buffer library information is shown in Table III, where N

is a sufficiently large positive integer, x1, x2, . . . , x2n are positive integers such thatP2n
1 xi = 2N , and there are n sinks and 2n buffer types in the buffer library.

We set intrinsic slew and intrinsic delay to zero, and slew resistance equal to

driving resistance for each buffer type and driver. Furthermore, every edge in the

tree has zero wire capacitance and zero wire resistance. It is then easy to check that

the slew rate is equal to the delay in value. For example, delay and slew rate at v1

are both Rs0 · Cb1 assuming that b1 is placed at v1.

Given an instance of minimum cost timing buffering problem, we construct an

instance of minimum cost slew buffering problem as follows. We reuse the routing

tree in Figure 3 except that each sink si is changed to a sink s′i, where Cs′i =
Csi

N
. A

1That is, the number of buffer types is not constant.

19

S0

Sn

S2

S1

Vn

V2

V1

Fig. 3. Underlying routing tree and buffer positions [19].

Table II. C, Q values for sinks [19].

Sink si Sink capacitance Csi
Sink RAT Qsi

s1 Nn+2 Nn+1 + Nn+2

s2 Nn+1 Nn+1 + Nn+2

...

sn N3 Nn+1 + Nn+2

critical fact used in [19] is that every buffer position vi must be inserted with a buffer,

and this buffer must be either b2i−1 or b2i.

We claim that there is a solution for the instance of slew buffering problem with

slew constraint α = Nn+1 and the total buffer cost at most M if and only if there is

a solution for the instance of minimum cost timing buffering problem with Qs0 ≥ 0

and with the same cost bound.

We begin with the “only if” direction. Since slew constraint is set to Nn+1, it

follows that the delay between s0 and vi and delay between vi and s′i is no more than

Nn+1 each. Since Cs′i =
Csi

N
, delay between vi and si is bounded above by Nn+2.

Noting that Qsi
= Nn+2 + Nn+1, we have Qs0 ≥ 0.

For the “if” direction, since we must insert one of b2i−1 and b2i at every vi, delay

20

Table III. C, R,W values for each buffer type [19].

Buffer Driving resistance Input capacitance Cost (Area)

bi Rbi
Cbi

Wbi

b1 1 x1 x2 + Nn

b2 1 x2 x1 + Nn

b3 N x3 x4 + Nn−1

b4 N x4 x3 + Nn−1

...

b2n−1 Nn−1 x2n−1 x2n + N

b2n Nn−1 x2n x2n−1 + N

between vi and si is Nn+2, and thus the slew rate at s′i is Nn+1. Since total delay

from s0 to any sink si is no larger than Nn+1 + Nn+2, one sees that delay between s0

and any vi is bounded above by Nn+1. Therefore, in the buffered tree, slew rate at

any buffer position/sink is bounded above by α, which completes the proof.

D. Slew Constrained Minimum Cost Buffering Algorithms

1. Overview of Classic Timing-Driven Buffering

To understand the context of the presented algorithms and to define notation, this

section begins with a brief overview of van Ginneken/Lillis [16, 17] algorithm. The

algorithm proceeds bottom-up from the leaf nodes toward the driver along a given

routing tree. A set of candidate solutions is kept updated during the process. Each

solution is associated with a three-tuple (C, W,Q), where C denotes the downstream

capacitance at the current node, W denotes the cost (i.e., area) of the solution and

21

Q refers to the required arrival time (RAT).

Suppose that a solution γv at position v must “propagate” to an upstream po-

sition u and there is no branching point in between. If no buffer is placed at u,

then only wire delay needs to be considered. Therefore, the new solution γu can be

computed as

C(γu) = C(γv) + Ce,

W (γu) = W (γv),

Q(γu) = Q(γv)−De,

(2.4)

where e = (u, v) and De = Re(
Ce

2
+ C(γv)). Otherwise, suppose that we add a buffer

bi at u. γu can be then computed as

C(γu) = Cbi
,

W (γu) = W (γv) + Wbi
,

Q(γu) = Q(γv)−Dbi
−De

(2.5)

after buffer insertion. In Eqn. (2.5), Dbi
refers to the buffer delay and is computed

as Dbi
= R′

bi
· C(u) + K ′

bi
, where R′

bi
is the driving resistance of bi but not the slew

resistance of bi, and K ′
bi

is the intrinsic buffer delay.

An important concept in van Ginneken/Lillis algorithm are non-dominated solu-

tions. For any two solutions γ1, γ2 at the same node, γ1 dominates γ2 if C(γ1) ≤ C(γ2),

W (γ1) ≤ W (γ2) and Q(γ1) ≥ Q(γ2). Whenever a solution becomes dominated, it is

removed from the solution set. Therefore, only solutions excel in at least one aspect

of downstream capacitance, buffer cost and RAT can survive.

For handling branch merging, suppose that we have obtained all the non-dominated

solutions of left branch Tl and right branch Tr at a branching point vt
1. Denote the

1For two branches, we arbitrarily assign them to be left branch and right branch.

22

left-branch solution set and the right-branch solution set by Γl and Γr, respectively.

The merging process is performed as follows. For each solution γl ∈ Γl and each

solution γr ∈ Γr, generate a new solution γ′ according to:

C(γ′) = C(γl) + C(γr),

W (γ′) = W (γl) + W (γr),

Q(γ′) = min{Q(γl), Q(γr)}.

(2.6)

At a high level, van Ginneken/Lillis algorithm builds the solution set in a bottom-

up fashion. Assume that we have computed all feasible non-dominated solutions at

a buffer position v. For the immediately upstream buffer position u (without passing

any branching point), we first propagate all solutions up there through performing

wire insertion of (u, v) to each solution. The propagated solutions resemble the choices

when no buffer is inserted at u. Subsequently, for each propagated solution, we

compute a new solution for inserting each buffer. The new solution is inserted into

the solution set as long as it is not dominated by any existing one. The solution set

is meanwhile updated to prune the solutions being dominated by the newcomer. At

a merging point, we carry out the process just described to generate the new solution

set. In this way, we keep climbing up the routing tree until the driver is met. After

pruning solutions violating the timing constraint at driver, we select the best solution

as the one with the smallest cost.

2. Discrete Slew Buffering Assuming Fixed Input Slew

a. Algorithm

Our algorithms share the same dynamic programming framework as timing buffer-

ing [16, 17] in appearance, but have critical underlying differences which will be

analyzed in Section b and Section c.

23

In the dynamic programming framework, a set of candidate solutions are propa-

gated from the sinks toward the source along the given tree. Each solution γ is char-

acterized by a three-tuple (C, W, S), where C denotes the downstream capacitance at

the current node, W denotes the cost of the solution and S is the accumulated slew

degradation Sw defined in Eqn. (2.2). At a sink node, the corresponding solution has

C equal to the sink capacitance, W = 0 and S = 0. The solution propagation is

accomplished by the following operations.

Consider to propagate solutions from a node v to its parent node u through edge

e = (u, v). A solution γv at v becomes solution γu at u, which can be computed

as C(γu) = C(γv) + Ce,W (γu) = W (γv) and S(γu) = S(γv) + ln 9 · De where De =

Re(
Ce

2
+ C(γv)).

In addition to keeping the unbuffered solution γu, a buffer bi can be inserted at

u to generate a buffered solution γu,buf which can be then computed as C(γu,buf) =

Cbi
,W (γu,buf) = W (γv) + Wbi

and S(γu,buf) = 0.

When two sets of solutions are propagated through left child branch and right

child branch to reach a branching node, they are merged. Denote the left-branch

solution set and the right-branch solution set by Γl and Γr, respectively. For each

solution γl ∈ Γl and each solution γr ∈ Γr, the corresponding merged solution γ′

can be obtained according to: C(γ′) = C(γl) + C(γr),W (γ′) = W (γl) + W (γr)

and S(γ′) = max{S(γl), S(γr)}. To ensure that the worst case in the two branches

still satisfies slew constraint, we take the maximum slew degradation for the merged

solution.

For any two solutions γ1, γ2 at the same node, γ1 dominates γ2 if C(γ1) ≤ C(γ2),

W (γ1) ≤ W (γ2) and S(γ1) ≤ S(γ2). Whenever a solution becomes dominated, it is

pruned from the solution set without further propagation. A solution γ can also be

pruned when it is infeasible, i.e., either its accumulated slew degradation S(γ) or the

24

slew rate of any downstream buffer in γ is greater than the slew constraint α.

b. Critical Differences from Timing Buffering

When a buffer bi is inserted into a solution γ, S(γ) is set to zero and C(γ) is set to

C(bi). This means that inserting one buffer may bring only one new solution, namely,

the one with the smallest area, W . However, in minimum cost timing buffering, a

buffer insertion may result in many non-dominated (C, W,Q) tuples with the same

C value, where Q denotes the require arrival time.

Consequently, in slew buffering, at each buffer position along a single branch, at

most |B| new solutions can be generated through buffer insertion since C, S are the

same after inserting each buffer. In contrast, buffer insertion in the same situation

may introduce many new solutions in timing buffering. This sheds light on why slew

buffering can be much more efficiently computed.

Another important fact is that the slew constraint is in some sense close to length

constraint. In slew buffering, solutions can soon become infeasible if we do not add

a buffer into it and thus many solutions, which are only propagated through wire

insertion, are often removed soon. An extreme case demonstrating this point is that

in standard timing buffering, the solutions with no buffer inserted can always live

until being pruned by driver given a loose timing constraint. This may not happen

in slew buffering: this kind of solutions soon become infeasible as long as the slew

constraint is not too loose.

Due to these special characteristics of the slew buffering problem, a linear time

optimal algorithm for buffering with a single buffer type is possible. In timing buffer-

ing, it is not known how to design a polynomial time algorithm in this case. Refer to

Section D for the details. From these facts, the basic differences between these two

somewhat related buffering problems are clear.

25

c. Implementation Experiences

This section presents a fast algorithm for the slew buffering problem. Except for

special efforts for handling S, the new algorithm works as [17]. Refer to Figure 4

for the pseudocode of the proposed algorithm. For consistency, we insert a dummy

buffer b0 to a position when no buffer is to be inserted there.

The bolded part in Figure 4 shows the difference between the slew buffering

algorithm and [17]. First, S, which represents accumulated slew degradation on wire,

is a newly introduced term and thus does not exist in van Ginneken/Lillis’ algorithm.

Second, the SolutionSetUpdate procedure shown in Figure 5 significantly differs: a

new solution is first checked for feasibility; if the slew constraint is satisfied, the

domination check/elimination procedure for the solution set will be carried out.

We are to elaborate some implementation details in domination check as well as

domination elimination. In the algorithm, the solution set is stored using a linked list

where elements are in no particular order. The straightforward linear search is carried

out into the solution list by each newcomer for domination checking and meanwhile,

the solution list is updated for domination elimination. This simple implementation

gives excellent performance due to the critical fact that size of solution set here is

always small. We usually have less than 20 non-dominated solutions at driver in each

routing tree, and the typical total runtime over 1000 nets is less than 20 seconds.

Refer to Section E for the details.

Therefore, in contrast to using range search tree to prune the dominated solutions

as in [17], the simple linked list implementation works very well here. We believe that

the simplicity of implementation for slew buffering with fixed buffer input slew will

make it widely used in practice.

One would wonder the effect of introducing the range search tree into the slew

26

Algorithm: Slew buffering w/ fixed input slew.
Input: T : routing tree, B: buffer library, α: slew constraint
Output: minimum cost buffer assignment γ satisfying α

1. for each sink s, build a solution set {γs}, where
W (γs) = 0, S(γs) = 0, and C(γs) = Cs

2. for each branching point/driver vt in the order given by
a postorder traversal of T , let T ′ be the two branches T1,
T2 of vt and Γ′ be the solution set corresponding to T ′, do

3. for each wire e in T ′, in a bottom-up order, do
4. for each γ ∈ Γ′ corresponding to T ′, do
5. C(γ) = C(γ) + Ce

6. set S(γ) = S(γ) + ln 9 · De

7. SolutionSetUpdate (γ, Γ′, b0, α)
8. if the current position allows buffer insertion, then
9. for each buffer type bi ∈ B, do
10. for each γ ∈ Γ′, generate a new solution γ′

11. set C(γ′) = Cbi

12. set W (γ′) = W (γ′) + Wbi

13. set S(γ′) = 0
14. SolutionSetUpdate (γ′, Γ′, bi, α)
15. // merge Γ1 and Γ2 to Γvt

16. set Γvt = ∅
17. for each γ1 ∈ Γ1 and γ2 ∈ Γ2, generate a new solution γ′

18. set C(γ′) = C(γ1) + C(γ2)
19. set W (γ′) = W (γ1) + W (γ2)
20. set S(γ′) = max{S(γ1), S(γ2)}
21. SolutionSetUpdate (γ′, Γvt, b0, α)
22. eliminate infeasible solutions at driver and return γ

with the smallest cost

Fig. 4. Slew constrained minimum cost buffering algorithm with fixed buffer input

slew.

27

Procedure: SolutionSetUpdate w/ fixed input slew
Input: γ′: a candidate solution, Γ: a solution set,

b: a buffer type, α: a slew constraint
Output: an updated solution set Γ
1. // check whether γ′ violates the slew constraint
2. if b = b0, then
3. return Γ if S(γ′) > α
4. else
5. return Γ if

È
S(γ′)2 + (Rb · C(γ′) + Kb)2 > α

6. // domination check and domination elimination
7. for each solution γ ∈ Γ, do
8. if C(γ) ≤ C(γ′), W (γ) ≤ W (γ′) and S(γ) ≤ S(γ′),
9. return Γ
10. if C(γ′) ≤ C(γ), W (γ′) ≤ W (γ) and S(γ′) ≤ S(γ),
11. remove γ from Γ
12. insert γ′ into Γ and return Γ

Fig. 5. Procedure of updating solution set for slew buffering with fixed buffer input

slew.

buffering algorithm. As such, the slew buffering algorithm combined with range

search tree pruning [17] is also tested. Unfortunately, the slew buffering algorithm

is slowed down. This phenomenon is due to the considerable amount of inherent

overhead in maintaining the balanced binary search tree through e.g., rotation for

each insertion/deletion in the data structure. Refer to Section E for the details.

Recall that at each buffer position, we introduce |B| new solutions by buffer

insertion. Thus, a branch having n buffer positions will introduce at most n|B|
new solutions. Consider to merge two branches each of which has n1|B| and n2|B|
solutions, respectively, where n1 and n2 denote the number of buffer positions in each

branch. After merging, the number of solutions is bounded by n1n2|B|2. Suppose

that another branch merging produces n3n4|B|2 solutions. Further suppose that

these resulting solutions are merged and n1n2n3n4|B|4 solutions are obtained. Let n

denote the number of buffer positions, m denote the number of sinks, and ni denote

the number of buffer positions at branch i. By the above process, one can see that

28

the total number of solutions is bounded by (n
m

)m|B|m, since n1n2 · · ·nm ≤ (n
m

)m and

n1 + n2 + . . . + nm = n.

Since we can have at most O((n|B|
m

)m) solutions at any position, a domination

check at a position is performed through a traversal of the linked list consisting of

O((n|B|
m

)m) solutions and thus needs O((n|B|
m

)m) time per traversal. At a buffer po-

sition, |B| new solutions are introduced due to buffer insertions. The domination

checks need |B| traversals of the solution set, which takes O(|B|(n|B|
m

)m) time. The

most time-consuming step is branch merging where we at most perform O((n|B|
m

)m)

domination checks since it is the upper bound for the number of solutions at any

position. Thus, a branch merging needs O(((n|B|
m

)m)2) time. Since there are n buffer

positions, the proposed algorithm returns the optimal solution in O(n|B| · (n|B|
m

)2m)

time. Theoretically (though impractically), when |B| = Θ(n),m = Θ(n), the algo-

rithm will run in exponential time. This surprises no one given the NP-Completeness

nature of the slew buffering problem.

3. Discrete Buffering without Input Slew Assumptions

a. Basic Modifications

In Section a, the output slew of a buffer (computed by Eqn. (2.3)) does not depend

on the input slew. This is valid since slew resistance Rbi
is obtained by assuming the

input slew for each buffer to be fixed at the slew constraint. Certainly, improvement

in buffer area is desired if this assumption is eliminated. As such, a more complicated

dynamic programming algorithm which handles non-fixed input slew is proposed as

follows.

Our idea is to approximate continuous-valued input slew by different small-sized

slew bins. That is, the input slew at each buffer position is discretized into different

29

input slew bins, each of which covers a range of slew rate. Clearly, better results can

be obtained with finer input slew bins. Denote by l the number of input slew bins.

a cb p
Fig. 6. An example of handling non-fixed input slew.

Suppose that a buffer is to be inserted at position p and there are three immediate

downstream buffers in a solution γ as shown in Figure 6. As the result upstream from

p is not yet known, the input slew to the buffer can be in any slew bin.

As such, in addition to C, W, S, each solution is augmented with new tuples L,U ,

which specify the lower bound and upper bound of the input slew to these immediate

downstream buffers, respectively. In other words, the input slew is required to fall in

[L,U). Suppose that viewing at p, we have n(γ) immediate downstream buffers, each

of which is associated with a lower bound Li and an upper bound Ui. Accordingly,

there is an Si representing accumulated slew degradation viewing at each immediate

downstream buffer. For example, a solution at p in Figure 6 has (S1, L1, U1) for the

buffer inserted at a, (S2, L2, U2) for b, and (S3, L3, U3) for c. Therefore, each solution

is characterized by (C, W, Si, Li, Ui), 1 ≤ i ≤ n if the solution has n immediate

downstream buffers.

When a buffer is inserted at p, at most l new solutions are generated. They

are with the same C, W, S values but with different L,U values. We say “at most”

since whether a buffer with a certain input slew bin can be inserted at p needs to be

30

validated. For a buffer b to be inserted with the input slew bin g, denote by [Sg, Sg)

the slew range of g. The buffer insertion is valid if for each immediate downstream

buffer i (viewing at p, 1 ≤ i ≤ n(γ)) in γ,

Li(γ) ≤
È

Sb,out(p, g, C(γ))2 + Si(γ)2 ≤ Ui(γ), (2.7)

where Sb,out(p, g, C(γ)) is the output slew of the buffer b at p with g as its input slew

bin and C(γ) as its downstream capacitance, and a lookup table is used to obtain

its value. Upon validation, the buffer b is inserted to γ, the number of immediate

downstream n(γ) is set to one, S1(γ) is set to zero, and L1(γ) = Sg and U1(γ) = Sg.

It is often valid for a buffer with numerous input slew bins to be inserted to the

same solution γ. For efficiency reason, those new solutions are merged after buffer

insertion. That is, after buffer insertion, two solutions γ1 and γ2 are merged to form

γ′ if C(γ1) = C(γ2),W (γ1) = W (γ2) and U1(γ1) = L1(γ2), where C, W, S of γ′ remain

unchanged while L1(γ
′) = L1(γ1) and U1(γ

′) = U1(γ2).

Note that in branch merging, the parameter values (S, L, U) of all immediate

downstream buffers for a left-branch solution γ1 and a right-branch solution γ2 are

stored together and n(γ′) = n(γ1) + n(γ2).

b. Reduction to Maximum Bipartite Matching

The definition of domination needs to be accordingly modified. For two solutions

with the same number of immediate downstream buffers, domination is defined solely

on C, W, Si, Li, Ui. In particular, the i-th buffer in γ1 and that in γ2 may refer to

different immediate downstream buffers. This allows a fairly effective solution pruning

procedure.

Given two solutions γ1 and γ2, we are to decide whether there is a pairing of imme-

diate downstream buffers of γ1 and γ2, respectively, such that Sπ1(j)(γ1) ≤ Sπ2(j)(γ2),

31

Lπ1(j)(γ1) ≤ Lπ2(j)(γ2) and Uπ1(j)(γ1) ≥ Uπ2(j)(γ2) for each pair j where 1 ≤ j ≤
n(γ1) = n(γ2), and π(·) denotes the permutation of indices of immediate downstream

buffers. If this is the case, together with C(γ1) ≤ C(γ2), W (γ1) ≤ W (γ2), we conclude

that γ1 dominates γ2.

An example would be helpful to illustrate the above definition. Assume that γ1, γ2

both have three immediate downstream buffers. Suppose that (Si, Li, Ui) for γ1 are

(3, 10, 60), (5, 30, 65), (3, 20, 50), and for γ2 are (5, 25, 35), (6, 50, 55), (10, 15, 35). γ1

dominates γ2 on (S, L, U) since (3, 10, 60) dominates (10, 15, 35), (5, 30, 65) dominates

(6, 50, 55), and (3, 20, 50) dominates (5, 25, 35).

Given two solutions, we need to answer whether such pairing exists. The straight-

forward computation is inefficient since L,U may heavily overlap. As such, we reduce

it to the maximum bipartite matching problem for an efficient solution. To check

whether γ1 dominates γ2, for each (Si(γ1), Li(γ1), Ui(γ1)) in γ1, a set of tuples, de-

noted by ψi(γ1), consisting of all (Sj(γ2), Lj(γ2), Uj(γ2)) in γ2 is computed such that

the former three-tuple dominates each of the latter three-tuples. A graph G = (V, E)

is constructed as follows. Represent each three-tuple by a vertex. A vertex cor-

responding to the i-th tuple in γ1 links to the vertices corresponding to ψi(γ1). A

bipartite graph is formed in this way since there are no links between nodes represent-

ing tuples in the same solution. For these two groups of vertices, the task is to answer

whether there is a node-wise pairing (each from different groups) of cardinality n(γ1).

This is a maximum matching problem, which is to compute an edge set E ′ of

maximum cardinality from E such that each vertex in V is incident to at most one

edge of E ′. Domination (on S, L, U) follows if E ′ is of cardinality of n(γ1). The best

bipartite matching algorithm runs in O(
È
|V ||E| log(|V |2/|E|)/ log |V |) time [31]. In

this paper, an efficient practical implementation [32] based on the scaling push-relabel

approach, is adopted. Refer to Figure 7 and Figure 8 for the algorithms for slew

32

buffering without fixed input slew assumption.

We are to present the complexity analysis of the slew buffering algorithm with

non-fixed input slew. Instead of |B| new solutions in the fixed-input slew case, at most

l|B| new solutions can be generated at each buffer position due to buffer insertions

in slew buffering algorithm with non-fixed input slew. Thus, the total number of

solutions is always bounded above by O((nl|B|
m

)m) where n is the number of buffer

positions and m is the number of sinks. The complexity analysis goes the same

as in Section c except that one additional step, which is due to using maximum

bipartite matching in domination check, needs to be considered. A solution can

have at most m (S, L, U) tuples since there are only m sinks. Therefore, in our

maximum matching problem, |V | ≤ m and |E| ≤ m2. Plugging these numbers into

O(
È
|V ||E| log(|V |2/|E|)/ log |V |), we have that the bipartite matching algorithm in

[31] runs in O(m2.5) time. A domination check needs to perform a traversal of the

solution set and for each traversed solution, the above O(m2.5) algorithm is carried

out. Thus, a domination check needs O((nl|B|
m

)m · m2.5) time. As in Section c, the

most time-consuming step is branch merging where O((nl|B|
m

)m) domination checks

may happen. It is then easy to see that the total runtime is bounded above by

O(nl|B| · (nl|B|
m

)2m ·m2.5).

4. Continuous Slew Buffering

What we have considered so far is the discrete slew buffering problem. It is expected

that the total buffer area can be reduced if buffer positions are freely chosen in the

routing tree. The following continuous slew buffering algorithm settles this problem.

We begin with a simple case:

Theorem 2: For a single buffer type, the optimal slew buffering can be computed

in linear time under the assumption that the input slew to each buffer is fixed.

33

Algorithm: Slew buffering w/ non-fixed input slew.
Input: T , B, α, input slew bins
Output: minimum cost buffer assignment γ satisfying α

1. build solutions at each sink for each input slew bin
2. for each branching point/driver vt in the order given by

a postorder traversal of T , let T ′ be two branches T1,
T2 of vt and Γ′ be the solution set, do

3. for each wire e in T ′, in a bottom-up order, do
4. for each γ ∈ Γ′ corresponding to T ′, do
5. C(γ) = C(γ) + Ce

6. set S(γ) = S(γ) + ln 9 ·De

7. SolutionSetUpdate (γ, Γ′, b0, α)
8. if the current position allows buffer insertion, then
9. for each γ ∈ Γ′,
10. for validated buffer type bi and input slew bin g,
11. set C(γ′) = Cbi

12. set W (γ′) = W (γ′) + Wbi

13. set S(γ′) = 0
14. set L1(γ) = Sg

15. set U1(γ) = Sg

16. SolutionSetUpdate (γ′,Γ′, bi, α)
17. // merge Γ1 and Γ2 to Γvt

18. set Γvt = ∅
19. for each γ1 ∈ Γ1 and γ2 ∈ Γ2, generate γ′

20. set C(γ′) = C(γ1) + C(γ2)
21. set W (γ′) = W (γ1) + W (γ2)
22. set S(γ′) = max{S(γ1), S(γ2)}
23. set L,U of γ′ to be the union of L,U of γ1, γ2

24. SolutionSetUpdate (γ′,Γvt , b0, α)
25. eliminate infeasible solutions at driver and return γ

with the smallest cost

Fig. 7. Slew constrained minimum cost buffering algorithm with non-fixed buffer input

slew.

34

Procedure: SolutionSetUpdate w/ non-fixed input slew
Input: γ′: a candidate solution, Γ: a solution set,

b: a buffer type, α: a slew constraint
Output: an updated solution set Γ
1. // check whether γ′ violates the slew constraint
2. if b = b0, then
3. return Γ if S(γ′) > α
4. else
5. return Γ if

È
S(γ′)2 + (Rb · C(γ′) + Kb)2 > α

6. // domination check and domination elimination
7. for each solution γ ∈ Γ, do
8. if γ dominates γ′ based on (C, W,S, L, U),
9. return Γ
10. if γ′ dominates γ based on (C, W,S, L, U),
11. remove γ from Γ
12. insert γ′ into Γ and return Γ

Fig. 8. Procedure for updating solution set for slew buffering with non-fixed buffer

input slew.

Proof: In essence, the algorithm is only propagating a single candidate up to the

source. To insert buffers along a single path, we place a buffer as far (i.e., upstream)

as possible from the previously inserted buffer such that the slew constraint is still

satisfied. When proceeding to a branching point, a buffer is also placed as upstream

as possible while the slew constraint must be satisfied for both branches. It is easy to

see that given n buffer positions and sinks, this greedy algorithm returns the optimal

solution in O(n) time.

Note that the above greedy algorithm can work in either discrete or continuous

case. We now generalize this idea to handle multiple buffer types. As before, we place

a buffer as upstream as possible from the previously inserted buffer such that the slew

constraint is satisfied. The major difficulty is, of course, every type of buffers can be

inserted at a position. Within a single branch, after a new solution is generated (i.e.,

a buffer is inserted), it is placed into a priority queue, which is decreasingly ordered

by the distance from the current buffer position to the root. The first element in the

35

queue is then extracted as the next solution to be processed. For this solution, all

types of buffers are inserted (each of which is placed as upstream as possible) and

thus |B| new solutions are generated and placed into the queue. As before, dominated

solutions are pruned. For any two solutions γ1, γ2 where γ1 resides at a position no

lower than γ2, γ1 dominates γ2 if C(γ1) ≤ C(γ2), W (γ1) ≤ W (γ2) and S(γ1) ≤ S(γ2).

Algorithm: Continuous slew buffering w/ fixed input slew.
Input: T , B, α, input slew bins
Output: minimum cost buffer assignment γ satisfying α

1. building solutions at each sink
2. for each branching point/driver vt in the order given by

a postorder traversal of T , let T ′ be two branches T1,
T2 of vt and Γ′ be the solution set, do

3. for each γ ∈ Γ′, do
4. for each selected buffer type bi,
5. if bi is necessary up to the branching point,
6. insert bi into γ as upstream as possible to obtain γ′

7. else
8. propagate γ to vt by adding wire to obtain γ′

9. SolutionSetUpdate (γ′,Γ′, bi, α)
10. // merge Γ1 and Γ2 to Γvt

11. set Γvt = ∅
12. for each γ1 ∈ Γ1 and γ2 ∈ Γ2, generate γ′

13. set C(γ′) = C(γ1) + C(γ2)
14. set W (γ′) = W (γ1) + W (γ2)
15. set S(γ′) = max{S(γ1), S(γ2)}
16. SolutionSetUpdate (γ′,Γvt , b0, α)
17. eliminate infeasible solutions at driver and return γ

with the smallest cost

Fig. 9. Continuous slew constrained minimum cost buffering algorithm with fixed

buffer input slew.

The above exponential algorithm is found to be inefficient by our experiment.

As such, an approximation algorithm through adaptively selecting candidate buffers

is proposed. All buffers with area less than a threshold, called filtered buffers, are

first increasingly sorted according to their slew resistance. For a slew constraint α,

the first dc · (eα − 1) · |B|e buffers (note that all |B| buffers will be chosen when the

36

Procedure: SolutionSetUpdate (continuous, fixed input)
Input: γ′: a candidate solution, Γ: a solution set,

b: a buffer type, α: a slew constraint
Output: an updated solution set Γ
1. // check whether γ′ violates the slew constraint
2. if b = b0, then
3. return Γ if S(γ′) > α
4. else
5. return Γ if

È
S(γ′)2 + (Rb · C(γ′) + Kb)2 > α

6. // domination check and domination elimination
7. for each solution γ ∈ Γ, do
8. if γ is at the same position or upstream to γ′, and

C(γ) ≤ C(γ′), W (γ) ≤ W (γ′) S(γ) ≤ S(γ′),
9. return Γ
10. if γ is at the same position or downstream to γ′ and

C(γ′) ≤ C(γ), W (γ′) ≤ W (γ) and S(γ′) ≤ S(γ),
11. remove γ from Γ
12. insert γ′ into Γ and return Γ

Fig. 10. Procedure of updating solution set for continuous slew buffering with fixed

buffer input slew.

value exceeds the number of filtered buffers) are selected to form the library for buffer

insertion, where c is a constant and is experimentally determined to be 0.2. One can

see that the number of buffer types to be investigated increases exponentially with

the slew constraint. The idea behind this selection criterion reads as follows. Roughly

speaking, for tight slew constraint, many buffers are needed and there will be many

non-dominated solutions. Thus, our computation may only focus on a small number

of buffers in order to reduce the size of the solution set. That is, we tradeoff solution

quality for runtime. For loose slew constraint, a buffer will be inserted with a large

gap from the previously inserted buffer and thus the solution set might not be very

large. We can therefore choose more buffers (exponentially more in our case) to obtain

high-quality solutions. Varying c, one can achieve different tradeoff between solution

quality and runtime. Refer to Figure 9 and Figure 10 for the algorithms for continuous

slew buffering with fixed input slew assumption. By combining the techniques in

37

Section 3, we can easily obtain the algorithms for continuous slew buffering with non-

fixed input slew. Refer to Figure 11 and Figure 12 for the algorithms for continuous

slew buffering with non-fixed input slew. Finally we present some discussions about

bounding the time complexity of the continuous slew buffering algorithm. Existing

buffering algorithms often bound their time complexity using the number of candidate

buffer positions. This is difficult in our case as candidate buffer positions are not well

defined in our continuous buffering problem. Thus, we need to express our time bound

using the smallest distance between any of two buffers such that the slew constraint

is barely hold. However, bounding the time complexity in this way does not provide

much insight in comparing our continuous slew buffering algorithm and other existing

algorithms.

5. Buffer Blockage Avoidance

In real circuits, some large area chunks may contain buffer blockage, which are macro

or IP blocks allowing wire routing but not buffer insertion inside them. As such, a

routing tree to be buffered might be re-routed to avoid blockage. For this purpose, we

adopt a simultaneous buffer insertion and blockage avoidance approach in [33] which

introduces very small additional wire in rerouting while keeps the solution quality.

For completeness, we include some details of the approach in [33] here.

It is easy to re-route a path to avoid blockage if it contains no Steiner nodes.

Otherwise, we start from the most downstream node inside the blockage, and move

each node in turn such that each local move introduces smallest additional wire

length. As in [33], we pay attention to the case where no adjustment on topology

is needed even if there are Steiner nodes inside the blockage. Suppose that node v

moves to v′ for blockage avoidance. Downstream solutions need to be propagated to

both v and v′. Of course, no buffer can be inserted at v. This propagation process

38

Continuous slew buffering w/ non-fixed input slew.
Input: T , B, α, input slew bins
Output: minimum cost buffer assignment γ satisfying α

1. building solutions at each sink
2. for each branching point/driver vt in the order given by

a postorder traversal of T , let T ′ be two branches T1,
T2 of vt and Γ′ be the solution set, do

3. for each γ ∈ Γ′, do
4. for each selected and validated buffer type bi,

and for each input slew bin g,
5. if bi is necessary up to the branching point,
6. insert bi into γ as upstream as possible to

obtain γ′

7. set C(γ′) = Cbi

8. set W (γ′) = W (γ′) + Wbi

9. set S(γ′) = 0
10. set L1(γ) = Sg

11. set U1(γ) = Sg

12. SolutionSetUpdate (γ′,Γ′, bi, α)
13. else
14. propagate γ to vt by adding wire to obtain γ′

15. SolutionSetUpdate (γ′,Γ′, bi, α)
16. // merge Γ1 and Γ2 to Γvt

17. set Γvt = ∅
18. for each γ1 ∈ Γ1 and γ2 ∈ Γ2, generate γ′

19. set C(γ′) = C(γ1) + C(γ2)
20. set W (γ′) = W (γ1) + W (γ2)
21. set S(γ′) = max{S(γ1), S(γ2)}
22. set L,U of γ′ to be the union of L,U of γ1, γ2

23. SolutionSetUpdate (γ′,Γvt , b0, α)
24. eliminate infeasible solutions at driver and return γ

with the smallest cost

Fig. 11. Continuous slew constrained minimum cost buffering algorithm with non-fixed

buffer input slew.

39

Procedure: SolutionSetUpdate (continuous, non-fixed)
Input: γ′: a candidate solution, Γ: a solution set,

b: a buffer type, α: a slew constraint
Output: an updated solution set Γ
1. // check whether γ′ violates the slew constraint
2. if b = b0, then
3. return Γ if S(γ′) > α
4. else
5. return Γ if

È
S(γ′)2 + (Rb · C(γ′) + Kb)2 > α

6. // domination check and domination elimination
7. for each solution γ ∈ Γ, do
8. if γ is at the same position or upstream to γ′, and

γ dominates γ′ based on (C, W,S, L, U),
9. return Γ
10. if γ is at the same position or downstream to γ′ and

γ′ dominates γ based on (C, W,S, L, U),
11. remove γ from Γ
12. insert γ′ into Γ and return Γ

Fig. 12. Procedure of updating solution set for continuous slew buffering with non–

fixed buffer input slew.

continues and eventually, all solutions are merged at the first upstream node (during

the bottom-up computation process) outside the blockage. Propagation to both nodes

may result in efficient buffer usage. For example, if the original optimal solution for

the problem without blockage does not insert any buffer into any blockage, it will

still be returned. According to [33], the time complexity for this approach is bounded

by O(ng|B|h2 + mk), where n denotes the number of buffer positions, m denotes

the number of sinks, g denotes the maximal candidate solution set size, h denotes

the maximal expanded Steiner node set, and k denotes the number of rectangular

blockages.

40

E. Discussion of Related Approaches

1. Minimum Cost Slew Constrained Timing Buffering

We refer to van Ginneken/Lillis’ algorithm as VGL and the discrete slew buffering

algorithm with fixed input slew as SB. In order to make a meaningful comparison

between them, we first modify VGL to handle a slew constraint, without modifying its

delay objective function. The new slew constrained VGL is referred to as VGL+S. In

this way, we can investigate the difference between simply handling the slew constraint

to optimize delay versus handling the slew constraint to optimize cost. For this, the

three-tuple (C, W,Q) is augmented to (C, W,Q, S), where Q denotes the required

arrival time. Note that domination in timing buffering is defined on C, W,Q but not

on S, while S is only responsible for eliminating infeasible solutions. In contrast,

domination in slew buffering is defined on C, W, S but not on Q. Therefore, VGL+S

algorithm may delete optimal solutions based on timing information while our new

algorithm, with domination defined on C, W, S can find the minimum cost solution

satisfying slew constraint.

Let us look at a simple example illustrating the difference between timing buffer-

ing and slew buffering. Consider merging two solutions sets corresponding to two

branches. Suppose that we have two solutions (represented by (C, W,Q, S)) (3, 30, 70, 20),

(5, 50, 80, 10) for the left branch, and two solutions (3, 30, 85, 15), (5, 50, 92, 8) for the

right branch. Assume that the slew constraint is 50. By timing buffering, we have

two non-dominated solutions which are (6, 60, 70, 20) and (8, 80, 80, 15). However, by

slew buffering, we have another non-dominated solutions (represented by (C, W, S))

which is (10, 100, 10). Clearly in this case, solutions with a sharper slew rate are not

deleted.

The experiments in the next section report the timing-driven buffering solution

41

as the smallest cost (area) solution at the driver, thereby slack at the driver plays no

role. In this way, the impact of the actual change in optimization strategy for area

instead of delay is considered.

2. Capacitance-Based Buffering

We also compare slew buffering with another closely related buffering - capacitance-

based buffering (CBB) [26, 25]. Roughly speaking, in capacitance-based buffering,

downstream capacitance of a buffer cannot exceed the maximum capacitance it can

drive, where a single typical buffer is used.

The capacitance-based buffering can be certainly computed in bottom-up fashion.

Consider inserting two typical buffers at consecutive nodes vj (upstream) and vk

(downstream), respectively, and the wirelength in between is the maximum possible

value subject to the slew constraint. If the downstream capacitance load at vj is

C(vj), the capacitance constraint β is set to ρC(vj), where ρ is a constant in (0, 1).

Note that β is a global constraint in CBB and has a value corresponding to each slew

constraint.

F. Experimental Results

1. Experiment Setup

For convenience, all algorithms in comparison are listed below together with their

abbreviations.

• SB: discrete slew buffering algorithm with fixed input slew, where input slew is

equal to the slew constraint.

• SB+NI: discrete slew buffering with non-fixed input slew.

42

• C-SB: continuous slew buffering with fixed input slew.

• C-SB+NI: continuous slew buffering with non-fixed input slew.

• SB+B: discrete slew buffering w/ fixed input slew and blockage.

• VGL: van Ginneken/Lillis’ min-cost timing buffering algorithm.

• VGL+S: slew constrained VGL.

• VGL+S+PSP: VGL with pre-buffer slack pruning technique [19].

• VGL+S+B: VGL+S with blockage.

• CBB: capacitance-based buffering algorithm.

• CWB: slew constrained buffering with pruning based on (C, W).

All algorithms are implemented in C++ and are tested on a Pentium IV computer

with a 3.2GHz CPU and 1G memory. Our test cases are extracted from an industrial

ASIC chip, which consist of 1000 nets with more than 50 thousand nodes including

sinks, branching nodes and buffer positions. Among them, 757 nets have ≤ 5 sinks

and all the remaining nets have ≤ 20 sinks. The sink capacitances range from 2.5fF

to 200fF . The wire resistance is 0.56Ω/µm and the wire capacitance is 0.48fF/µm.

Another set of 100 large-degree nets are used to perform experiments to demonstrate

the scalability of the algorithm, where the number of sinks ranges from 105 to 948.

The buffer library consists of 48 buffers, in which 23 are non-inverting buffers and

25 are inverting buffers. Normalized buffer areas range from 5 to 34, slew resistances

range from 0.18ns/pF to 29.3ns/pF , and input capacitances range from 2.1fF to

76.0fF .

43

Table IV. Comparison of discrete slew buffering (SB) and slew constrained timing

buffering (VGL+S). #S refers to the average number of non-dominated

solutions at driver. Slack is in ns. CPU time is in seconds.

Discrete Slew Buffering (SB) Slew Const. Timing Buffering (VGL+S) Ratio
Slew (ns) Area # Buf Slack #S CPU Area # Buf Slack #S CPU Area Speed

0.3 44980 7794 8715 71 19.1 46551 9605 8760 271 346.5 3.5% 18.1
0.4 30963 6069 8697 51 15.0 32133 7600 8749 247 351.8 3.8% 23.4
0.5 22960 5108 8511 35 11.7 24235 6858 8613 246 408.1 5.6% 34.9
0.6 18380 4114 8472 27 9.5 19438 5504 8650 254 417.8 5.8% 43.9
0.7 15531 3551 8420 22 8.3 16445 4565 8581 269 463.2 5.8% 55.8
0.8 13340 3216 8387 18 7.5 14218 4300 8542 278 487.1 6.6% 65.0
0.9 11578 2972 8332 14 6.9 12243 3749 8510 292 532.9 5.7% 77.2
1.0 10316 2712 8305 13 6.2 10897 3340 8481 299 548.9 5.6% 88.5

2. Comparison with Timing Buffering

We first compare SB with VGL+S, and results are summarized in Table IV. Here

“area saving” refers to the percentage difference in area, “speed up” refers to the

percentage difference in CPU time (seconds), and the slew constraint is given in

nanoseconds. Note that in SB, the buffer input slew is set to the slew constraint. In

VGL+S, range search tree pruning is implemented as in [17]. We make the following

observations:

• The number of buffers decreases and the area decreases for both algorithms as

the slew constraint loosens. This makes sense since a looser constraint means

that buffers can be spaced further apart.

• SB is more efficient in area. For example, with a 1.0 ns slew constraint, the

area savings is 5.6% compared to VGL+S.

• The slew buffering algorithm SB is much more efficient. Despite considering

all 48 buffers in the library, it runs in just a few seconds on 1000 nets. Fur-

thermore, it runs over 88 times faster than the timing buffering algorithm for

slew constraint α = 1.0. The main reason for this fact is that there is a signif-

44

icantly smaller set of non-dominated solutions in slew buffering than in timing

buffering. For example, when α = 1.0, we have only 13 solutions per net in the

slew buffering, while the number is 299 in the slew constrained timing buffering.

This is caused by the fact that slew gets to be reset to zero whenever a buffer is

inserted, while delay has to be propagated up the entire tree. In practice, the

runtime is virtually linear.

• For slew constraint equal to 1ns, we present a log-log (log (number of buffer

positions) v.s. log (CPU time)) plot in Figure 13 where the best linear fit to

the data points is also shown. The slope of the linear fit is 1.02. Therefore, the

runtime of SB almost linearly depends on the number of buffer positions.

• Comparing slack at driver (c.f. slack degradation ratio in Table IV), one sees

that slew buffering achieves significant improvement in runtime with only slight

sacrifice in slack. Note that slack here refers to the sum of slacks over all nets.

It is worth mentioning that the range search tree pruning technique, when in-

corporated into SB, slows down the algorithm as indicated by our experiment. For

example, when the slew constraint is 1.0, SB with range search tree returns the solu-

tion in 49.8 seconds compared to 6.2 seconds by the one without it. This fact is due

to the considerable amount of inherent overhead in maintaining the balanced range

search tree data structure.

It is interesting to investigate the following CWB buffering algorithm. In CWB,

the pruning condition is based only on (C, W) but not on Q or S. However, S is still

maintained throughout solution propagation for checking whether slew constraint is

violated. Compared to VGL+S and SB, CWB should certainly run faster since fewer

solutions need to be maintained in solution propagation. It is interested to investigate

the solution quality degradation by CWB. The results are summarized in Table V.

45

Comparing Table V and Table IV, one can see that CWB is worse than VGL+S in

area. This makes sense by noting the following facts. It is true that both VGL+S

and CWB may prune solutions which are actually superior in slew. However, VGL+S

maintains much more solutions than CWB and there are some correlations between

delay Q and slew S, thus, VGL+S should have larger potential to keep those solutions

which are superior in slew. As a result, VGL+S outperforms CWB from about 1%

to 5% in buffer area.

Table V. Slew constrained buffering with pruning based on (C, W), CWB. #S: the

number of non-dominated solutions at driver. Area Saving is obtained com-

paring to SB.

Discrete Slew Buffering based on (C, W) Ratio
Slew constraint (ns) Area # Buf #S CPU (s) Area Sav.

0.3 47993 10265 48 16.0 6.7%
0.4 33848 7793 43 14.2 9.3%
0.5 25210 7058 31 10.9 9.8%
0.6 20019 5591 23 8.5 8.9%
0.7 16730 4582 19 7.9 7.7%
0.8 14283 4398 15 7.1 7.1%
0.9 12358 3850 12 6.5 6.7%
1.0 10985 3379 11 5.9 6.5%

It is known that van Ginneken/Lillis’ algorithm is not the most efficient buffering

algorithm to handle buffer cost minimization. Several improvements exist. In this

paper, we incorporate the pre-buffer slack pruning (PSP) technique proposed in [19]

into VGL+S to investigate the performance of SB when compared to one of the state-

of-the-art buffering approaches. The results are summarized in Table VI. As one can

see from Table VI, SB runs much faster than VGL+S+PSP.

To investigate the scalability of the proposed slew buffering algorithm, experi-

ments on a set of 100 large-degree nets are performed. The number of sinks for these

testcases ranges from 105 to 948. As before, we compare SB to VGL+S+PSP and

the results are summarized in Table VII. One sees that SB can still run much faster

46

12 12.5 13 13.5 14 14.5 15 15.5 16
−1

−0.5

0

0.5

1

1.5

2

2.5

3

log(# of buffer positions)

lo
g(

C
P

U
 ti

m
e)

Fig. 13. Illustration of time complexity of SB. +: log (number of buffer positions)

v.s. log (CPU time) for slew buffering with slew constraint 1.0ns. Line: best

linear fit.

than VGL+S+PSP while saving areas.

3. Slew Buffering with Non-Fixed Input Slew

Results of SB+NI are summarized in Table VIII. Area saving here refers to com-

parison to discrete slew buffering with fixed input slew, i.e., SB. We observe the

following:

• SB+NI can save up to 21.9% area over SB. In SB+NI, the number of input

slew bins to each buffer is 21. For each slew bin, downstream capacitance is

also discretized into 21 capacitance bins in the lookup table. With very tight

slew constraint, SB+NI saves much more area over SB. It is the case since the

actual input slew is significantly smaller than the pre-set upper bound.

47

Table VI. The comparison of SB and VGL+S+PSP (VGL+S incorporated with

pre-buffer slack pruning [19]). Speed up refers to the runtime difference

between SB and VGL+S+PSP.

Slew constraint CPU (s) of VGL+S+PSP Speed up
0.3 269.3 14.1
0.4 303.0 20.2
0.5 338.1 28.9
0.6 365.7 38.5
0.7 374.3 45.1
0.8 433.5 57.8
0.9 478.2 69.3
1.0 487.9 78.7

Table VII. Comparison of discrete slew buffering (SB) and slew constrained timing

buffering (VGL+SB+PSP) on 100 large-degree nets. Slack is in ns.

Discrete Slew Buffering (SB) Timing Buffering w/ PSP Ratio
Slew (ns) Area # Buf Slack #S CPU Area # Buf Slack #S CPU Area Speed

0.3 73873 12082 2102 532 373.2 75532 14293 2130 1692 2127.3 2.2% 5.7
0.4 61082 11839 2091 438 285.3 62323 13992 2151 1750 2230.0 2.0% 7.8
0.5 43992 9870 2130 359 203.9 45340 12840 2172 1779 2292.2 3.1% 11.2
0.6 38918 8378 2117 310 149.0 40670 12058 2185 1812 2495.1 4.5% 16.7
0.7 32538 7189 2055 257 101.7 34132 11582 2138 1830 2553.5 4.9% 25.1
0.8 25127 6032 2050 215 85.5 26615 8172 2125 1855 2628.2 5.9% 30.7
0.9 23295 5578 2043 190 77.6 24879 7220 2118 1873 2858.7 6.8% 36.8
1.0 20152 4902 2032 157 73.0 21582 6175 2111 1891 3029.2 7.1% 41.5

• SB+NI becomes slower with tighter slew constraint since the size of the solution

set becomes much larger as more buffers are inserted.

• For speedup, we apply the adaptive buffer selection technique as described in

Section D for continuous slew buffering to SB+NI. From Table VIII, one can see

that SB+NI is significantly accelerated while the solution quality is moderately

degraded.

4. Continuous Slew Buffering

Results of C-SB and C-SB+NI are summarized in Table IX. Area saving here refers

to comparison to SB. We observe the following:

48

Table VIII. Results of slew buffering with non-fixed input slew. Area saving is ob-

tained by comparing to SB. Degrad. refers to the slack degradation ob-

tained by comparing to VGL+S.

Slew Buffering w/ Non-Fixed Input Slew (SB+NI) SB+NI w/ Adaptive Buffer Selection
Slew Area # Buf CPU Degrad. Area Saving Area # Buf CPU Degrad. Area Saving
0.3 35148 7114 992.1 17.4% 21.9% 37717 7075 19.2 11.7% 16.2%
0.4 25018 5666 931.7 12.3% 19.2% 31661 5000 27.0 6.6% -2.3%
0.5 19797 4326 762.8 8.0% 13.8% 23841 4175 39.8 1.6% -3.8%
0.6 16528 3772 569.3 4.6% 10.1% 18921 5406 54.9 1.3% -2.9%
0.7 13995 3463 473.6 5.1% 9.9% 14941 4958 69.3 2.1% 3.8%
0.8 12129 3145 397.4 4.6% 9.1% 12178 3214 78.2 3.5% 8.7%
0.9 10667 2854 365.2 4.6% 7.9% 10736 2952 81.3 4.3% 7.3%
1.0 9629 2488 337.3 3.9% 6.7% 9663 2525 85.0 2.4% 6.3%

• In slew buffering, tighter constraint causes excessive buffer insertion. If the

candidate buffer positions are not pre-set carefully in discrete slew buffering,

we may often have to insert buffers in an inefficient way. Continuous slew

buffering (C-SB) significantly alleviates this problem and results in up to 15%

improvement in buffer area.

• C-SB runs very fast due to our adaptive procedure for buffer selection (see Sec-

tion D). If C-SB is carried out without buffer selection procedure, the algorithm

becomes very slow. For example, we obtain a solution with buffer area 9703 in

1722.8 seconds for α = 1.0. Compared to C-SB with buffer selection, it is only

0.5% better in buffer area, however, it is about 75× slower.

• We also implement the continuous slew buffering without fixed input slew as-

sumption (C-SB+NI). As is evident from Table IX, one can further save several

percentage area over C-SB while the runtime is still acceptable.

49

Table IX. Results of continuous slew buffering. Area saving is obtained by comparing

to SB. Degrad. refers to the slack degradation obtained by comparing to

VGL+S.

Continuous Slew Buffering (C-SB) C-SB w/ Non-Fixed Input Slew (C-SB+NI)
Slew Area # Buf CPU Degrad. Area Saving Area # Buf CPU Degrad. Area Saving
0.3 37840 6383 2.5 9.8% 15.8% 37627 6149 19.7 15.4% 16.4%
0.4 27905 4717 2.7 5.7% 9.9% 24927 4980 285.7 8.8% 19.5%
0.5 21043 4202 9.3 5.9% 8.3% 19281 3851 220.6 7.4% 16.0%
0.6 16880 4735 40.9 6.5% 8.9% 15831 4622 710.5 5.7% 13.9%
0.7 14525 3420 33.1 5.2% 6.9% 13017 3190 700.3 5.2% 16.2%
0.8 12472 3198 29.2 5.9% 6.5% 10813 2886 610.7 6.6% 18.9%
0.9 10872 2883 25.8 5.1% 6.1% 9582 2461 532.8 6.2% 17.2%
1.0 9754 2630 22.9 5.7% 5.4% 8768 2277 442.1 5.5% 15.0%

5. Handling Blockage

The experimental results on discrete slew buffering with blockage (SB+B) and the

slew constrained timing buffering with the same blockage (VGL+S+B) are included

in this paper. Note that SB+B holds the fixed input assumption. We randomly

place 20 rectangular blockages with total area summed to 30% that of the smallest

bounding box of each net. Results are shown in Table X. Since blockages are in-

troduced, solution quality of both slew buffering and timing buffering becomes worse

than before, i.e., area saving is negative. However, slew buffering still outperforms

timing buffering in terms of both runtime and buffer area.

It is interesting to see that timing buffering tends to have more computation

overhead than slew buffering when buffer blockages are handled. We would like to

interpret this phenomenon as follows. VGL+S is very sensitive to buffer positions in

terms of runtime since a new buffer position may lead to many new non-dominated so-

lutions (see Section b). However, in slew buffering, a new buffer position can only lead

to |B| new solutions as discussed in Section b. In fact, the slew buffering algorithm

runs almost linear in the number of buffer positions as indicated by Figure 13. Thus,

slew buffering is less sensitive to the buffer blockage insertion in terms of runtime.

50

Table X. Handling blockage. Each net has 30% blockage area. Area saving is obtained

by comparing to SB.

Slew Buffering w/ Blockage Timing Buffering w/ Blockage
Slew constraint (ns) Area #Buf CPU (s) Area Saving Area #Buf CPU (s) Area Saving

0.3 51347 8502 22.3 -12.4% 52121 10792 423.7 -13.7%
0.4 35467 6792 19.3 -12.7% 36214 8302 447.7 -14.5%
0.5 26180 5893 16.2 -12.3% 26635 7693 470.3 -13.8%
0.6 20863 4721 13.2 -11.9% 21201 5887 542.3 -13.3%
0.7 17831 4082 10.0 -12.9% 18380 4952 610.1 -15.5%
0.8 15073 3529 9.2 -11.5% 15731 4598 662.3 -15.2%
0.9 13202 3290 8.7 -12.3% 13767 4110 710.5 -15.9%
1.0 11845 3021 7.9 -12.9% 12237 3775 759.0 -15.7%

6. Comparison with Capacitance-Based Buffering

Finally, we compare SB with CBB [26, 25]. As in practice, a typical buffer is selected

for running CBB. As such, we calculate for each buffer bi the longest wire length li it

can drive such that the slew constraint is satisfied. The typical buffer is the one with

maximum li/A(bi) value, where A(bi) is the buffer area of bi. The data in Table XI

(c.f. Table IV) demonstrate that SB significantly outperforms CBB in our context:

the total area of solutions by CBB is usually more than double that of SB. The area

of capacitance based buffering is much worse because only a single buffer is used,

capacitance based buffering ignores resistive effect, and multi-pin nets are not well

handled in CBB. Note that CBB runs in less time since only a single buffer is used

in computation.

Table XI. Capacitance-based buffering (CBB). Only a single typical buffer is used.

Area saving is obtained by comparing to SB.

Slew (ns) Area # Buf CPU (s) Area Saving
0.3 86572 12357 1.1 -48.0%
0.4 62101 8864 1.3 -50.1%
0.5 54324 7754 1.5 -57.7%
0.6 49825 7112 1.5 -63.1%
0.7 42526 6070 1.4 -63.5%
0.8 36956 5275 1.3 -63.9%
0.9 31611 4512 1.0 -63.4%
1.0 26447 3775 0.9 -61.0%

51

G. Conclusion

This work proposes a new buffering formulation motivated by the need to efficiently

buffer huge numbers of nets under slew constraints. We show that one can optimize

for area and satisfy a slew constraint efficiently, despite the problem being NP-hard.

The slew buffering problem is intensively studied in this work. Three new al-

gorithms are proposed, namely, a slew buffering algorithm with the assumption of

fixed input slew, a more sophisticated algorithm without this assumption, and a very

efficient continuous slew buffering algorithm. Experimental results demonstrate that

new algorithms run one to two orders of magnitude faster than the widely-used timing

buffering algorithm and meanwhile they can obtain significant amount of area saving.

52

CHAPTER III

GATE SIZING FOR CELL LIBRARY-BASED DESIGNS

With increasing time-to-market pressure and shortening semiconductor product cy-

cles, more and more chips are being designed with library-based methodologies. In

spite of this shift, the problem of discrete gate sizing has received significantly less

attention than its continuous counterpart. On the other hand, cell sizes of many real-

istic libraries are sparse, for example, geometrically spaced, which makes the nearest

rounding approach inapplicable as large timing violations may be introduced. There-

fore, it is highly desirable to design an effective algorithm to handle this discrete gate

sizing problem.

Such an algorithm is proposed in this paper. The algorithm is a continuous

solution guided dynamic programming approach. A set of novel techniques, such as

Locality Sensitive Hashing based solution pruning, are also proposed to accelerate the

algorithm. Our experimental results demonstrate that (1) nearest rounding approach

often leads to large timing violations and (2) compared to the well-known Coudert’s

approach, the new algorithm saves up to 21% in area cost while still satisfying the

timing constraint.

A. Introduction

Increasing design complexities along with time-to-market pressures and shortening

product cycles have mandated a shift in VLSI design from custom crafting to cell

library-based design methodologies. This shift raises an increasing need of salient gate

sizing techniques which are powerful in performing delay-area trade-off optimizations.

A handful set of gate sizing techniques exist, however, most of them handle the

continuous gate sizing problem which is based on the assumption that gate sizes can

53

be any values within certain range (see, e.g., [34, 35, 36]). When gate implementations

are restricted to discrete sizes, as in reality, the problem becomes much more difficult

and very few approaches (see, e.g., [37, 6]) are known.

On the other hand, a large number of realistic cell libraries are “sparse”. For

example, when the cell sizes are geometrically spaced instead of uniformly spaced,

significant sparseness is introduced. Refer to [7] for some realistic sparse libraries.

Geometrically spaced gate sizes are desired because uniformly spaced gate sizes would

result in a large number of gate sizes and managing this large volume of data is difficult

[7]. Furthermore, it is proven in [7] that under certain conditions, the set of optimal

gate sizes must satisfy the geometric progression.

In this work, we propose a novel gate sizing technique which handles discrete

gate sizes. As many efficient solutions exist for the continuous gate sizing problem,

one might think of obtaining a discrete solution through rounding a continuous so-

lution. This is very fast but often results in large timing violations for a sparse cell

library. In contrast, the method proposed by Coudert [6], which is based on the multi-

dimensional descent optimization, handles the discrete sizes. However, it has some

trial-and-error flavor and thus has room for further improvement. A dynamic pro-

gramming approach can search solutions more systematically and therefore has the

potential to generate high quality solutions. However, it may suffer from substantial

amount of computation overhead, which imposes a great challenge to our problem.

The key idea of the new algorithm is to integrate the solution quality of dy-

namic programming with the short runtime of obtaining solution to the continuous

version of the problem. That is, we narrow down the searching space of dynamic

programming under the guidance from a best continuous solution. Thus, instead of

checking every implementation, our algorithm only investigates a number of discrete

implementations around the best continuous solution. This enables us to find so-

54

lutions with quality close to the best continuous case and at the same time obtain

huge speedup in computation. We also develop new techniques to prune inferior so-

lutions and maintain/increase the diversity of intermediate solutions. Focusing on a

small number of diversified and representative solutions during the candidate solution

propagation can improve the efficiency of solution search. To this end, an advanced

scheme called Locality Sensitive Hashing (LSH) technique [38] is explored to maintain

solution diversity via selecting well-spaced solutions in high dimensions.

In summary, the main contributions of this paper are (1) a continuous solution

guided dynamic programming approach for discrete gate sizing, and (2) a Locality

Sensitive Hashing based solution pruning technique that allows obtaining high quality

solutions by maintaining solution diversity.

Our experimental results demonstrate that (1) nearest rounding approach often

leads to large timing violations for sparse cell libraries and (2) compared to the well-

known Coudert’s approach in [6], the new algorithm saves up to 21% area cost for

basic library while still satisfying the timing constraint. For a sparser library the new

algorithm provides benefits of up to 24% in area cost, thus showing that sparser the

library better are the benefits of the new algorithm.

The rest of the chapter is organized as follows. Section B presents the problem

formulation. Section C describes the algorithm for discretizing the continuous solu-

tion. Sections E presents the experimental results. A summary of work is given in

Section G.

B. Problem Formulation

Given a combinational circuit with n gate nodes, ni primary input nodes and no pri-

mary output nodes, a gate library L consisting of |L| gate types where each gate type,

55

characterized by the functionality and the number of gate inputs, may have various

gate sizes, the discrete gate sizing problem asks to compute a sizing solution with

the minimal total gate area cost such that the maximum delay between any primary

input node and any primary output node is bounded above by a delay constraint α.

The problem can be formally defined as

Minimize
Pn

i=1 aiWi

s.t. Delay ≤ α,

Wi ∈ L,

(3.1)

where Wi denotes the size of gate i and ai denotes its weighting factor. Weighting

factors can be set to unity for gate size minimization, and to weighted summation of

signal probabilities and activity factors for explicit power optimization.

C. Optimization Methodology

Before investigating the discrete gate sizing problem, it is helpful to go over the closely-

related continuous gate sizing problem. In this problem, gate sizes are allowed to be

any real value between certain lower and upper bounds, and the resulting problem

can be efficiently solved, for example, by using Lagrangian Relaxation technique [35].

Moreover, an optimal solution can be obtained if the underlying delay model is a

posynomial function. For example, the solution is proven to be optimal when the

Elmore delay model is used [35].

1. Error Due to Nearest Rounding

It might be expected that a good discrete solution can be obtained by rounding the

gate sizes of continuous solution to the nearest discrete gate sizes. However, this is

not the case for the sparse cell library as the choices of gate implementations are

56

very restrictive (see also [6] for this observation). We have the following theoretical

analysis on error bound of nearest rounding.

Suppose that gate sizes are geometrically spaced with factor t for each gate type,

i.e., available gate sizes are as 1, t, t2, t3, . . . for each gate type. Given any continuous

solution, the timing after nearest rounding is bounded above by t× the timing of the

continuous solution. For example, if the timing of the continuous solution is 1ns and

t = 2, then after nearest rounding, the new timing is at most 2ns.

In our proof, as in [35], for a gate with size x, gate capacitance is C(g) = cux+cf

and gate resistance is R(g) = ru/x, where cu, cf , ru are unit size gate capacitance, gate

perimeter capacitance, and unit size gate resistance. We are to bound the maximum

delay increase for a single gate due to nearest rounding. For any gate g, nearest

rounding can make the resistance at most (1+ t)/2× the resistance of the continuous

solution. This happens when the continuous gate size is (1+t)/2·tα−ε where α is any

non-negative integer and ε is a very small positive value. This gate will be rounded

down to the size of tα. Denote by Rc the resistance of the continuous gate, and thus

Rc(g) = ru/((1 + t)/2 · tα − ε). After nearest rounding, the new resistance is R(g) =

ru/(t
α) ≈ (1+t)/2·Rc(g). Suppose that each fanout gate gi of g is of size (1+t)/2·tα+ε

and thus they will be rounded up to size tα+1. Denote by Cc the capacitance of

a continuous fanout gate, and Cc(gi) = cu((1 + t)/2 · tα + ε) + cf . After nearest

rounding, the new capacitance is C(gi) = cu(t
α+1) + cf ≤ 2t/(1 + t) · Cc(gi). Denote

by Cc
downstream the total downstream capacitance of gate g in the continuous solution,

then the new total downstream capacitance Cdownstream(g) ≤ 2t/(1+ t)Cc
downstream(g).

Clearly, the delay for the gate g can increase at most to R(g) · Cdownstream(g) ≤
tRc(g) · Cc

downstream(g). Since the gate delay of any gate can be at most increased to

t× the gate delay in the continuous solution, the delay increase for the whole circuit

is also at most t×. However, we understand that there is a bit of pessimism built in

57

this bound, since the bound requires each gate’s delay become t× the delay in the

continuous scenario. This cannot happen because if all outputs of a gate are upsized

for the gate delay to become t×, then the delay of the next gate on the critical path

does not become t× since it will also be upsized. As a result, delay of the whole path

does not become exactly t× the delay in continuous scenario, but somewhat smaller

than this number. SETCLRSRa bc
Fig. 14. An example for illustrating rounding error bound due to nearest rounding.

On the other hand, in theory, t× timing can be obtained by nearest rounding.

Let us look at a simple example for this. Refer to Figure 14 where the combinational

circuit contains three gates a, b, c. Assume that cu(a) = 1, ru(a) = 1, cu(b) = 1, ru(b) =

1, cu(c) = 100, ru(c) = 0.01, cf (a) = 0, cf (b) = 0, cf (c) = 0, and input capacitance of

the flip-flop is 1. Suppose that gate sizes are geometrically distributed with factor of

2. In a continuous solution, suppose that a, b, c are of sizes 1.5 − ε, 1.5 − ε, 1.5 + ε,

respectively. Clearly, a − b − flipflop is the critical path which has delay of about

100. a, b, c will be rounded to 1, 1, 2, respectively, due to nearest rounding, and

a−b−flipflop is still the critical path which has delay of about 200. Thus, the delay

is increased to about 2× due to nearest rounding. We reach the following theorem.

Theorem 1: For a cell library where gate sizes are geometrically spaced with factor

t, the timing due to nearest rounding can be at most t× the timing of the continuous

solution.

It is interesting to note that nearest rounding may get worse results with denser

58

cell library. Suppose that in Figure 14, two cell libraries, one sparser library and one

denser library, are available. The gate sizes in the sparser library are geometrically

distributed with factor of t = 2 (i.e., 1, 2, 4, 8, . . .). In the denser cell library, there

is a gate size (1 + t)/2 · tα for every α. Thus, the gate sizes are distributed as

1, 1.5, 2, 3, 4, 6, 8, Suppose that in a continuous solution, a, b, c are of sizes 1.5 +

ε, 1.5 − ε, 1.5 − ε, respectively. With the sparser cell library, a, b, c will be rounded

to 2, 1, 1, respectively. Thus, the circuit delay is about 50. With the denser cell

library, a, b, c will be rounded to 1.5, 1.5, 1.5, respectively. The circuit delay is then

about 100. Clearly, nearest rounding obtains better timing and area with sparser

library compared to denser library. Note that this observation does not contradict

with Theorem 1. A circuit could have larger timing violation with denser cell library

due to nearest rounding as long as its timing violation is smaller than the bound in

Theorem 1.

In addition to the theoretical analysis, our study shows that in a sparse cell

library, the nearest rounding strategy can make the ISCAS’85 benchmark circuits to

have timing violations of hundreds of picoseconds in 90nm technology.

2. Proposed Methodology

Nearest rounding may introduce significant amount of timing violations for sparse

cell library. On the other hand, the dynamic programming approach can obtain the

optimal solution for the discrete gate sizing problem, however, it is computationally

prohibitive as it needs to investigate every gate size at each gate node.

Our idea is to integrate the optimality of the dynamic programming framework

with the high efficiency of obtaining the solution to the continuous version of the

problem. To this end, we propose a continuous solution guided dynamic programming

algorithm to solve the discrete gate sizing problem. That is, the searching space of

59

the dynamic programming is significantly narrowed down under the guidance from a

good continuous solution while solution quality is only slightly degraded in spite of

huge speedup. At each gate node, instead of every discrete gate size, only those close

to the continuous solution will be investigated. This difference between the dynamic

programming approach (without any speedup technique) and the new scheme enables

us to find solutions with quality close to the best continuous case and at the same

time obtain tremendous speedup in computation.

There are many continuous gate sizing techniques which use various delay models

such as Elmore delay model in [35] and convex delay model in [39]. For simplicity,

we adopt Elmore delay model in this paper. However, our method is independent

of delay model and any delay model is applicable. For example, the convex delay

model [39] can be employed to compute a better continuous solution guider and a

better overall result. Rest of the paper concentrates on our novel algorithm used to

discretize the continuous solution.

D. Discretization Algorithm

Before explaining the algorithm, we will present our circuit model and elaborate on

some key terms necessary to describe the algorithm. In our algorithm, a circuit is

represented as a directed acyclic graph where each node corresponds to either a logic

gate or a primary input or output of the circuit, and each edge corresponds to a

pin-to-pin connection between two gates.

In this paper, a complete solution refers to the determination of all gate sizes in

the circuit. A partial solution is a solution where not all gate sizes have been deter-

mined. A partial solution becomes a complete solution when all gates are processed.

For convenience, when there is no confusion, we also call a partial solution a solution.

60

We denote a discrete solution by γ and the underlying continuous solution by γc.

Outline of the algorithm is described in Figure 15.

Algorithm: Discretize GateSize.
Input: Continuous solution γc

Output: Discrete solution
1. for eāch gate k during the breadth-first traversal of the circuit graph
2. try several discrete gate sizes around its continuous gate size based on k’s criticality
3. generate partial solutions and perform node pruning
4. if the size of the solution set is greater than a threshold
5. perform solution set pruning
6. select the best solution at the primary output

Fig. 15. Pseudocode for discretization algorithm

The algorithm begins with the primary input nodes, proceeds through a breadth-

first traversal of the circuit graph and processes each gate in turn. As our discretiza-

tion approach is guided by the continuous solution, at each gate node, only discrete

gate sizes close to the continuous solution are investigated. To this end, each gate

is measured by its criticality and more gate sizes will be investigated for those more

critical gates. The details of this step are presented in Section 1.

During breadth-first traversal, once a gate node is processed it is included in a

partial solution. Many partial solutions may be formed. It is necessary to perform

solution pruning technique to reduce the size of the solution set and thus save the

runtime. There are two types of pruning. The first type of pruning is called node

pruning which is performed during the time a node is processed. The second type of

pruning is called solution set pruning which is performed after a node is processed

and when the number of partial solutions is greater than a threshold. The threshold is

experimentally determined to achieve balance between solution quality and runtime

for each circuit. This solution set pruning technique uses locality sensitive hashing

technique and cutline pruning technique to effectively and efficiently reduce the size

of the solution set. These two types of pruning are explained in Sections 2 and 3

61

respectively.

1. Explore Gate Sizes Close to the Continuous Solution

During the breath-first traversal, the gate sizes investigated at each gate are de-

termined by the criticality of the gate. In our algorithm, criticality of a gate is

measured by its slack, namely, a gate is more critical if its slack is smaller. Since

one does not know the slack of each node before completing the sizing procedure,

the slack is estimated using our guider, i.e., the continuous solution. We first iden-

tify the worst slack, denoted by WS, of the circuit in the continuous solution,

and then the criticality of each gate g, denoted by Criticality(g), is measured by

Slack(g)/WS. Note that when the worst slack is very close to zero, a small positive

constant ε is added to the slack of all nodes for the robustness of computation. Thus,

Criticality(g) = (Slack(g) + ε)/(WS + ε).

Our approach is a criticality-based approach, meaning that we spend more dis-

cretization efforts on more critical gates. In this paper, we implement this idea by

classifying gates into three groups and spend different amount of discretization efforts

for each group. Note that our approach is not restricted to three groups and other

classification methods can be used. In this paper, we set up two thresholds t1, t2

where 1 < t1 < t2 such that when Criticality(g) < t1, T1 sizes around g’s continuous

gate size are explored, when t1 ≤ Criticality(g) < t2, T2 sizes around g’s continuous

gate size are explored, and when Criticality(g) ≥ t2, only the gate size closest to g’s

continuous gate size is explored. Thus, gate criticality decides how many sizes close

to the continuous solution are explored. By this, the search space is greatly reduced

in our discrete gate sizing algorithm compared to the standard dynamic programming

approach.

62

2. Solution Pruning

During solution propagation, even though the search space is judiciously restricted

by the use of the continuous guider, at each gate, the algorithm still needs to check

and keep several solutions close to the continuous solution. Propagating all solutions

is impractical and unnecessary. Many of them are inferior to others and should be

pruned to save computation cost. There are two types of pruning/inferiority in our

case. The first type of pruning is called node pruning which is performed during the

time a node is processed. The second type of pruning is called solution set pruning

which is performed after a node is processed and when the size of the solution set is

greater than a threshold.

We now introduce the first type of pruning. Each solution is characterized by

cumulative delay and cumulative gate area. That is, each solution γ is characterized

by a (D,W) pair, where D(γ) refers to the maximum delay from any primary input

node to any processed node in γ and W (γ) refers to the cumulative gate area for all

processed gates in γ. After processing a node, (D,W) will be accordingly updated for

each new solution. Note that computing D may require the knowledge of downstream

gates (i.e., input capacitance of downstream gates) which are not yet processed. The

continuous gate sizes at those downstream gates are then used as an approximation.

This makes sense as our whole approach is guided by the continuous solution.

For two solutions γ1, γ2 generated at the same input gate gi, γ2 is inferior to γ1 if

and only if D(γ1) ≤ D(γ2) and W (γ1) ≤ W (γ2). The inferior solution will be pruned

and thus only the solution with either smaller maximum delay or smaller total area

survives. This type of pruning is called node pruning.

After carrying out the computation for a while, the size of the solution set Γ

becomes very large. To maintain efficiency, Γ has to be shrunken before successive

63

computations. For this purpose, when |Γ| is greater than a threshold (after processing

a gate node), the second type of pruning, called solution set pruning, is performed.

In this pruning technique, we also consider to maintain the diversity of the solutions.

This is desired since “widely spread” solutions may enable us to search in a large space

and eventually lead to better solutions. Focusing on a small number of diversified

and representative solutions can improve the efficiency of solution search: we do not

want to waste time on checking many similar solutions.

To diversify solutions, we group similar solutions and then select the represen-

tative one from each group for further propagation. The solutions which have not

been selected are pruned to save runtime. Suppose that we have computed clusters

among solutions and inside each cluster, solutions are similar to each other. In each

cluster, the representative solution is the one closest to our continuous guider. The

representative solutions will be selected for further propagation while other solutions

are pruned.

The proximity of a partial discrete solution to the continuous solution is defined

by both delay and area information. We first define the concept of a cut line, as

shown in Figure 16, as a subset of edges in the circuit such that it partitions the

circuit graph into two disjoint subgraphs. Given the current solution set (note that

all solutions have the same set of processed gates), the cut line is formed such that

for each edge cut by the cut line, it links two gate nodes where the upstream (i.e.,

fanin) gate node has been processed but the downstream (i.e., fanout) gate nodes has

not been processed. Denote all those fanin gate nodes by {gi} = {g1, g2, . . .}. Each

solution γ is assigned a proximity value f(γ) which is defined as

f(γ) =
X
gi

|D(γ(gi))−D(γc(gi))| ·
X
gi

|W (γ(gi))−W (γc(gi))|, (3.2)

where |D(γ(gi))−D(γc(gi))| measures the delay difference between γ and the contin-

64Cutline
Fig. 16. A cutline.

uous solution and |W (γ(gi)) −W (γc(gi))| measures the area difference. Clearly, the

f value of a solution measures its proximity to the continuous solution. Suppose that

there are many nodes along the cutline. It is difficult and inefficient to compare all

solutions by comparing each node along the cutine. The proximity defined as above

assigns a single value for each solution which makes the comparison much easier and

efficient. Clearly, a solution with small proximity value is preferred. In another word,

γ2 is inferior to γ1 if and only if f(γ1) ≤ f(γ2). The representative solution from each

cluster is the one which smallest proximity value.

We are to describe the solution grouping technique. Grouping solutions can

be realized through mapping each solution to a high-dimensional vector followed by

clustering geometrically close vectors. The mapping is computed as follows.

Assume that each gate node in the circuit is indexed and each gate implementa-

tion in the gate library is also indexed, then each gate index corresponds to a distinct

dimension and the coordinate along that dimension is equal to the index of the as-

signed gate implementation. In this way, a solution is mapped to a d dimensional

vector if d nodes have been processed. We are now to compute clusters among the

resulting vectors. For a large circuit, one has to cluster vectors in a very high dimen-

65

sion. Although the high-dimensional clustering problem has been intensively studied

in decades, it remains as one of the hardest problems in the database research. In

this paper, based on a highly effective and efficient nearest neighbor query technique

called Locality Sensitive Hashing (LSH) [38], a new technique for solution clustering

and representative solution selection is introduced.

3. Solution Clustering by LSH

In cluster computation and nearest neighbor query, “curse of dimensionality”, which

roughly says that the computational complexity of the above two operations increases

exponentially with dimension, remains as a notorious problem in database research

for a long time. To effectively attack this problem, a new approach, called Locality

Sensitive Hashing (LSH), is introduced in [38]. With provable bound on approxima-

tions, LSH can efficiently approximate similarity search by hashing technique. The

basic idea is to hash the vectors such that the geometrically close (resp. far apart)

vectors are hashed to the same (resp. different) bins with large probability. LSH

enables us to answer a nearest neighbor query in O(dm1/(1+ε)) time over an m-point

d-dimensional database for any ε > 0. In addition, an approximate nearest neighbor

query can be answered in sublinear time excluding the preprocessing time [38], where

given a point set P , the problem asks to return a point p ∈ P such that the distance

of p to the query point q is at most 1 + ε times the distance from the nearest point in

P to q. It is shown in [38] that LSH is much more efficient compared to many other

methods. Successful applications of LSH include [40] on bioinformatics. LSH can be

easily used for clustering since each bin in hash table can be treated as a cluster (note

that geometrically close vectors are hashed to the same bin with large probability).

Suppose that d nodes have been processed in each solution in the solution set

Γ. Each solution γ is first mapped to a d-dimensional point p, where a dimension

66

corresponds to a node. Suppose that there are m solutions in the solution set. After

mapping, there are m d-dimensional points, which form the point set P . We then

embed these points into the Hamming space H with dimension d′ = Md, where M is

the number of available sizes for any cell type in the library. This embedding allows us

to perform random sampling on the embedded bit string. For embedding, taking each

point p ∈ P , we transform it into a binary vector v(p) =< ΥM(x1), . . . , ΥM(xd) >

where ΥM(x) denotes the unary representation of x (i.e., x ones followed by M − x

zeroes). v(p1) 10000:11000:11111 v(p2) 10000:10000:11111 v(p3) 11000:10000:11100
(a) original three bit strings from v(p). v'(p1) 0111 v'(p2) 0011 v'(p3) 1000

(b) bit strings v′(p) after re-
moving redundancy.

 h(p1) 01 h(p2) 01 h(p3) 10
(c) bit strings h(p) after
locality sensitive hash-
ing.

Fig. 17. Illustration of concepts in LSH.

It is helpful to illustrate the above concept by a simple example. Suppose that

in a solution set Γ, there are three solutions γ1, γ2, γ3 and three nodes have been

processed. Supposed in solution γ1, the processed nodes are assigned with sizes of

1, 2, 5, respectively, which are the indices of the sizes for each processed gates. The

solution is then mapped to a point p1 = (1, 2, 5). Further suppose that M = 5, then

|v(p1)| has length of d′ = 15 and v(p1) = 10000 : 11000 : 11111 since e.g., 2 = 11000

in unary representation (i.e., 2 ones followed by 3 zeros). Similarly, suppose that in

67

γ2, the assigned gate sizes are 1, 1, 5, and in γ3, the assigned gate sizes are 2, 1, 3. γ2

will be mapped to a point p2 = (1, 1, 5) and v(p2) = 10000 : 10000 : 11111. γ3 will

be mapped to a point p3 = (2, 1, 3) and v(p3) = 11000 : 10000 : 11100. Refer to

Figure 17(a) for the result.

For convenience, v(p) for a point p is treated as a bit string. It is clear that v(p)

can be very long for the large circuit. Given a set of solutions {γ1, γ2, . . .} and their

corresponding set of {v(p1), v(p2), . . .}, many bits may be the same. In a solution set,

each solution is characterized only by its difference from other solutions. Thus, we can

remove the redundancy before clustering them for high efficiency. For this purpose,

{v(p1), v(p2), . . .} are reduced to {v′(p1), v
′(p2), . . .} by keeping only the difference

among solutions. Denote the length of v′(p) by d.

In Figure 17(a), one sees that in {v(p1), v(p2), v(p3)}, only four bits are different

and all other bits are the same. Thus, we can shrink the length of the bit strings to

four. Refer to Figure 17(b) for the result.

LSH then performs a further dimension reduction mapping to the bit strings

through random sampling for clustering. For dimension reduction mapping, we ran-

domly choose k elements from {1, 2, . . . , d}, where each element has equal probability

to be chosen, and form an index subset I = {i1, i2, . . . , ik}. We then map each point

p into h(p) =< v′(p)[i1], v
′(p)[i2], . . ., v′(p)[ik] >.

For Figure 17(b), if we choose k = 2 elements from {1, 2, 3, 4} as 1, 4, then

I = {1, 4} and h(p1) = 01 since v′(p1)[1] = 0 and v′(p1)[4] = 1. Similarly, h(p2) = 01

and h(p3) = 10. Refer to Figure 17(c) for the result.

Function h(·) is called the locality-sensitive hash function [38, 40]. It is shown

in [38] that the probability for two embedded points to have the same hash value

(i.e., hashed into the same bucket) is “proportional” to their similarity. Based on this

intuitive fact, we are able to build hash table to support efficient similarity search

68

and clustering among a set of points. In Figure 17(c), p1, p2 are hashed to the same

bucket and p3 is hashed to a different bucket. Each bucket corresponds to a cluster,

thus, we have two clusters in Figure 17(c). Given n gate nodes in the circuit, mapping

a solution to Hamming space takes O(n) time, and dimension reduction takes O(n)

time. Thus, for m solutions, the total time complexity for clustering is O(mn). Using

LSH, one can compute clusters in linear time in terms of m and n.

E. Experimental Results

The new discrete gate sizing algorithm, denoted by NEW, is implemented in C++

and tested on an X86 computer. Our test cases are ISCAS’85 benchmark circuits

with a dense 90nm gate library where each type of gate has 10 sizes. They are

1×, 2×, 3×, 4×, 6×, 8×, 12×, 16×, 24×, 32× of the minimum size with respect to each

cell type.

To judge the efficacy of our discretization algorithm we compare its results with

the solutions obtained by simply rounding each size in the continuous solution to

the nearest discrete size. In addition, Coudert’s approach [6], which is a well-known

discrete gate sizing technique, is also implemented for comparison. In this work,

we use total capacitance of gates as our area cost function. Comparison results are

summarized in Table XII. We make the following observations:

• Nearest rounding always introduces large timing violations. Although the total

gate area of nearest rounding is similar to that of continuous solution, its timing

is much worse compared to the continuous solution.

• NEW archives much better timing compared to nearest rounding, which makes

sense as NEW benefits much from the knowledge of criticality and other global

information which is lacking in the case of nearest rounding.

69

• Compared to [6], 1% - 21% area cost reductions are obtained by NEW.

• Runtime of NEW including computing the continuous solution is on average

about 50% higher than [6]. This is already very good considering a dynamic

programming-style approach is performed. The efficiency comes from our con-

tinuous solution guided scheme and pruning techniques.

Table XII. Comparisons using a library with 10 sizes per gate type. Timing constraints

and slack are in ps. CPU in seconds is runtime. Area refers to area cost.

Area red. refers to the area reduction ratio between NEW and [6].

Circuit Timing Continuous Solution Nearest Round Approach in [6] NEW Area
Const. Slack Area CPU Slack Area Slack Area CPU Slack Area CPU red.

C432 800 0 4.1 4.1 -42 4.1 12 5.1 10.7 6 4.4 13.7 14%
C499 900 0 7.6 5.9 -94 7.4 12 8.7 28.9 11 8.3 47.8 5%
C880 700 0 5.9 4.2 -115 5.8 4 8.2 21.2 5 6.5 41.7 21%
C1355 1200 0 7.7 7.2 -93 7.5 15 10.1 32.1 26 9.2 37.2 9%
C1908 1200 0 19.7 12.6 -94 19.7 5 24.6 67.5 20 21.7 81.0 12%
C2670 1200 0 20.9 27.8 -102 20.9 37 28.7 121.5 26 23.9 202.1 17%
C3540 1700 0 33.3 21.5 -172 33.2 32 44.4 179.2 41 38.8 284.5 13%
C5315 1500 0 40.1 37.8 -139 40.0 5 55.3 301.8 1 45.7 634.7 17%
C6288 2500 0 33.1 37.6 -191 33.0 19 41.3 403.2 40 38.2 736.0 8%
C7552 2100 0 58.1 67.7 -130 58.1 31 59.7 497.5 1 59.1 534.7 1%

Table XIII. Comparisons using a sparser library with 6 sizes per gate type. Timing

constraints and slack are in ps. CPU in seconds is runtime. Area refers

to area cost. Area red. refers to the area reduction ratio between NEW

and [6].

Circuit Timing Continuous Solution Nearest Round Approach in [6] NEW Area
Const. Slack Area CPU Slack Area Slack Area CPU Slack Area CPU red.

C432 800 0 4.1 4.1 -101 4.0 43 5.4 10.4 4 4.7 12.4 13%
C499 900 0 7.6 5.9 -94 7.4 20 9.1 27.0 12 8.4 40.7 8%
C880 700 0 5.9 4.2 -115 5.8 5 9.0 18.7 1 6.8 33.5 24%
C1355 1200 0 7.7 7.2 -93 7.5 39 11.3 31.5 6 9.1 35.7 19%
C1908 1200 0 19.7 12.6 -147 19.5 1 25.7 60.4 9 22.4 87.1 13%
C2670 1200 0 20.9 27.8 -117 20.8 57 29.0 115.7 83 24.2 188.0 17%
C3540 1700 0 33.3 21.5 -247 33.1 40 44.9 165.8 11 39.4 247.7 12%
C5315 1500 0 40.1 37.8 -155 39.8 7 55.8 329.8 15 46.4 647.8 17%
C6288 2500 0 33.1 37.6 -312 32.7 72 44.2 417.7 45 40.7 775.1 8%
C7552 2100 0 58.1 67.7 -153 58.1 25 61.5 471.9 3 59.0 537.1 4%

70

As our approach is proposed for cell library based designs, we also inspect how

its effectiveness scales with the discreteness in the library. For this, we select six

geometrically spaced sizes (1×, 2×, 4×, 8×, 16×, 32×) for each cell type to form a

sparser cell library. Gate sizing using nearest rounding and NEW are performed with

this new cell library and the results are summarized in Table XIII. We make the

following observations.

Nearest rounding often introduces larger timing violations for our geometrically

spaced cell library compared to the original cell library. According to Theorem 1, the

rounding error is at most 100% since the factor is 2. This is the case for our results.

Nearest rounding obtains the same rounding errors for some circuits because the delay

of the critical path does not change. This is not surprising as according to our analysis

in Section 1, nearest rounding could even obtain smaller timing violations for sparser

cell library compared to the original cell library. For detailed comparison on the

solutions by nearest rounding and NEW, the histogram for gate sizes for the whole

circuit and the critical path of two circuits are shown in Figure 18 and Figure 19.

Nearest rounding blindly tries to remain close to continuous solution, while that may

not be the best given the discreteness in the library. NEW, since it covers much wider

optimization space and is aware of gate criticality, can judiciously upsize gates. For

example, it can be seen from Figure 18 that NEW moves a number of gates from size

1× to 2× for the whole design, but on the critical path, it moves significantly more

percentage of gates to upper sizes, thus showing the benefit over blind rounding to

the nearest size. From Table XIII, one can also see that NEW and [6] are able to

obtain the solutions satisfying the timing constraints and the solutions are generally

worse than the solutions computed with the original cell library. Compared to [6],

4% - 24% area cost reductions are obtained by NEW. Clearly, our algorithm becomes

increasingly useful with sparser cell library.

71

1 2 4 8 16 32
0

50

100

150

Gate Size

N
u
m

b
e
r

Whole Circuit By Nearest Rounding

1 2 4 8 16 32
0

50

100

150

Gate Size

N
u
m

b
e
r

Whole Circuit By NEW

1 2 4 8 16 32
0

2

4

6

8

10

12

Gate Size

N
u
m

b
e
r

Critical Path By Nearest Rounding

1 2 4 8 16 32
0

2

4

6

8

10

12

Gate Size

N
u
m

b
e
r

Critical Path By NEW

Fig. 18. Gate size histogram for the whole circuit and the critical path of C432 bench-

mark circuit.

As a byproduct, the proposed algorithm enables us to compute a local delay-area

tradeoff curve around the continuous solution. Refer to Figure 20 for two resulting

curves. For each plot in Figure 20, the delay-area tradeoff curve computed by NEW

is shown and the result by Coudert’s approach [6] is also shown for reference. The

obtained local tradeoff curve can help users get better timing constraint for the circuit.

With new timing constraint, users can use NEW to generate better solutions.

72

1 2 4 8 16 32
0

100

200

300

400

500

600

700

Gate Size

N
u

m
b

e
r

Whole Circuit By Nearest Rounding

1 2 4 8 16 32
0

100

200

300

400

500

600

700

N
u

m
b

e
r

Whole Circuit By NEW

1 2 4 8 16 32
0

5

10

15

20

25

Gate Size

N
u
m

b
e
r

Critical Path By Nearest Rounding

1 2 4 8 16 32
0

5

10

15

20

25

Gate Size

N
u
m

b
e
r

Critical Path By NEW

Fig. 19. Gate size histogram for the whole circuit and the critical path of C1908 bench-

mark circuit.

F. Conclusion

This work proposes a new gate sizing approach which handles the discrete gate li-

brary for sparse cell libraries. The new algorithm is based on the idea of continuous

solution guided dynamic programming and uses pruning techniques for speedup. Our

experimental results demonstrate that up to 21% area cost reduction can be obtained

compared to the well-known Coudert’s approach. Furthermore, by our approach, a

set of trade-offs instead of a single solution are obtained which can help users get bet-

73

1.15 1.2 1.25 1.3 1.35 1.4
8.5

9

9.5

10

10.5

11

11.5

Delay (ns)

A
re

a
 C

o
st

ISCAS Circuit C1355

NEW
Coudert

1.1 1.2 1.3 1.4 1.5 1.6 1.7
22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

Delay (ns)

A
re

a
 C

o
st

ISCAS Circuit C1908

NEW
Coudert

Fig. 20. Delay-cost tradeoff curves for optimizing two ISCAS benchmark circuits. The

results of NEW and Coudert’s approach [6] are shown.

ter timing constraint for the circuit and provide significant freedom to meet design

specifications.

74

CHAPTER IV

PATTERN SENSITIVE PLACEMENT FOR MANUFACTURABILITY

When VLSI technology scales toward 45nm, the lithography wavelength stays at

193nm. This large gap results in strong refractive effects in lithography. Conse-

quently, it is a huge challenge to reliably print layout features on wafers and the

printing is more susceptible to lithographic process variations. Although resolution

enhancement techniques can mitigate this manufacturability problem, their capabili-

ties are overstretched by the continuous shrinking of VLSI feature size. On the other

hand, the quality and robustness of lithography directly depend on layout patterns.

Therefore, it becomes imperative to consider the manufacturability issue during lay-

out design such that the burden of lithography process can be alleviated.

In this work, the problem of cell placement considering manufacturability is

studied. Instead of designing a new cell placer, our goal is to tune any existing cell

placement solution to be lithography friendly. For this purpose, three algorithms

are proposed, which are cell flipping algorithm, single row optimization approach

and multiple row optimization approach. These algorithms are based on dynamic

programming and graph theoretic approaches, and can provide different tradeoff be-

tween critical dimension (CD) variation reduction and wirelength increase. Using

lithography simulations, our experimental results on realistic netlists and cell library

demonstrate that over 15% CD variation reduction can be obtained in post-OPC

stage by the new approaches while only less than 1% additional wire is introduced.

A. Introduction

As VLSI technology enters the nano-scale regime, demands for minimum feature

sizes have outpaced the advances in lithography hardware solutions. This imposes

75

a great challenge on manufacturing reliability. In current lithography technology,

193nm wavelength is used to print 65nm or even 45nm features. This leads to a large

amount of refractive effects and images on wafer have remarkable mismatches from

mask layouts. Lithography-induced variation also aggravates. As more variations

are presented with e.g., gate length, timing and power of circuits are significantly

affected.

Currently, semiconductor industry heavily relies on resolution enhancement tech-

niques (RETs) for improving printability. Roughly speaking, printability refers to the

difficulty in obtaining a good match between the intended image and the printed im-

age in lithography process. Printability is often measured by critical dimension (CD)

accuracy, which refers to the size of thin features (e.g., gate length) which are difficult

to print reliably. Thus, achieving high CD accuracy means that the printed patterns

well match the desired ones. Prevailing RETs for improving CD accuracy include op-

timal proximity correction, phase shift mask, off-axis illumination, and sub-resolution

assist features [41].

RETs are effective in improving CD accuracy. However, increasingly shrinking

features on the die and increasing complexity of the design over-stretch the capability

of RETs. This problem aggravates when RETs are applied to the layouts which

are not lithography friendly. Furthermore, RETs often complicate photomark shapes

and introduce considerable amount of additional cost to photomask fabrication, which

makes RETs expensive to apply. To attack the above issues, efforts are needed in

all process and design stages. With respect to physical design, manufacturability-

aware methodologies would be performed to reduce the burden of manufactures. Our

purpose is that with more lithography-friendly layout, the tasks of manufacturers

would become significantly easier and RETs become less expensive to apply.

More benefits can be obtained from design for manufacturability. In the sub-

76

90nm technology, design is heavily affected by fabrication variability. Lithography

process certainly has direct impact on fabrication variability. Thus, a lithography-

friendly layout has the potential to make the design more resistant to fabrication

variations. As the variability has big impact on power, design for manufacturbility

also tends to obtain high quality design in terms of power.

There are some previous works related to RET-aware physical designs such as

[42, 43] for routing problems. Other lithography friendly design methodologies include

regular fabric [44, 45] and restricted design rules (RDR) [46]. Regular fabric method-

ology, which is somewhat similar to FPGA, requires circuit fabrics to be constructed

from a set of regular physical geometry [44, 45]. Due to the geometric regularity,

the resulting designs are RET-friendly. However, similar to FPGA based design, cir-

cuit performance is compromised. RDR imposes restrictive rules on layout designs

to enhance manufacturbility [46]. However, it is difficult and expensive to use these

rules to capture the non-local lithography effects. For this, many rules have to be

introduced, which may intensify the problem of design rule explosion. Furthermore,

RDR introduces regularity into designs which may also lead to penalty on circuit

area and performance. In this paper, the problem of manufacturability-driven cell

placement problem is studied, and our solutions do not have the above shortcomings.

According to the best of authors’ knowledge, the closest related work is [47] where a

lithography-aware detailed placement approach is presented. It is to achieve high CD

accuracy and thus enhance feature printability through perturbing a given detailed

placement of circuits. However, it only performs spacing optimization between cells

and thus does not allow changing relative locations of cells. Furthermore, it does

not consider cell flipping. These turn out to be important to obtain a high-quality

lithography-friendly cell placement as indicated by our experiments.

Placement of cells has remarkable effect on printability. This is due to the fact

77

that gate lengths for transistors on the boundary regions of a cell significantly de-

pend on its neighboring cells. Although sound library cell design can achieve high

printability for internal transistors, it cannot handle the boundary transistors. On

the other hand, as the gate length keeps shrinking with technologies, the placement

will affect deeper and deeper regions of the cells. Since changes on placement may

impact the printability on wire, it is suggested to apply our technique for improving

printability on placement first, and then printability optimization for wire, local con-

nect and contact to wire can be performed to further improve the printability of the

circuit.

In this work, several manufacturability-driven new cell placement algorithms are

proposed. Our goal is to modify any existing cell placement solution to make it lithog-

raphy friendly. The new methods start with a placement obtained from any existing

placer, and improve CD accuracy through postprocessing optimizations. Precisely,

the location and the orientation of each cell can be perturbed to achieve a lithography-

friendly design. As the initial placement is computed by salient (non-lithography-

driven) CAD tools and thus of high quality (in terms of e.g., wirelength), it is desired

to limit the perturbation to it when improving CD accuracy. Thus, our problem is to

compute a lithography-friendly layout subject to perturbation constraints. For this

purpose, three algorithms are proposed which are dynamic programming based cell

flipping algorithm, single row based optimization approach and multiple row based

optimization approach. To measure printability, CD variation is used and it is com-

puted using Calibre LFD which considers OPC effect. To measure perturbation,

wirelength increase is used. Our experimental results demonstrate that over 15% CD

variation reduction can be obtained in post-OPC stage by the new approaches while

only less than 1% additional wire is needed.

The rest of the chapter is organized as follows: Section B formulates the pertur-

78

bation constrained lithography-driven cell placement problem. Section C describes

the cell flipping algorithm. Section D describes single row optimization approach and

multiple row optimization approach. Section E presents the experimental results with

analysis. A summary of work is given in Section G.

B. Preliminaries

1. Motivation

As demands for minimum feature sizes have outpaced the advances in lithography

hardware solutions, there may be considerable amount of distortions between the

intended image and the actual printed image in the lithography process. Printability

refers to the different levels of distortions. Given an initial cell placement, our goal

is to achieve high printability through performing postprocessing optimizations to it.

It is helpful to see a simple example which demonstrates that cell placements

can affect the printability. Refer to Figure 21 for such an example. Figure 21(a)

shows a placement of three gates obtained using a 65nm cell library. Figure 21(b)

shows another placement obtained by flipping the middle inverter. In this way, we

immediately obtain a much more lithography-friendly layout, where CD variation is

reduced by 1− 0.069/0.094 = 27%. Note that the above CD variations are obtained

from Calibre LFD (Lithography-Friendly Design) which considers OPC effect.

2. Pattern

Distortions in lithography process can be measured by a generic function pattern

dependent manufacturability cost, or manufacturability cost in short, denoted by η(·).
η(·) is defined on pattern which is associated with cells, i.e., a pattern could be cells

or part of cells. In this paper, we are interested in the pattern spanning only two

79

(a)

(b)

Fig. 21. Lithography optimization through cell flipping. This design is extracted from

an ISCAS’89 benchmark circuit, where an NAND, an inverter and an XNOR

gate are placed in series. Though flipping the middle inverter, average CD

variation for boundary gate polys is reduced from 9.4% of the nominal value

to 6.9% of the nominal value. Rectangles shown are polys. CD variation is

obtained from Calibre LFD which considers OPC effects.

horizontally adjacent cells. Denote by C a cell, by C l the left side of C, and by Cr

the right side of C. If a pair of cells Ci, Cj are adjacently placed in a row, a pattern

P (Cr
i , C

l
j) associated to them could refer to the part spanning over Cr

i and C l
j. For

each pattern P , we have a manufacturability cost η(P). This manufacturability cost

can refer to many instances such as CD variations, edge placement error (EPE), image

log slope (ILS), process window, or combination of the above [41]. It is important to

note the following facts:

• As a cell is associated with an orientation, when the orientation is changed

(i.e., cell flipping happens), any pattern associated to this cell is in general also

80

Cell A Cell B

A1

A2

A3

A4

B2

B1

Fig. 22. Definition of manufacturability cost for cells. Rectangles shown are polys.

changed. For example, in Figure 22, η for the pattern between A,B depends

on A1, A2, B1, B2. When cell A is flipped, η for the pattern between A,B will

depend on A3, A4, B1, B2.

• In lithography process, adjacent cells with different spacing can have different

printability. This is automatically handled using patterns as the same cell pair

with different spacing will be treated as different patterns.

• Since the printability of a cell very weakly depends on cells at other rows [41],

it is safe to neglect it. Formally, η(P) = 0 for any P associated with cells in

different rows. This is why we are only interested in pattern associated with

horizontally adjacent cells.

Given an initial cell placement, our goal is to reduce the manufacturability cost

η through postprocessing optimizations. For this, all patterns in the placement are

investigated, and those which are not lithography-friendly, i.e., tend to reduce func-

tional and parametric yield, are identified. Optimizations are then performed there

to make the layout lithography-friendly. Thus, our lithography-driven optimization

is pattern sensitive.

81

3. Lookup Table for Manufacturability Cost

Online evaluation of manufacturability cost for each pattern is time consuming and

not necessary. A better idea is to compute η(P) for each possible pattern P off-line

and store them in a lookup table for future usage. As P is associated with adjacent

cells, thus cell orientations and spacing between cells need to be considered when

building the lookup table. The following benefits can be obtained due to lookup

table bases lithography optimizations:

• Online lithography simulations, which are very computationally expensive, are

avoided. This is a key difference between our approach and those in [42, 43].

There exists fast lithography simulations (e.g., the one in [43]). However, as

many runs of online simulations have to be performed during circuit optimiza-

tions, such approaches can still be improved. As performing a simulation is

much slower than obtaining a number in a lookup table, one could use lookup

table based optimization for speedup.

• As the lookup table is built off-line, full-fledged expensive lithography simula-

tions can be performed. Compared to [43] where a fast aerial image (which is

a first order approximation to the optimal system) simulation is performed, we

estimate printability using more accurate approximations.

• OPC can be performed to the circuit pattern before computing the manufac-

turability cost of it. It is well known that OPC effects are very difficult to

model, however, our lookup table based methodology can easily handle them.

Note that other RETs can also be applied before computing the manufactura-

bility cost for each pattern.

82

One may wonder whether it is practical to use lookup table to characterize all

boundary patterns for a large cell library. Note that our technique should be applied

mainly to a local region (i.e., critical part) of circuits instead of the whole circuit. The

cell library can be then largely reduced. In addition, two techniques can be applied

to further reduce the size of the lookup table. First, it is interesting to see that

boundary patterns can be similar for different cell pairs. For example, in Figure 21,

the left boundary polys of the NAND and the inverter are the same. Although cell

library can be large, the number of dramatically different boundary patterns could

be limited. Thus, one could characterize some representative patterns using lookup

table and perform fuzzy matching based search (which is similar to the approach in

[48]) in optimization. Second, one could specify a number of candidate boundary

poly shapes, and then force the boundary poly (of each cell type) to be one of the

candidate shapes in designing the cell library. In this way, the number of different

boundary patterns can also be significantly reduced [49].

4. Problem Formulation

As manufacturability cost between cells in different rows is negligible, row-based

placement approaches are designed in this paper. For this, we define row η cost for a

row of cells as the sum of η between all adjacently placed cell pairs in the row, and

define the total η cost for the whole placement as the sum of all row η costs. In this

paper, we propose to adjust the placement to reduce the total η cost. Such adjustment

should be as slight as possible so as to introduce minimal amount of perturbation to

the design. This is desired as the initial design, although not lithography-friendly,

should have high quality in terms of e.g., wirelength as it is returned by salient (non-

lithography-driven) CAD tools.

Three types of adjustments are considered in this paper. The first type of ad-

83

justments is not to change the locations of cells, rather, it only allows changing

orientations of cells. We call it Cell Flipping Optimization. Refer to Figure 21 for an

example illustrating the impact of cell flipping on η. Evidently, the manufacturability

cost is significantly reduced in this example. Note that cell flipping optimization has

also been used in [50] for wirelength reduction in cell placement. The second type of

adjustments allows both cell re-location and cell flipping. To introduce small amount

of perturbation to the original placement, each cell is only allowed to move within

a small range around its original location. Furthermore, when a row is adjusted,

all other rows must be fixed. Thus, this type of adjustments is called Single Row

Optimization. The third type of adjustments is the same as single row optimization

except that several neighboring rows are optimized simultaneously, that is, when a

row is adjusted, it neighboring rows are adjusted as well. This type of adjustments is

called Multiple Row Optimization. Clearly, increasing amount of efforts are needed in

these three optimizations, and one may expect that increasing amount of reduction

in manufacturability cost can be obtained. Our problem is formulated as follows.

Perturbation Constrained Lithography-Driven Cell Placement Problem:

Given a cell placement, we are to perform post-processing optimizations, which can

be cell flipping, single row optimizations or multiple row optimizations, such that the

total manufacturability cost (i.e., total η cost) is reduced subject to the constraint α

on perturbation.

In this paper, we measure the perturbation to a placement by wirelength increase

as wirelength has direct relationship with timing and is efficient to compute. Thus,

the perturbation constraint α actually refers to the maximum tolerable wirelength

increase ratio. Note that other similar metrics could be easily incorporated into our

new approach.

84

Finally, although this paper is restricted to row-based postplacement designs,

the ideas can be extended to handle non-row-based designs. In particular, Multiple

Row Optimization approach can be directly applied to other placement styles.

C. Cell Flipping

The first algorithm, namely, cell flipping algorithm, works under the dynamic pro-

gramming framework. As our cell placement algorithm is a row-based approach, cell

flipping algorithm is carried out row by row. In a row, the location of each cell is

fixed and the orientation of each cell is to be determined. For convenience, “cells” in

this section simply refer to a row of cells.

We define a partial cell flipping solution to be an incomplete determination for

the orientations of all cells. A partial solution becomes complete when the orientations

of all cells are determined. A cell is processed if its orientation has been determined.

1. Algorithmic Overview

Given an initial cell placement, cells are first sorted in the topological order (i.e., from

left to right). We then start from the first cell and set its orientation to each of two

possible choices (i.e., flipped or un-flipped), which results in two partial solutions.

For each partial solution, we process the second cell and set its orientation to each of

two choices. In this way, the algorithm proceeds in a dynamic programming fashion,

i.e., it processes each cell in turn according to the topological order. Without any

solution pruning, there are certainly 2n solutions for optimizing n cells. Therefore,

during the solution propagation process, inferior solutions are pruned for acceleration.

The algorithm terminates when all partial solutions become complete and the solution

with the minimal η cost and satisfying wirelength constraint is returned.

85

2. Solution Characterization

A set of partial solutions S keep being updated during the process of dynamic pro-

gramming. Each solution S ∈ S is associated with a (CE, CW) pair, where CE

denotes the cumulative η cost for all processed cells, and CW denotes the cumulative

wirelength. Note that CW is computed using the widely-used metric half-perimeter

wirelength (HPWL) on all those nets which do not span on any unprocessed cell.

3. Solution Propagation

Suppose that a cell C is “inserted” to the current partial solution S, i.e., we are to

decide the orientation of C. A new solution S ′ will be formed for each possible cell

insertion (flipped C and unflipped C). Because all cells are processed according to

the topological order, when C is processed, the cumulative η cost can be updated by

CE(S ′) = CE(S) + η(P (Cr
last, C

l)),

where Clast is the last processed cell. The cumulative wirelength is updated by re-

computing HPWL of all nets not spanning on any unprocessed cell.

4. Solution Pruning

During the process of dynamic programming, there may be a lot of solutions. Some

of them are inferior to others and they will be pruned to accelerate the approach.

For any two solutions S1, S2 with the same set of processed cells, we say that S2

is inferior to S1 if the following two conditions are satisfied. First, the cumulative

wirelengths are compared and we need that CW (S2) ≥ CW (S1). Second, to compare

manufacturability costs, one has to consider the effect due to the next cell. Denote

by ηnext(S) the manufacturabiliy cost for the pattern formed by the current cell and

86

1 2 3 4 5s1

1 2 3 4 5s2

(a)

1 2 3 4 5s1

1 2 3 4 5s2

(b)

1 2 3 4 5s1

1 2 3 4 5s2

(c)

Fig. 23. Solution pruning: (a) before pruning (b) inferiority check when the fifth cell

is unflipped (c) inferiority check when the fifth cell is flipped. The triangle

denotes the cell orientation. A cell with triangle on the right denotes an

unflipped cell and with triangle on the left denotes a flipped cell.

the next cell (if available). Thus ηnext = η(P (Cr, C l
next)) where Cnext denotes the next

cell.

Refer to Figure 23. Figure 23(a) shows two solutions where three cells have been

processed and the fourth cell is being processed. In order to decide which solution

has the better manufacturability cost, the fifth cell is first set to be unflipped and

then set to be flipped. In both scenarios, if CE(S2) + ηnext(S2) ≥ CE(S1) + ηnext(S1)

consistently happens, we can say that S1 must be at least as good as S2 in terms of

manufacturability cost. The reason is that given a complete solution achieving the

best manufacturability cost constructed from S2, one can always replace S2 with S1

87

to get a complete solution with no more manufacturability cost.

Note that the above pruning technique is better than the one in [51]. In [51], when

comparing the manufacturability costs of S1 and S2, the pattern between the fourth

cell and the fifth cell is not considered. That is, [51] only needs CE(S2) ≥ CE(S1)

for comparison on manufacturability cost. Since the orientation of the fourth cell

certainly has impact on the following cell (i.e., the fifth cell), the technique in [51]

could prune potentially better solutions terms of manufacturability. The experiment

in Section E demonstrates this.

In summary, a solution is inferior to another if it has worse cumulative η cost

and worse cumulative wirelength. Whenever a solution becomes inferior, it is pruned

from the solution set without further propagation. A solution S can also be pruned

when it is infeasible, i.e., its cumulative wirelength is greater than the wirelength

constraint of that row. For a row, the wirelength constraint is set to (1+α) ·L, where

L is the total wirelength of the row in the original (i.e., initial) placement and α is

the maximum tolerable wirelength increase ratio.

The pseudocodes for cell flipping algorithm is shown in Figure 24.

Algorithm: Cell flipping for a single row.
Input: C: cells to be placed, an initial cell placement, α: total wirelength constraint
Output: cell placement with reduced η satisfying α

1. Topologically (i.e., from left to right) sort all cells in C in the initial placement
2. S = ∅
3. for each cell C in the topological order, do
4. for each solution S in S, do
5. for each of two possible orientations, do
6. // generate a new solution S′

7. compute CE(S′) and CW (S′)
8. insert S′ into S and perform pruning if necessary
9. return S with the minimal η cost and satisfying α

Fig. 24. Cell flipping algorithm for a single row.

88

D. Single Row Optimization and Multiple Row Optimization

1. Algorithmic Overview (Single Row Optimization)

In single row based optimization, in addition to the cell orientation, we are allowed to

change the location of each cell. In this way, more manufacturability cost (i.e., η cost)

reduction is expected. Since small perturbation is desired, each cell is only allowed

to be movable within a small range around its original position. To approximately

implement this strategy, cells will be processed by groups. Every consecutive k cells

form a group and optimizations (including relocation and cell flipping) are performed

inside each group. At any time, only one group is optimized. To determine which

group to be optimized, a multi-dimensional descent based optimization approach is

used. Such an approach has been successfully used in CAD problems including [6]

for gate sizing.

At the beginning, a set of groups called improvablegroups are formed as follows.

Each group in the row will be assigned with a cost which is equal to the possible

η reduction for this group (computed by tentatively optimizing the group) when all

other cells are fixed. As long as the cost for a group is positive (i.e., η reduction is

possible), the group is included into improvablegroups. We then compute the ratios

of η reduction over wirelength increase for all groups in improvablegroups. A subset

of improvablegroups, called optimizedgroups, are then computed as an ordered set of

groups with ratios greater than a threshold as they may provide cumulative improve-

ment in cost with small wirelength increase. Optimizations are then performed to

each group in optimizedgroups in turn. Subsequently, improvablegroups are set to

optimizedgroups and the above process is repeated until convergence.

The remaining question is how to compute η reduction for a group of cells.

Precisely, our goal is to compute a new cell placement (for this group of cells) with

89

reduced η cost subject to the constraint on wirelength increase. For this, we will first

compute the “best η” solution, i.e., the optimal η-driven placement solution without

considering wirelength constraint. Since the original placement is returned by salient

CAD tools, it is reasonable to treat it as the “best wire” solution. Subsequently,

an iterative approach is performed to gradually turn the best η solution into the

best wire solution. The process terminates when wirelength increase ratio satisfies

the constraint α (together with non-overlapping requirement). Since our goal is to

obtain a minimum η solution subject to the wirelength constraint, it makes sense to

gradually modify the best η to obtain the solution satisfying the wirelength constraint

and still with good η. The approach will be detailed in Section 2 and Section 3.

2. Unconstrained Optimal Manufacturability-Driven Placement

A critical observation is that when wirelength is not considered, for a group of cells,

the cell placement achieving the minimal η cost can be obtained through reduction

to the minimum cost Hamiltonian path problem.

A graph G = (V, E) is to be constructed as follows. Each cell C in the group

will be mapped to two nodes vC,l and vC,r in G, where vC,l corresponds to the left

side of unflipped C and vC,r corresponds to the right side of unflipped C. There is an

edge between vC,l and vC,r with weight 0. For any two nodes vi and vj which belong

to different cells, there is an edge (vi, vj). The weight associated with such an edge

is equal to the smallest η cost between vi and vj when placing vi (on the left) and vj

(on the right) adjacently, i.e., P (vi, vj). Note that η cost function is in general not

monotonic with whitespace [47], and the smallest η can be obtained by our η lookup

table. Refer to Figure 26 for the graph corresponding to Figure 25 which is a place-

ment with three cells. Note that weights for edges (vA,l, vA,r), (vB,l, vB,r), (vC,l, vC,r)

are all 0. As an example, we show how to compute the weight of edge (vA,l, vB,r).

90

Since the weight of an edge refers to the η for the part between the two nodes, we

have to first flip cell A and cell B to make the left side of cell A (corresponding to

vA,l) directly connect to the right side of cell B (corresponding to vB,r). Denote the

flipped C by Cf . Thus, the weight for (vA,l, vB,r) is equal to η(P (C l
A,f , C

r
B,f)).

Cell A Cell B Cell C

Fig. 25. A placement with three cells.vA,lvA,r vB,rvB,l
vC,rvC,l

Fig. 26. Graph G corresponding to Figure 25.

To compute the optimal η-driven cell placement (i.e., best η solution) for this

group of cells, it suffices to compute a path visiting each node exactly once such that

the total edge weights along the path is minimized. This problem is the Minimum

Cost Hamiltonian Path Problem. For example, in Figure 26, if vB,lvB,rvA,rvA,lvC,lvC,r

is returned as the minimum cost Hamiltonian path, then we know that in best η

solution, we need to place B, A,C in this order and B, C are unflipped while A is

flipped.

91

As the minimum cost Hamiltonian path problem is an NP-complete problem

[52], the following closest-point heuristic (which is similar to the one in [52]) is used

to compute the efficient approximation. Define a partial Hamiltonian path to be an

incomplete Hamiltonian path. The algorithm begins with picking an arbitrary node

in G. At each step, the node which is not yet included in the partial Hamiltonian path

and is closest to any point along the partial Hamiltonian path is identified. Denote

this node by u and suppose that it is closest to v along the partial path. We will

insert u to the path just after v. Note that whenever a node is included, another node

belonging to the same cell (i.e., the node corresponding to another side of the cell)

must also be included. For example, if vA,r is picked for insertion, then vA,l must be

inserted immediately after vA,r. In this way, we guarantee that the resulting path is

valid for placement. It is clear that the close-point heuristic has this property.

3. Manufacturability-Wirelength Tradeoff

When wirelength is not considered, optimal η-driven placement can be computed as

in Section 2. This subsection deals with turning an unconstrained solution into a

wirelength constrained solution. Our idea is to start from the best η solution and

perform local adjustment to make its wirelength increase fall into the requirement.

Precisely, our local adjustment is an iterative approach and it gradually turns the

cell placement to be closer and closer to the original placement until the wirelength

increase satisfies the constraint. Since η cost and wirelength depend on the spacing

(i.e., whitespace) between cells, our approach also performs spacing optimization.

Let us illustrate the approach using a simple example. Suppose that the original

cell placement and optimal η-driven cell placement are as shown in Figure 27. Our

algorithm first identifies an ordered set of cell pairs for location exchange to turn the

optimal η-driven placement (best η solution) into the original cell placement (best

92

A B EDC

AB E D C

Original

Optimal

Litho

(a)

A B E D C

AB E D C

Intermediate

Solution

Optimal

Litho

(b)

Fig. 27. Obtaining tradeoff between manufacturability cost and wirelength: (a) two

initial solutions with best manufacturabiliy cost (Optimal Litho) and best

wirelength (Original) (b) an intermediate solution is obtained by exchanging

cells with maximum link crossings (which are C, E in this case).

wire solution). For this, an iterative procedure is used. At each iteration, a pair of

cells are identified for location exchange. A cell is first linked to its target location

(which is the location in best wire placement) as in Figure 27. A cell which is not at

its target location and is with maximum link crossings is then identified1. Another

cell to be exchanged with it is the one at the target location of the identified cell. For

example, in Figure 27, cell E is first identified and it is to exchange location with cell

C. It is easy to see that the ordered set of exchange cell pairs are {EC,BA}.
After identifying the ordered set of cell pairs, we are to perform cell location

exchange one by one. After each location exchange, spacings between cells are inher-

ited from the ones before location exchange with the following exception. For those

placement patterns of cell pairs which can be found in the best wire placement, spac-

1In case of a tie, an arbitrary cell in tie is identified.

93

ings between them are set as in the best wire placement. For example, after E, C

are exchanged in Figure 27, spacing between CD and DE will be set as in original

placement and spacing between AC is inherited, i.e., it is equal to that of AE in the

optimal η solution. Note that since our optimizations are performed within a group,

we need to guarantee that after optimization, placement of the group will not over-

lap with its neighboring groups. Thus, location exchange process terminates when

wirelength increase ratio of the placement falls below α and the placement does not

overlap with its neighboring groups. In this way, we can obtain a good η-driven cell

placement subject to the wirelength constraint.

The pseudocodes for Single Row Optimization is shown in Figure 28 and Fig-

ure 29.

Algorithm: Single row optimization.
Input: an initial cell placement and α
Output: η-driven cell placement satisfying α

1. for each row in the topological order, do
2. improvablegroups ← groups with positive costs

using Group Optimization
3. repeat
4. compute optimizedgroups as a subset of

improvablegroup which can provide
cumulative improvement in cost

5. perform optimizations to optimizedgroups
using Group Optimization

6. cost re-evaluation for optimizedgroups
using Group Optimization

7. improvablegroups ← optimizedgroups
8. until convergence
9. choose cell placement with minimum η cost

Fig. 28. Single row optimization algorithm.

94

Algorithm: Group optimization.
Input: an initial cell placement and α
Output: η-driven cell placement satisfying α

1. form a graph corresponding to the group of cells
2. compute optimal η-driven placement through

reduction to min-cost Hamiltonian path problem.
3. identify an ordered set of cell pairs for location

exchange
4. for each pair in the set, do
5. perform location exchange
6. break if wire increase ratio satisfies α

and non-overlapping requirement
7. return the feasible cell placement for the group

Fig. 29. Group optimization algorithm.

4. Extension to Multiple Row Optimization

Suppose that there are five rows of cells to be placed. By single row optimization,

these five rows will be optimized separately, i.e., the first row of cells will be opti-

mized followed by the second row and so forth. However, when a row is optimized,

it would be possible that its neighboring rows need to be accordingly modified to

achieve an overall good design. This is due to the fact that a net often spans a few

neighboring rows, and thus wirelength could be reduced with adjusting several rows

simultaneously. As a consequence, some previously “infeasible” placements (i.e., the

one violating wirelength constraint) which provide large amount of η reduction may

become feasible. This may eventually leads to that the solution with more η reduc-

tion is returned. Refer to Figure 30 for an example. Figure 30(a) shows the original

circuit. During single row optimization for the third row of cells, we may obtain an

intermediate solution as shown in Figure 30(b). There may be too much wirelength

increase if we further perform optimizations in this row and then the solution will

be pruned. However, if cells in other rows can be moved at this point, we may get

Figure 30(c) which is good in both wirelength and manutfactruability cost. This

95

motivates multiple row optimization.

(a)

(b)

(c)

Fig. 30. An example of multiple row optimization: (a) original circuit (b) an inter-

mediate solution in single row optimization (c) an intermediate solution in

multiple row optimization.

The algorithm for single row optimization can be readily extended to handle

multiple row optimization. In multiple row optimization, m neighboring rows will be

grouped to form a row group and optimizations are performed within each row group.

The algorithm is as follows.

For each row within a row group, cells are grouped as in single row optimization.

All resulting groups (in all rows of the row group) are put into a single set called

group set. Our purpose is to treat groups from different rows in the same way for

96

“simultaneous optimization”. It is true that at any time, only one group can be

optimized. However, viewing at the level of group set optimization, groups of different

rows can be optimized interactively. For example, it is possible that optimizing a

group at a row may impact some groups at other rows and performing successive

optimizations there may be very beneficial. Our multiple row optimization captures

this and interactions among neighboring rows are explored. In this sense, multiple

rows are optimized “simultaneously”. Since any group in the group set must be

located in a single row, approaches for computing wirelength constrained η-driven

placement as described in Section 2 and Section 3 can be directly applied. The

multi-dimensional descent based approach is also readily applied. Precisely, we pick

a candidate set of groups (which may be in different rows) as improvablegroups and

identify a subset of it which can improve cost. After performing optimizations to this

subset, improvablegroups is updated and this process is repeated until convergence.

Note that since our optimization is performed into a group whose cells must be in

the same row, no cell can move to any other row after optimization.

The pseudocodes for the above algorithm is shown in Figure 31 and Figure 29.

E. Experimental Results

1. Experiment Setup

The algorithms of Cell Flipping, Single Row Optimization and Multiple Row Opti-

mization are implemented in C++ and are tested on a Pentium IV computer with a

2.8GHz CPU. Two sets of testcases are used in experiments, namely, ISPD’04 bench-

mark circuits and ISCAS’89 benchmark circuits. In performing lithography-driven

postprocessing optimizations, the perturbation constraint, i.e., the maximum toler-

able wirelength increase ratio α for the circuit, is set to 1% as an example. Other

97

Algorithm: Multiple row optimization.
Input: an initial cell placement and α
Output: η-driven cell placement satisfying α

1. group neighboring rows to form row groups
2. for each row group, do
3. improvablegroups ← groups of all rows with

positive costs using Group Optimization
4. repeat
5. compute optimizedgroups as a subset of

improvablegroups
6. perform optimizations to optimizedgroups

using Group Optimization
7. cost re-evaluation for optimizedgroups

using Group Optimization
8. improvablegroups ← optimizedgroups
9. until convergence
10. choose cell placement with minimum η cost

Fig. 31. Multiple row optimization algorithm.

wirelength increase ratio can be used. Similar to previous work [47], manufacturing

distortions are measured by CD variation of boundary gate poly in this paper. Due

to the fact that variations on boundary gate polys have the most significant effect

on circuit performance, CD variation for boundary gate poly is used. However, we

can certainly measure CD variation for all gate polys in a cell. This only changes our

lookup table but not the algorithms.

2. Experiments with ISCAS’89 Benchmark Circuits

We first perform experiments on ISCAS’89 benchmark circuits. Logical synthesis

and technology mapping (using Berkeley SIS) with a cell library for 65nm technol-

ogy, which consists of 22 cells, are performed to the circuits. Our lookup table for

manufacturability cost is built as follows. For each pair of cell types, for each possible

cell orientation, for each representative spacing between cells, an CD variation is ob-

tained by Mentor Graphics Calibre LFD, which is a commercial tool for performing

98

lithography simulations. Thus, CD variations in our lookup table are accurate in

contrast to fast estimation on CD variation. RETs are often performed to improve

the printability in practice. To capture this, OPC is performed on the pattern using

Calibre LFD before computing the manufacturability cost by simulations. Note that

other RETs can also be applied. Due to lack of large industrial cell library, our cell

library consists of 22 cells and our lookup table size is also not large. Note that our

approach is mainly applied to optimize small critical region of circuits which consist

of small number of cells. To handle a large cell library, there are many techniques for

effectively reducing the lookup table size as described in Section 3 (e.g., we only need

to select a few representative patterns to put into lookup table). Note that as cell

library characterization for delay, cell library characterization for manufacturability

(i.e., the lookup table) is performed offline and can be reused later. Initial placements

are computed using FastPlace [53]. Note that other placers can also be used. Place-

ments are then optimized for CD variation reduction, where CD variation reduction

is defined as 1 − CD variation after optimization
CD variation before optimization. The results are summarized in

Table XIV. We make the following observations.

• For Cell Flipping algorithm, on average about 5% CD variation reduction is ob-

tained with 0.13% additional wire. Cell Flipping algorithm runs fastest among

all algorithms, which makes sense as the smallest amount of effort is needed

there.

• For Single Row Optimization algorithm, on average 9.8% CD variation reduc-

tion is obtained, which improves the results by Cell Flipping. The amount of

additional wire is still small. On average, only 0.32% more wire is needed.

• For Multiple Row Optimization algorithm, on average 15.2% CD variation re-

duction is obtained, which gives the best results among all three algorithms.

99

At the same time, it needs more wire. Multiple Row Optimization runs slowest

among all three algorithms.

Table XIV. Performance of each algorithm on ISCAS’89 benchmark circuits. W.I.

refers to the wirelength increase and V.D. refers to the variation reduction.

CPU time is in seconds.

Circuit Cell Flipping Single Row Optimization Multiple Row Optimization
Name #Nodes W.I. V.R. CPU W.I. V.R. CPU W.I. V.R. CPU
s838 317 0.04% 6.7% 0.1 0.06% 10.5% 0.1 0.31% 16.8% 0.2
s1238 439 0.15% 4.2% 0.2 0.18% 9.8% 0.3 0.34% 15.4% 0.5
s1423 511 0.04% 5.4% 0.2 0.20% 10.7% 0.3 0.45% 15.8% 0.5
s1488 429 0.06% 5.6% 0.2 0.38% 10.0% 0.4 0.61% 14.6% 0.5
s5378 1227 0.19% 6.5% 0.7 0.57% 8.3% 0.8 0.72% 12.3% 1.2
s9234 1162 0.18% 5.0% 0.6 0.29% 9.2% 0.9 0.50% 13.6% 1.3
s15850 3621 0.05% 5.9% 2.9 0.31% 11.2% 5.2 0.39% 17.2% 8.1
s35932 13460 0.17% 4.8% 24.3 0.48% 8.5% 58.0 0.73% 14.3% 103.1
s38417 8965 0.32% 5.3% 11.4 0.59% 9.5% 18.9 0.81% 15.7% 39.3
s38584 10463 0.07% 5.8% 14.8 0.11% 9.9% 22.5 0.32% 16.5% 43.5
Average 4059 0.13% 5.5% 5.5 0.32% 9.8% 10.7 0.52% 15.2% 19.8

Our optimization approaches can be tuned to obtain different tradeoff between

CD variation reduction and wirelength. For example, in Single Row Optimization, one

can impose a maximum number of iterations to the implementation so as to terminate

the multi-dimensional descent based optimization procedure before it converges. By

varying this number, different tradeoff can be obtained. As an example, a tradeoff

curve is shown in Figure 32.

As mentioned in Section 4, our pruning technique is better than [51] since the

new pruning technique considers the impact to the not-yet-processed cells. We also

perform experiments to demonstrate this. The results using the pruning technique in

[51] are summarized in Table XV. Comparing Table XIV and Table XV, one can see

that the the new pruning technique leads to better manufacturability cost than the

one in [51].

In Section 3, we propose a crossing reduction technique to achieve the tradeoff

between the best manuacturability cost solution and the best wirelength solution. We

100

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

0.15

0.2

0.25

0.3

CD variation reduction %

W
ire

le
ng

th
 in

cr
ea

se
 %

Fig. 32. Tradeoff between CD variation reduction and wirelength increase using single

row optimization for s15850.

are to investigate the effectiveness of the tradeoff technique. For this, we turn off the

tradeoff option and run the experiments as above. That is, we always set the place-

ment to the best manufacturability cost solution without considering the wirelength

constraint. The results are summarized in Table XVI. Comparing Table XIV and

Table XVI, one can see that CD variation is further reduced, however, wirelength

overhead is significantly increased (2.53% without considering wirelength constraint

v.s. 0.32% considering wirelength constraint). Thus, the best manufacturability cost

solution introduces too much overhead into the original design and is less useful. Our

tradeoff technique proposed in Section 3 is very effective in achieving a good tradeoff

between manufacturability cost and wirelength overhead.

3. Experiments with ISPD’04 Benchmark Circuits

We next perform experiments on a standard placement benchmark, namely, ISPD’04

benchmark circuits [53]. The statistics of the circuits are shown in Table XVII. The

101

Table XV. Cell flipping using pruning technique in [51].

Circuit Wire Inc. Variation Red. CPU (s)
s838 0.03% 4.1% 0.1
s1238 0.10% 3.2% 0.2
s1423 0.04% 5.2% 0.2
s1488 0.07% 5.0% 0.2
s5378 0.15% 5.6% 0.6
s9234 0.12% 3.9% 0.5
s15850 0.05% 5.7% 2.7
s35932 0.22% 3.7% 21.8
s38417 0.30% 4.8% 10.9
s38584 0.05% 5.5% 13.7
Average 0.11% 4.7% 5.1

circuits are first placed to obtain initial placement results using FastPlace [53]. They

are then optimized for manufacturability cost and the results are summarized in

Table XVIII. Since the original circuits for ISPD’04 benchmark are not known to us,

their gate types are randomly assigned from our cell library. We make the following

observations.

• For Cell Flipping algorithm, on average more than 5% CD variation reduction

is obtained, with only 0.10% additional wire.

• For Single Row Optimization algorithm, on average 11.0% CD variation reduc-

tion is obtained, which improves the results by Cell Flipping. The amount of

additional wire is still small. On average, only 0.24% more wire is needed.

• For Multiple Row Optimization algorithm, on average 15.5% CD variation re-

duction is obtained, which gives the best results among all three algorithms. At

the same time, it needs 0.35% additional wire. As it spends a lot of effort on

optimizations, it runs slowest among all algorithms.

102

Table XVI. Single Row Optimization results without considering wirelength con-

straint.

Circuit Wire Inc. Variation Red. CPU (s)
s838 2.85% 19.0% 0.1
s1238 2.47% 16.8% 0.3
s1423 4.52% 15.5% 0.3
s1488 2.17% 17.0% 0.3
s5378 2.96% 14.5% 0.7
s9234 1.82% 13.3% 0.8
s15850 1.51% 18.2% 4.9
s35932 1.28% 10.1% 52.5
s38417 4.32% 16.5% 13.2
s38584 1.35% 12.9% 17.2
Average 2.53% 15.4% 9.0

F. Conclusion

Traditionally, design and manufacturing process are separate. This trend should be

turned so as to make the resolution enhancement techniques easy and less expensive to

apply. In this paper, several new algorithms are proposed for manufacturability-driven

cell placement. They are cell flipping algorithm, single row based optimization and

multiple row based optimization approaches. Cell flipping algorithm works under the

dynamic programming framework. In row-based optimizations, cells are partitioned

into groups and are optimized through reduction to graph theoretic problems such

as the minimum cost Hamiltonian path problem. These algorithms are very effective

in reducing CD variations and are able to provide different tradeoff between CD

variation reduction and wirelength increase. Our experimental results demonstrate

that > 15% reduction in CD variation can be obtained in post-OPC stage by the

new approaches with only < 1% additional wire. Although this paper is restricted

to row-based designs, the ideas can be extended to handle non-row-based designs.

In particular, Multiple Row Optimization approach can be directly applied to other

103

Table XVII. Statistics of ISPD’04 benchmark circuits [53].

Circuit #Cells #Pads #Nets #Pins #Rows
IBM01 12506 246 14111 50566 96
IBM02 19342 259 19584 81199 109
IBM03 22853 283 27401 93573 121
IBM04 27220 287 31970 105859 136
IBM05 28146 1201 28446 126308 139
IBM06 32332 166 34826 128182 126
IBM07 45639 287 48117 175639 166
IBM08 51023 286 50513 204890 170
IBM09 53110 285 60902 222088 183
IBM10 68685 744 75196 297567 234
IBM11 70152 406 81454 280786 208
IBM12 70439 637 77240 317760 242
IBM13 83709 490 99666 357075 224
IBM14 147088 517 152772 546816 305
IBM15 161187 383 186608 715823 303
IBM16 182980 504 190048 778823 347
IBM17 184752 743 189581 860036 379
IBM18 210341 272 201920 819697 361

placement styles.

104

Table XVIII. Performance of each algorithm on ISPD’04 benchmark circuits. CPU

time is in seconds.

Cell Flipping Single Row Optimization Multiple Row Optimization
Circuit Wire Inc. Var. Red. CPU Wire Inc. Var. Red. CPU Wire Inc. Var. Red. CPU
IBM01 0.02% 5.3% 15.7 0.30% 12.8% 32.8 0.38% 17.8% 55.7
IBM02 0.10% 5.0% 33.5 0.17% 10.9% 81.7 0.32% 18.5% 139.2
IBM03 0.18% 6.1% 51.0 0.35% 11.2% 127.8 0.39% 14.8% 205.7
IBM04 0.12% 5.9% 65.1 0.42% 10.7% 190.5 0.48% 17.3% 274.5
IBM05 0.05% 7.1% 75.5 0.12% 13.4% 215.7 0.15% 15.6% 350.9
IBM06 0.08% 4.8% 98.3 0.25% 9.5% 298.8 0.37% 13.1% 507.8
IBM07 0.10% 5.4% 182.1 0.16% 11.4% 502.2 0.22% 18.2% 983.5
IBM08 0.13% 7.2% 279.8 0.22% 12.1% 557.6 0.46% 16.9% 1378.4
IBM09 0.14% 5.2% 383.0 0.20% 9.9% 832.0 0.50% 12.7% 1518.6
IBM10 0.11% 6.3% 489.2 0.17% 12.3% 1013.5 0.21% 17.1% 1591.2
IBM11 0.20% 6.5% 675.3 0.38% 11.6% 1295.8 0.54% 15.4% 1765.7
IBM12 0.12% 5.6% 820.2 0.27% 10.8% 1775.7 0.31% 12.9% 2031.8
IBM13 0.17% 6.1% 1455.7 0.22% 9.5% 1938.9 0.45% 13.5% 2482.0
IBM14 0.09% 5.8% 2082.7 0.29% 10.5% 3395.1 0.35% 15.0% 4322.3
IBM15 0.11% 4.5% 2305.6 0.37% 9.2% 3724.5 0.49% 12.3% 4506.1
IBM16 0.07% 6.7% 3385.1 0.15% 9.7% 3851.8 0.32% 15.8% 4815.9
IBM17 0.03% 6.5% 3932.0 0.14% 11.0% 4829.1 0.20% 16.7% 6137.5
IBM18 0.05% 5.7% 2970.5 0.12% 11.5% 4521.9 0.18% 15.2% 4880.7
Average 0.10% 5.9% 1072.2 0.24% 11.0% 1570.7 0.35% 15.5% 2108.2

105

CHAPTER V

UNIFIED ADAPTIVITY OPTIMIZATION OF CLOCK AND LOGIC SIGNALS

VLSI design is increasingly sensitive to variations which often degrade the parametric

yield. Post-silicon tuning techniques can compensate for specific variations on the die

and thus significantly improve the yield. Previous works on adaptivity optimization

for post-silicon tuning focus on either logic signal tuning or clock signal tuning. This

paper proposes the first unified adaptivity optimization on logical and clock signal

tuning, which enables us to significantly save resource. In addition, it does not need

any assumption on variation distributions.

Our unified optimization is based on a novel linear programming formulation

which can be efficiently solved by an advanced robust linear programming technique.

Due to the discrete nature of the problem, the continuous solution obtained from lin-

ear programming is then efficiently discretized. This procedure involves binary search

accelerated dynamic programming, batch based optimization, and Latin Hypercube

sampling based fast simulation. Our experimental results demonstrate that up to

50% area cost reduction can be obtained by the unified optimization compared to op-

timization on logic or clock alone. In addition, the proposed discretization approach

significantly outperforms the alternatives in terms of solution quality and runtime.

A. Introduction

With continuously shrinking features on the die, VLSI design is increasingly sensitive

to variations such as manufacturing process variations. Consequently, circuit per-

formance is no longer determined solely by deterministic values. It has significant

uncertainty which needs to be considered in order to achieve high yield. There exist

a handful set of approaches (e.g., [54, 8, 55, 9, 10, 56]) which focus on performing sta-

106

tistical circuit optimization in the pre-silicon phase. That is, circuit parameters are

determined in design time for yield optimization. With statistical variation models,

they obtain the statistically optimized design and apply the design to all the dies.

Although the optimized design is of good quality in statistical sense, the design is

not necessarily ideal for each individual fabricated chip. Specific circuit parameter

variations on the die cannot be mitigated. In addition, reliable statistical variation

models are not easy to obtain [11].

In contrast to pre-silicon statistical optimizations, post-silicon tuning methodol-

ogy can tune some circuit parameters after the chip is fabricated. This enables us to

mitigate the specific circuit parameter variations on the individual chip to satisfy the

design target. As a result, the timing yield can be significantly improved [12, 11].

Clearly, it is highly desirable to perform circuit adaptivity optimization for post-

silicon tuning. Since making a circuit element post-silicon tunable necessarily intro-

duces overhead, adaptivity optimization for post-silicon tuning aims to provide large

tunability with small overhead. Previous works focus on either logic signal tuning

(e.g., [12, 13, 11]) or clock signal tuning (e.g., [14, 15]). Note that some approaches

(e.g., [13, 15]) also consider to perform gate sizing in design time, however, no joint

tuning on logic and clock signal is performed in post-silicon phase. These approaches

are effective, however, the resource utilization is not necessarily efficient since the in-

teraction between logic circuit and clock network is not explored. Performing unified

adaptivity optimization on clock and logic signals has the potential to significantly

reduce overhead while still having large tunability for achieving yield target.

Common post-silicon tuning techniques include adaptive body biasing (ABB) [12]

and tunable clock buffer (PST buffer) [14]. ABB is a well-established technique for

tuning the body voltage of a circuit block to achieve different timing-power tradeoff

[12]. Due to well-spacing related layout rules and overhead issue, it is desired to

107

apply ABB at circuit block level but not to individual device [11]. A PST buffer [14]

can change its delay after fabrication by padding different amount of loads. In this

paper, as an illustration of our methodology, ABB is used to tune logic signals as in

[12, 13, 11] and PST buffer is used to tune clock signals as in [14, 15]. Our approach

can be easily extended to handle other tuning techniques.

In this work, a unified adaptivity optimization technique on clock and logic

signals is proposed. The new technique determines the location and the tuning range

of each tunable circuit element. We propose methods for both continuous optimization

and discrete optimization. Continuous approach assumes that each circuit element

can be tuned to arbitrary precision. It involves a linear programming with uncertainty

problem, which is solved by a robust linear programming approach with a parameter

easily controlling the tradeoff between the worst-case design and the nominal design.

Discrete approach discretizes the continuous solution, i.e., maps the tuning range of

each tunable element to a permissible set of tuning ranges. It involves binary search

accelerated dynamic programming, batch-based optimization, and Latin Hypercube

sampling based fast simulations. Our main contribution is summarized as follows.

• According to the best of the authors’ knowledge, this is the first work on unified

adaptivity optimization for post-silicon tuning on clock and logic signals.

• In contrast to most previous works (e.g., [13, 11]), our approach computes the

discrete solution in addition to the continuous solution. This is desirable due

to the discrete nature of problem.

• Unlike many previous works (e.g., [13]), our new approach does not assume any

variation distributions since reliable variation model is not easy to obtain in

reality.

Computation cost is also an important issue. In our unified adaptivity optimiza-

108

tion approach, the problem size is almost the same as adaptivity optimization on

clock signal alone. This is due to that logic tuning is applied to the circuit block level

but not to individual gate (compared to e.g., [15]). We have up to several dozens

of circuit blocks. In addition, our continuous approach does not perform any Monte

Carlo simulation and thus runs very efficiently. Even for the discretization approach

which involves Monte Carlo simulations, since the search space is largely reduced

due to being guided by continuous solution, together with various acceleration tech-

niques, it still runs efficiently. Although the works of [14, 15] are also independent

of assumptions on variation distributions, they tend to be slow as full-fledge Monte

Carlo simulations are frequently called during their optimization procedures.

Our experiments demonstrate that the new continuous unified adaptivity op-

timization approach is consistently better than adaptivity optimization on logic or

clock signal alone. One can achieve up to 50% area cost reduction by our approach.

Our discretization approach also significantly outperforms the alternatives including

nearest rounding approach and binary batch approach [14] in terms of yield, area and

runtime.

It is worth noting that the proposed methodology is flexible to use. Although

it is mainly used for unified optimization on clock and logic signals, it can be easily

reduced to optimizing only one of them. Since our continuous optimization method

is fast, it can be easily integrated with other deterministic or statistical pre-silicon

optimization, in an interactive manner, to achieve the joint pre and post silicon

optimization (which is similar to [13, 15]). For simplicity, area overhead is considered

in this paper. However, the proposed approach is not restricted to area overhead and

can be extended to handle other types of overhead.

The rest of the chapter is organized as follows: Section B presents the motivation

and the problem formulation of the work. Section C describes the overall flow of

109

the algorithm. Section D describes the continuous unified adaptivity optimization

approach. Section E describes the discretization approach. Section F presents the

experimental results with analysis. A summary of work is given in Section G.

B. Preliminaries and Motivation

In our adaptivity optimization approach, adaptive body biasing is applied to tune

logic signals and PST buffer tuning is applied to tune clock signals. Note that as

indicated in [11], due to well-spacing related layout rules and overhead issue, we

apply ABB at circuit block level but not to individual device.

For adaptivity optimization on logic signals, body bias tuning is a well-established

technique to tune the body voltage of transistors to achieve tradeoff between power

and delay. Forward body biasing reduces threshold voltage and delay while increases

power. In contrast, reverse body biasing increases threshold voltage and delay while

reduces power. It is demonstrated in [11] that delay can be well approximated by

a linear function of the body voltage. Due to well-spacing related layout rules and

overhead issue, it is desired to apply ABB at circuit block level but not to individual

device [11]. Refer to [11] for some clustering approaches to group gates into clusters

for body biasing.

For adaptivity optimization on clock signals, PST buffers [14] are used. A PST

buffer consists of two inverters with a set of load capacitors in between and the delay

can be changed through controlling the gates on capacitors. It is able to produce

uniform delay step in clock tuning and provide good tuning range. Refer to [14] for

the details.

Since making a circuit element (e.g., a gate or a clock buffer) post-silicon tunable

necessarily introduces overhead, adaptivity optimization for post-silicon tuning aims

110

to provide large tunability with small overhead. Previous works focus on logic signal

(e.g., [12, 13, 11]) or clock signal (e.g., [14, 15]) separately. Some approaches (e.g.,

[13, 15]) also consider to perform gate sizing in design time, however, no joint tuning

on logic and clock signal is performed in post-silicon phase.

These approaches are effective, however, their resource utilization is not neces-

sarily efficient since the interaction between logic circuit and clock network is not

explored. Consider that we have a circuit which can achieve 99% yield by logic signal

tuning alone. The observation is that some slack can be moved from non-timing crit-

ical part to timing critical part by introducing useful skew using clock signal tuning,

and clock signal tuning is often cheaper than ABB (due to e.g., ABB is applied on a

block of gates, a lot of more control signals need to be used, and ABB needs Digital-

to-Analog converters [12]). As a result, usage of clock signal tuning would lead to less

logic tuning and thus significantly reduce the overhead. On the other hand, solely

relying on clock signal tuning often leads to small improvement on yield. This is the

case since there may be many critical cycles in a circuit, and when these cycles are

heavily overlapped, one can only move small amount of slack among flip-flops. In

addition, a single clock buffer may drive many flip-flops and tuning it affects all of

them. If some flip-flops are in timing critical paths, then only small amount of tuning

can be applied to this clock buffer.

The motivation of the unified optimization is further illustrated by the exam-

ple of Figure 33. Figure 33 shows a sequential circuit consisting of 4 flip-flops

FF1, FF2, FF3, FF4, two clock buffers, and five combinational paths A,B,C,D,E.

The nominal delay for each combinational path is shown and all clock skews are zero.

Suppose that the clock period is 10 and each combinational path has 10% variation

off the nominal delay value. For simplicity, assume that we need to guarantee the

worst-case design satisfying the timing constraint. Since three combinational paths

111FF1 FF4FF3 FF2A=10D=10 C=9E=9 B=10
Fig. 33. A sequential circuit where the arrows show the signal flow directions. The

central square is the clock source and the triangles are clock buffers.

A,B,D may have timing violations, we need to tune them by ABB. If clock tuning

is also used, we can tune the right clock buffer to introduce 1 unit delay, i.e., FF2

and FF4 both have skew of 1. One can see that A,B do not need ABB due to the

additional slack. That is, tuning the right clock buffer and D is sufficient, which

certainly saves overhead. It is also clear that tuning clock signal alone may not make

both A and D satisfy the timing constraint.

As shown above, performing unified adaptivity optimization on clock and logic

signals has the potential to significantly reduce overhead while still having large tun-

ability for achieving yield target. From our experience with ISCAS’89 benchmark

circuits, by unified adaptivity optimization, up to 50% area cost reduction can be

obtained compared to adaptivity optimization on logic or clock signals alone.

For convenience, a gate with tunable body voltage (in logic circuit) or a buffer

with programmable delay (in clock tree) is called a tunable element. All tunable

gates in a circuit block have the same amount of body voltage tuning. Circuit blocks

can be formed by clustering gates as in [11] or in any other way. Our approach is

independent of circuit partitioning method. Our problem is formulated as follows.

112

Unified Adaptivity Optimization Problem: Given a sequential circuit, we are

to perform adaptivity optimization on logic and clock signals, i.e., decide the location

and the tuning range of each tunable element, such that the area cost overhead is

minimized subject to the constraint that the fabricated circuits can be tuned to satisfy

the yield target by post-silicon tuning.

min cb,12 + nfbb,12 − nrbb,12 (5.1)

s.t. (S1 + d1) + (T12 − n12Dp12 − n′12Dp12)− (S2 + d2)

≤ Tcp − Tsetup, (5.2)

(S1 + d1) + (t12 − n12Dp12 − n′12Dp12)− (S2 + d2)

≥ Thold, (5.3)

cb,12 = mb1Cb1 + cb1 + mb2Cb2 + cb2 + mb3Cb3 + cb3 , (5.4)

nfbb,12 = n12Cp12 + cp12 , (5.5)

nrbb,12 = n12′Cp12 + cp12 , (5.6)

d1 = mb3Db3 + mb1Db1 , (5.7)

d2 = mb3Db3 + mb2Db2 , (5.8)

0 ≤ n12 ≤ Un12 , (5.9)

−Un12 ≤ n′12 ≤ 0, (5.10)

0 ≤ mb1 ,mb2 ,mb3 ≤ Um, (5.11)

S1, S2, T12, t12 are random variables. (5.12)

113

C. Overall Flow

A two-stage optimization approach is proposed to decide the location and the tuning

range of each tunable element in the unified adaptivity optimization. The first stage is

called Continuous Optimization which is to efficiently compute a post-silicon tunable

design with the assumption that one can achieve arbitrary tuning precision for any

tunable element. The second stage is called Discretization, which is to map the

obtained continuous tuning range for each tunable element into the permissible (i.e.,

discrete as in reality) set of tuning ranges.

D. Continuous Optimization

The input to the first stage is the statistical timing analysis results on the given

sequential circuit. To decide the locations and the tuning ranges of ABB tunable

blocks and PST clock buffers, a linear programming with uncertainty problem is

formulated and solved using a robust linear programming technique with guaranteed

constraint violation probability bound. Linear programming formulation is used since

delay can be well approximated by a linear function of overhead [11].

1. Linear Programming Formulation

A sequential circuit is represented as a timing graph where each node represents a

flip-flop and a directed edge from node u to node v represents the combinational

logic paths from u to v. We only describe the mathematical formulation for a single

edge (together with two nodes) in a timing graph. Other edges can be similarly

handled. Refer to Figure 34 for part of a given clocked circuit. Suppose that in

Figure 34, Suppose that in a clocked circuit, two flip-flops FF1 and FF2 are connected

by combinational paths. The clock delay at FF1 is S1 and at FF2 is S2. The long

114

(resp. short) critical combinational path delay between FF1 and FF2 is T12 (resp.

t12). All of S1, S2, T12, t12 are random variables.

Without loss of generality, we assume that the combinational path p12 connecting

FF1 and FF2 passes one circuit block. [11] demonstrates that in body biasing, delay

reduction is linear with body voltage tuning. This fact is used here. To tune the

path by ABB, we assume that the delay reduction due to body biasing along p12 is

n12Dp12
1. By linear fitting to the delay-area overhead data, Dp12 is the slope of fitted

line. For convenience, we call it “unit” delay reduction. n12 denotes the amount of

ABB unit delay reduction applied to the circuit. The delay reduction comes with the

area overhead due to e.g., control logic, extra well space, and extra power wires. It

is measure by n12Cp12 + cp12 , where Cp12 , cp12 are also obtained from linear fittings.

We call Cp12 unit area overhead, and constant cp12 comes from e.g., shared control

logics for the block of tunable elements. Similarly, we assume that the delay increase

due to post-silicon tuning of PST clock buffer bi is mbi
Dbi

with the area overhead

mbi
Cbi

+ cbi
where Dbi

(resp. Cbi
) is the unit delay reduction (resp. the unit area

overhead) for tuning a PST clock buffer, and cbi
is constant indicating the overhead

of control signals. The unified adaptivity optimization problem can be formulated as

in Eqn. (5.1)-Eqn. (5.12).

Note that d1 in Eqn. (5.7) and d2 in Eqn. (5.8) are clock delay tuning at FF1 and

FF2, respectively, and nfbb,12 and nrbb,12 are area overhead due to forward body biasing

and reverse body biasing, respectively. cb,12 is the area overhead due to clock tuning.

They are introduced for the clarity of the formulation. S1, S2, T12, t12 are the random

variables obtained from statistical timing analysis. Only mb1 ,mb2 ,mb3 , n12, n12′ are

the decision variables in the formulation. Loosely speaking, mb1 ,mb2 ,mb3 are the

1Note that if reverse body biasing is used, the delay is increased, i.e., delay reduc-
tion becomes negative.

115S1 S2T12FF1 FF2CLK3CLK1 CLK2FF FF
Fig. 34. Part of a sequential circuit. The dotted region is the circuit block.

amount of unit tuning applied on each clock buffer, n12 is the amount of unit forward

body bias tuning applied on each circuit block (noting that they are non-negative),

and n′12 is the amount of unit reverse body bias tuning applied on each circuit block

(noting that they are non-positive). They can be any real values within certain ranges

when solving the above linear programming problem. Tcp is the clock period, and

Tsetup and Thold are the setup hold and the hold time of FF2, respectively. Constants

Un12 , Um are the maximum tuning ranges which are allowed for each tunable element.

We make the following comments on the problem formulation. First, the meaning

of variables like n12 is the tuning for each circuit. For example, for a fabricated circuit

with some deterministic values of S1, S2, T12, t12, variables like n12 are the desirable

tuning for the circuit by which the circuit can be tuned to satisfy the timing constraint.

Since S1, S2, T12, t12 are random variables, after solving the linear programming with

uncertainty problem, the meanings of the obtained n12, n
′
12,mb1 ,mb2 ,mb3 become the

tuning ranges since they need to guarantee that most (determined by yield target)

fabricated circuits can be tuned to satisfy the timing constraint. The actual tuning

on each fabricated circuit can be smaller than the tuning ranges.

Second, the first two constraints (i.e., Eqn. (5.2) and Eqn. (5.3)) specify the long

116

path constraint and the short path constraint, respectively. For a path with tight long

path constraint and loose short path constraint, n12 will be non-zero and n′12 will be

zero. For a path with tight short path constraint and loose long path constraint, n′12

will be non-zero and n12 will be zero. For a path with tight long path constraint and

tight short path constraint, all of four variables may be non-zero.

Eqn. (5.2) and Eqn. (5.3) contain random variables. To solve the linear pro-

gramming with uncertainty, they will be cast into deterministic constraints using a

technique proposed in the robust linear programming literature [57]. With theoretical

guarantee, this technique enables us to specify a tradeoff parameter controlling the

probability of constraint violation which is strongly related to timing yield. Such an

approach has also been successfully used in [58] for clock scheduling. In our approach,

we sample the subcircuits for simulations and use the results to decide the tradeoff

parameter. That is, our usage of robust linear programming is adaptive.

2. Robust Linear Programming

Consider a general linear programming problem [57]

min c′x (5.13)

s.t.
nX

j=1

Ax ≤ b, (5.14)

l ≤ x ≤ u, (5.15)

where A contains uncertainty, i.e., some coefficients in the constraints could be ran-

dom variables. In [59], Soyster proposes a method which solves it assuming that all

random variables can simultaneously take the worst-case values. Let Ji denote the

set of coefficients in row i of A which contain uncertainty. Under the assumption that

each entry aij ∈ Ji could take any value from [µai,j
− âi,j, µai,j

+ âi,j], Soyster’s method

117

guarantees that the computed solution will always satisfy all the constraints. µai,j
is

the nominal value and if a coefficient does not have any uncertainty, µaij
= aij. âi,j

(âi,j ≥ 0) is closely related to the standard deviation σ of the probability distribu-

tion. For example, âi,j could be set to 3σ or 6σ depending on how strict the yield

requirement is.

Soyster’s method is essentially the worst-case design methodology which could

introduce large resource overhead unnecessarily. A desirable approach should be

able to achieve different tradeoff between the nominal-case design and the worst-

case design. Bertsimas and Sim [57] propose such a technique, which enables us to

cast the linear constraints with uncertainty into deterministic linear constraints. In

addition, they have a tradeoff parameter, denoted by p, which controls the degree

of conservatism so as to obtain different tradeoff. Such an approach has also been

successfully used in [58] for clock scheduling. The above linear programming problem

is first cast into [57]

min c′x (5.16)

s.t.
X
j

µaij
xj + max

Si∪{ti}|Si⊆Ji,|Si|=bpc,ti∈Ji/Si

{X
j∈Si

âijyj + (p− bpc)âitiyt} ≤ bi,∀i (5.17)

−yj ≤ xj ≤ yj, (5.18)

l ≤ x ≤ u, (5.19)

y ≥ 0. (5.20)

Informally, the new constraint in the above formulation means that one could have

at most p (p ≤ |Ji|) variables simultaneously achieving the worst-case values and the

deviations of the other variables off their nominal values are controlled by p−bpc. In

our problem, since every constraint with uncertainty (e.g., Eqn. (5.2) and Eqn. (5.3))

118

contains the same number (i.e., 3) of random variables, p will be a real value between

[0, 3]. The above nonlinear programming problem is shown to be equivalent to [57]

min c′x (5.21)

s.t.
X
j

µaij
xj + zip +

X
j∈Ji

qij ≤ bi,∀i (5.22)

zi + qij ≥ âijyj,∀i, j ∈ Ji (5.23)

−yj ≤ xj ≤ yj, (5.24)

l ≤ x ≤ u, (5.25)

q,y, z ≥ 0. (5.26)

Clearly, when p = 0, zi can be âijyj so that qij = 0 and thus zip +
P

j∈Ji
qij = 0.

That is, the problem becomes the nominal-case design. When p = 3, every zi counts

and zip +
P

j∈Ji
qij is simply

P
j∈Ji

âijyj. Thus, the problem becomes the worst-

case design. Varying p in between, different tradeoff can be obtained. Let x∗ be

the optimal solution obtained by the above method. [57] proves that the constraint

violation probability is exponentially decreased with p. Precisely,

Pr(
X
j

aijx
∗ > bi) < e−

p2

6 ,∀i. (5.27)

[57] also demonstrates this through extensive experiments.

3. Adaptive Application of Robust Linear Programming

In our case, since the variations are not assumed to follow any specific distribution,

tradeoff parameter p cannot be analytically determined for satisfying the yield target.

For large circuits, one could perform simulations according to different p on the whole

circuit to find the best tradeoff. However, this is time consuming. We propose to

use the following circuit sampling based adaptive approach for determining p. For

119

large circuits in the experiment, some sub-circuits are first sampled and the above

formulation is performed on them. Subsequently, for different p, we solve the linear

programming problem and perform Monte Carlo simulations to obtain the constraint

violation probability. p is then experimentally determined so as to provide the best

degree of conservatism. Precisely, we choose the smallest p such that the timing

yield is equal to or larger than the yield target. Since sampled circuits have similar

characteristics as the whole circuit, we wish that using this p we would be able to

compute the solution with similar yield for the whole circuit. In this sense, our usage

of robust linear programming is adaptive.

E. Discretization

In reality, it is very rare that a tunable delay element, either ABB or PST buffer,

can be tuned continuously. In other words, the tuning is often allowed only for

certain discrete steps. The second stage of the algorithm is to map the solution of

the linear programming problem into a permissible (discrete) solution. Rounding up

the tuning range of every tunable element to the continuous solution will obtain a

discrete solution which satisfies the yield target but with more area cost overhead.

In contrast, rounding down these tuning ranges could obtain a discrete solution with

smaller area but not satisfying the yield target. If the size of each tuning step is

small, nearest rounding may provide acceptable discrete solutions. Otherwise, with

considerable size of the tuning step, nearest rounding may result in large error and a

dedicated discretization algorithm is highly desirable. In our discretization process,

we are to decide which one of the two choices should be used at each tunable element.

This process consists of PST clock buffer tuning range rounding (i.e., clock rounding)

and logic circuit tuning range rounding (i.e., logic rounding). Clock rounding is first

120

performed and returns a set of solutions where all clock tuning ranges are discretized

while logic tuning ranges are still continuous. Logic rounding is then performed to

some of the above solutions to discretize their logic tuning ranges.

1. Discretizating PST Clock Buffers

A dynamic programming approach is first used to determine discrete tuning range

for each PST buffer in the clock tree. We define a partial clock tuning solution to

be an incomplete determination for the discrete tuning ranges of all clock buffers. A

partial clock tuning solution becomes clock-complete when the discrete tuning ranges

of all clock buffers are determined. A clock buffer is processed if its discrete tuning

range has been determined. The algorithm starts with the root of the clock tree, and

performs a breadth-first traversal on the clock tree. During the process, we set the

tuning range for each tunable clock buffer to each of two possible choices (up-rounding

and down-rounding). The acceleration technique is necessary.

During the process, we set the tuning range for the first tunable clock buffer to

each of two possible choices (up-rounding and down-rounding), which results in two

partial solutions. For each partial solution, we process the second tunable clock buffer

and set its tuning range to each of two choices. In this way, the algorithms proceeds

in a dynamic programming fashion. That is, it processes each tunable clock buffer in

turn according to the breadth-first order. Without any acceleration technique, there

are 2m solutions for optimizing a clock tree with m PST buffers. Therefore, during

the solution propagation process, inferior solutions are pruned for acceleration. The

algorithm terminates when all partial solutions become clock-complete.

121

a. Solution Characterization

A set of partial solutions, denoted by A, keep being updated during the process of

dynamic programming. Each solution α ∈ A is associated with a (C, Y) pair, where

C denotes the cumulative area overhead and Y denotes the estimated yield. C is

computed by summing the overhead of all processed PST buffers. To compute the

yield of the circuit, discrete tuning range for every tunable element needs to be known.

Since some of them are not processed, we will use their continuous tuning ranges for

yield estimation. This makes sense as our goal for performing discretization is to

obtain a discrete solution with yield and overhead close to the continuous solution.

b. Solution Propagation

Suppose that we are to decide the tuning range of a PST buffer b. A new solution α′

will be formed for each of the two possible choices (up-rounding and down-rounding).

Because all PST buffers are processed according to the breadth-first order, when

b is processed, the cumulative area overhead can be updated by C(α′) = C(α) +

C(b), where C(b) is the area overhead due to b. Y (α′) is obtained by simulations,

precisely, a fast yield estimation through Latin Hypercube sampling based Monte

Carlo simulations [60]. Refer to Section 3 for the details.

c. Acceleration by Pruning

The acceleration comes from the observation that we do not need to always update

the yield of every partial solution during solution propagation.

After processing a node u, we obtain a set of partial solutions Au, each of which

satisfies the yield target. Suppose that the next node to be processed is v. For each

solution in Au, a new solution is generated by rounding up the PST buffer tuning

122

range at v. Denote the resulting solution set by Av,+. Late yield update is applied on

them. That is, their yields are not computed at this moment since we know that they

must satisfy the yield target. For each solution in Au, a new solution is also generated

by rounding down the PST buffer tuning range at v. Denote the resulting solution

set by Av,−, which is sorted by C values. We are to perform yield estimation on Av,−

since some of them may not meet the yield target. Our yield estimation is performed

in a binary search fashion. That is, we first estimate the yield for the middle solution.

If it satisfies the yield target, the middle solution for the half solution set with smaller

C will be tested. Otherwise, the current solution and the half solution set with smaller

C will be pruned, and the middle solution for the half solution set with larger C will

be tested. The process is repeated for log |Av,−| times. Denote the resulting solution

set by A′
v,− and then Av = Av,+

SA′
v,−. During solution propagation, when the size

of the solution set A is larger than a threshold w, top w/2 solutions with smallest

C values are kept and all other solutions are pruned for further speedup. By these

techniques, our clock rounding approach can be significantly accelerated. After all

the leaves in the clock tree are processed, a set of clock-complete solutions A are

obtained. Which discrete solution is eventually selected depends on the logic tuning

range discretization discussed in the next subsection.

2. Discretizing Logic Circuits

Section 1 returns a set of solutions, denoted by A, which are sorted according to C

values. For each solution in A, clock tuning ranges have already been discretized

while logic tuning ranges are not. This subsection deals with discretizing the logic

tuning ranges and selecting which rounding solution to return.

The solution set A can be large and it is time consuming to perform logic round-

ing on each solution. Thus, similar to Section c, a binary search fashion algorithm

123

is applied on the solution set A. That is, the middle solution is first rounded (by

logic rounding) followed by the middle solution in one half of A. Finally, the solution

(where both clock rounding and logic rounding have been performed) to be returned is

the one with the smallest overhead while satisfying the yield target. We only describe

how to round a single solution.

Recall that our body bias tuning is applied at the circuit block level (i.e., the

whole circuit block has the same tuning range), we will discretize the tunable ranges

for tunable circuit blocks. Each tunable circuit block is assigned with a timing criti-

cality related reducibility which measures the possible area overhead reduction while

still satisfying yield target. A large reducibility means the large possibility of area

reduction. Since larger slack means that we have larger room for area reduction, and

the area overhead is also proportional to the number of tunable gates, the following

cost function is used for a path p passing through a block B.

reducibility(p) = slack(p)× tunablegates(p), (5.28)

where slack(·) is the sum of the slack of the gates along p in B and tunablegates(·)
is the number of tunable gates along p in B. Note that the nominal slack is used as

an estimation for the slack, which makes sense since variations in the block should

have similar impact on all paths passing through it. Since all critical combinational

paths are given as the input to our algorithm, the paths passing through a block

can be easily identified. The reducibility of a block is then defined as the minimum

reducibility cost for all paths passing through it since we need to guarantee that

(almost) all paths could satisfy the timing constraint. That is,

reducibility(B) = min
p

reducibility(p). (5.29)

To perform logic rounding, a batch-based optimization technique is used after

124

the reducibility costs for all blocks are computed. This technique is also used in [14]

for clock tuning which is shown to be much more efficient than greedy approach. We

set a threshold parameter k. For all circuit blocks with reducibility greater than k,

the tuning ranges for the blocks are rounded down (from the continuous solution) and

the tuning ranges for all other blocks are rounded up. Fast Latin Hypercube sampling

based Monte Carlo simulations (refer to Section 3) are then performed to obtain the

timing yield. We start from a small k. If the yield target is satisfied, the rounding

is accepted. Otherwise, k is increased. The above process is repeated until the yield

target is satisfied. Note that if each time k is set to the largest reducibility among

all blocks, the batch-based optimization becomes the greedy approach. In this case,

we may have to perform many iterations of the algorithm which is time consuming,

and the approach can be easily stuck into local optimum. If k is set to the smallest

reducibility among all blocks, it becomes the down-rounding approach, which cannot

achieve the yield target. Varying initial k, we could achieve different tradeoff between

area overhead and computation overhead.

3. Fast Simulations for Timing Yield Estimation

Discretization involves simulations for yield estimation. In simulations, the tuning

range of a tunable element needs to be fixed. This is implemented as modifying

the corresponding constraints in the linear programming formulation. For example,

discretizing n12 in Eqn. (5.2) to 10 is implemented as setting n12 ≤ 10 in Eqn. (5.9).

During discretization, we may frequently estimate the new timing yield of the circuit

(for not-yet discretized tuning ranges, their continuous tuning ranges are used). The

commonly-used Monte Carlo simulation approach is very time consuming. Thus, fast

Latin Hypercube (LH) sampling based Monte Carlo simulations are used. Compared

to simple sampling, LH sampling allows us to sample the space more evenly to avoid

125

crowded samples. By this, one can use much fewer samples in Monte Carlo simulations

while still having high yield estimation accuracy [60].

The common approach for yield estimation is to formulate a set of, say 5000,

linear programming instances with uncertain variables set to some deterministic val-

ues according to probability distributions, and solve them to compute the yield as

Y ield = the number of feasible LP instances
5000

. This full-fledged Monte Carlo simula-

tion approach is very time consuming. Thus, fast Latin Hypercube (LH) sampling

based Monte Carlo simulations are used. Compared to simple sampling, LH sampling

allows us to sample the space more evenly to avoid crowded samples. By this, one can

use much fewer, typically 200, samples in Monte Carlo simulations while still having

high yield estimation accuracy [60].

For simplicity, we use a two-dimensional simulation example to illustrate the

idea of LH sampling. Given two random variables x, y for performing simulations, to

generate 5 simulation instances is to randomly generate 5 pairs of x, y. As one can see

from Figure 35(a), these instances could be not evenly distributed in the simulation

space and not span the whole space. This is due to that each instance does not have

any memory of previously generated instances. Crowded instances should be avoided

for improving the accuracy and reducing the number of simulations.

LH sampling can effectively tackle this issue. In LH sampling, we divide the range

of each variable into equal-probability intervals and requires that there is exactly one

instance covering each interval in simulations. For example, in Figure 35(b), we first

divide the simulation space into 5×5 equal-probability grids and whenever one grid is

picked for simulation, the corresponding row and column will be removed from future

simulation instance generation. In this way, the instances could be distributed more

evenly than purely random instance generation approach, and thus the total number

of simulations can be significantly reduced. Refer to [60] for the details and to [61]

126

Fig. 35. Left: random sampling. Right: LH sampling. × denotes a sample.

Fig. 36. A three-level clock tree. Dotted region refers to the covered circuit by the

clock buffer.

for a successful application in CAD.

4. Time Complexity

In our algorithm, the main portion of runtime is certainly due to simulations in the

discretization stage. Let r denote the runtime for one yield estimation using a set

of 200 LH sampling based Monte Carlo simulations on the whole circuit. We will

express the time complexity of the algorithm by r. The first time-consuming part is

clock buffer discretization. Suppose that an H-tree is used as clock tree and there are

totally l levels in the clock tree (refer to Figure 36 for a three-level clock tree). At

127

each node of the clock tree, we only need to perform the simulations on the circuits

covered by all the leaves (flip-flops) of its subtree, since changing the tuning range of

the node will not affect the part not covered by its leaves. Thus, one set of simulations

on the whole circuit is needed for each level of the clock tree, which takes r time.

For an l-level clock tree, the runtime is lr for a single solution. Assume that there

are on average |Aavg| solutions during the solution propagation. The total runtime is

log |Aavg|lr.
The second time-consuming part is circuit block discretization. Assuming that

totally q iterations of batch-based optimization is performed. In each batch, all paths

passing through the selected circuit blocks need to be simulated. The total runtime

is bounded above by qr since at most one set of simulations on the whole circuit is

needed for a batch. Thus, the runtime is log |Aavg|qr assuming that |Aavg| solutions

are obtained from clock tree discretization. In a total, the runtime of the algorithm

is bounded above by log |Aavg|(l + q)r. For large circuits, l + q is around 15 and

log |Aavg| is quite small (< 8) through controlling w in Section c which gives very

good tradeoff between solution quality and runtime.

F. Experiments

The continuous linear programming algorithm and discretization algorithm are im-

plemented in C++ and are tested on a Pentium IV computer with a 3.0GHz CPU

and 2G memory. ISCAS’89 benchmark circuits and a cell library of 130nm technol-

ogy are used in the experiments. Logical synthesis and technology mapping (using

Berkeley SIS) are performed to the circuits with a cell library of 130nm technology.

The circuits are placed using Cadence Silicon Ensemble. H-tree topology is used to

generate clock tree for the placement. Note that our approach can be easily applied

128

to other buffered clock tree topology. In the experiments, delay variations on gates

and clock buffers are assumed to follow normal distributions with the standard de-

viation set to 5% of the mean value. Note that our approaches are independent of

variation distributions. Statistical timing analysis is then performed whose runtime

is not included in the algorithms since it is assumed to be an input of our algorithms.

In our experiments, the yield target is set to 99.0%. In our continuous approach,

yield estimation is implicitly used in the robust linear programming technique. In our

discretizartion approach, Latin Hypercube sampling based Monte Carlo simulations

are used for yield estimation. These yield estimations are very fast, but may have

small errors. In order to compensate for such errors, we set the yield constraint in

the optimization to be 99.5% which is slightly higher than our target of 99.0%. This

target compensation idea can compensate for estimation errors and make our results

satisfy the yield target in practice. After optimization, 5000 Monte Carlo simulations

are performed to evaluate the timing yield for the obtained circuits. Their runtime is

not included in the algorithms since they are not in optimization.

1. Continuous Adaptivity Optimization

Our first experiment is to investigate the difference between the unified optimization

and the optimization on logic or clock signal adaptivity alone. Recall that our contin-

uous optimization problem is solved using a robust linear programming technique. A

single tradeoff parameter is used to achieve different cost-yield tradeoff and no Monte

Carlo simulation is needed during optimization. The optimization for logic or clock

adaptivity alone follows the above procedure except that additional constraints are

introduced to ensure that the optimization is not performed for both clock and logic

signals simultaneously. The information of ISCAS’89 benchmark circuits is in Ta-

ble XIX and the optimization results are summarized in Table XX. Note that due to

129

the target compensation idea, all results satisfy the yield target 99.0%. We make the

following observations:

• Unified optimization saves large amount of area compared to optimization on

logic signal or clock signal alone. For s5378, 50.5% area cost reduction is ob-

tained.

• Clock Signal Adaptivity leads to small improvement on yield. Thus, linear

programming often returns no feasible solutions for the same tradeoff parameter

as in the unified optimization and Logic Signal Adaptivity. This is the case since

there may be many critical cycles in a circuit, and when these cycles are heavily

overlapped, there is only slight of amount of slack can be moved among flip-

flops. In addition, a single clock buffer may drive many flip-flops and tuning

it affects all of them. If some flip-flops are in timing critical paths, then only

small amount of tuning can be applied to the clock buffer.

• Since the runtime only comes from formulating the linear program and solv-

ing it using the robust linear programming technique, all algorithms run very

efficiently.

With different tradeoff parameter, we are able to obtain different tradeoff between

cost (i.e., area overhead) and yield. Figure 37 shows a cost-yield curve obtained from

tuning tradeoff parameter in our unified optimization approach. This curve provides

large freedom for satisfying various yield and overhead requirement.

2. Discretization

We then perform discretization algorithm to the continuous solution obtained from

the unified optimization. Since there is no previous work on unified optimization on

130

0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Yield

C
os

t

Fig. 37. Cost-Yield tradeoff curve for s1423 by the unified optimization.

131

Table XIX. Statistics of ISCAS’89 benchmark circuits. #Bk refers to the number of

blocks and #Buf refers to the number of clock buffers.

Name #FF #Gates #Bk #Buf
s838 32 446 25 45
s1238 18 508 25 23
s1423 74 657 25 72
s1488 6 653 25 16
s5378 179 2779 25 128
s15850 534 9835 49 239
s35932 1728 16065 64 438
s38417 1636 22179 64 393
s38584 1426 19279 64 357

the adaptivity of logic and clock signals, we compare our approach to the following

two simple methods. The first approach is called Binary Batch algorithm which is in

the same spirit as [14]. Initially, we plan to compare to a greedy algorithm where each

circuit block is tuned separately. However, we found that this approach is intolerably

slow. The batch based optimization [14] gradually increases the tuning range of a set

of blocks where the blocks are picked according to the criticality. In order to further

improve its efficiency, binary search is performed on the tuning steps (i.e., tuning

range can be increased by various multiples of discrete tuning steps) to largely reduce

the total number of Monte Carlo simulations. Initially, tuning ranges of all blocks

are 0 and thus the continuous solution is not used here. The tuning ranges of a set of

blocks are then increased by a discrete level which is equal to a few multiples of the

step size. It the yield target is not satisfied, we keep increasing the tuning ranges.

Otherwise, we rip-up the solution and try a smaller discrete level on fewer blocks

until the discrete level reaches the step size. The second algorithm for comparison

is a Nearest Rounding approach. In this approach, the tuning range of each tunable

element is simply rounded to the nearest discrete tuning range. All approaches involve

132

Table XX. Continuous optimizations on ISCAS’89 benchmark circuits. #Bk refers to

the number of blocks and #Buf refers to the number of clock buffers. Area

reduction is obtained by comparing the area of Our Discrete Solution with

the minimum area of Logic Signal Adaptivity and Clock Signal Adaptivity.

Circuit Logic Signal Adaptivity Clock Signal Adaptivity Unified Adaptivity
Name Area Yield CPU (s) Area Yield CPU (s) Area Yield CPU (s) Area red.
s838 185.1 99.7% 5.5 - - - 103.7 99.8% 5.5 43.9%
s1238 204.1 99.8% 1.1 218.5 99.8% 1.1 112.2 99.9% 1.1 45.0%
s1423 216.2 99.4% 51.2 - - - 206.5 99.7% 51.5 4.5%
s1488 230.8 99.1% 1.2 - - - 201.9 99.3% 1.2 12.5%
s5378 207.5 99.3% 60.9 213.7 99.2% 61.2 102.7 99.5% 61.1 50.5%
s15850 1081.7 99.4% 342.5 - - - 703.6 99.3% 341.7 34.9%
s35932 2077.5 100.0% 1007.8 - - - 1532.8 99.7% 1012.5 26.2%
s38417 1728.2 99.3% 570.5 - - - 1339.7 99.5% 569.4 22.5%
s38584 2593.2 99.7% 667.5 - - - 1820.8 99.5% 668.5 29.8%

Latin Hypercube sampling based Monte Carlo simulations [60] and 200 LH samples

are used in simulations for a yield estimation. Note that the yield constraint is pushed

to 99.5% by our target compensation idea.

Table XXI. Discrete Solutions for ISCAS’89 benchmark circuits with large tuning step.

Runtime for computing nearest rounding and discrete solution includes the

runtime for computing continuous solutions. Area reduction and speedup

are obtained by comparing to binary batch.

Large Tuning Step
Circuit Binary Batch Nearest Rounding Our Discrete Solution
Name Area Yield CPU Area Yield CPU Area Yield CPU Speedup Area Red.
s838 259.9 99.8% 552.7 86.5 90.5% 5.7 105.3 99.5% 242.0 2.3× 59.5%
s1238 222.0 99.9% 135.7 100.9 91.7% 1.4 115.0 99.7% 83.7 1.6× 48.2%
s1423 353.2 99.1% 685.3 229.3 97.5% 52.0 223.1 99.3% 248.5 2.8× 36.8%
s1488 545.9 99.3% 187.2 213.3 97.2% 1.6 214.6 99.4% 86.7 2.2× 60.7%
s5378 303.5 99.7% 935.8 89.8 89.2% 61.4 117.5 99.7% 465.8 2.0× 38.7%
s15850 1297.1 99.3% 4158.5 655.3 90.2% 346.7 778.0 99.5% 2310.2 1.8× 40.1%
s35932 2970.6 99.7% 19532.7 1729.2 95.8% 1024.3 1711.9 99.6% 9844.2 2.0× 57.6%
s38417 2513.1 99.8% 7822.1 1512.9 93.1% 576.8 1578.2 99.2% 4343.6 1.8× 37.2%
s38584 3189.2 99.8% 14102.5 1702.9 91.0% 676.8 1955.2 99.8% 5948.3 2.4× 38.7%

The discretization results significantly depend on the discrete step for the tuning

ranges. If one can achieve small tuning precision, rounding from the continuous

solution may be good. In contrast, in the situation that one cannot have small tuning

133

precision, i.e., tuning step is large, our discretization approach is highly desirable.

The results are summarized in Table XXI for large tuning step case and Table XXII

for small tuning step case.

We make the following observations in large tuning step.

• Nearest rounding often leads to large rounding error, i.e., timing yield is signif-

icantly decreased. For s5378, yield is below 90%.

• Since Binary Batch approach is not guided by our continuous solution, the

solution quality is quite low compared to other approaches. It often doubles

the area compared to the discretization approach. In addition, it takes much

longer time to run. This is again due to that continuous solution is not used.

For the other two approaches, we only have two choices (i.e., rounding-up or

rounding-down) at each tunable element, which means that the search space

has been greatly reduced.

• Our discretization approach achieves good balance between solution quality

and runtime. Due to our target compensation idea and the effectiveness of LH

sampling based Monte Carlo simulations, the exact yield always satisfies the

target which is 99.0%. This is not the case for Nearest Rounding. For s1423

and s35932, our approach returns solutions with better yield and smaller area

cost compared to Nearest Rounding. As our discretization approach maintains

a set of solutions in computation (in both clock and logic rounding), it runs

slower than Nearest Rounding approach. However, due to various acceleration

techniques, our approach is still more efficient than [14]. Note that Binary

Batch is actually a faster version of [14], and our discretization approach is

consistently better than Binary Batch in terms of both area and runtime.

We observe the following in small tuning step case.

134

Table XXII. Discrete Solutions for ISCAS’89 benchmark circuits with small tuning

step. Runtime for computing nearest rounding and discrete solution in-

cludes the runtime for computing continuous solutions. Area reduction

and speedup are obtained by comparing to binary batch.

Small Tuning Step
Circuit Binary Batch Nearest Rounding Our Discrete Solution
Name Area Yield CPU Area Yield CPU Area Yield CPU Speedup Area Red.
s838 237.4 99.8% 903.5 106.3 97.8% 5.7 104.8 99.5% 275.0 3.3× 55.9%
s1238 213.5 99.5% 151.2 112.8 99.8% 1.4 112.5 99.9% 95.0 1.6× 43.7%
s1423 247.3 99.2% 1072.1 219.5 99.3% 51.9 217.5 99.4% 286.1 3.7× 12.1%
s1488 527.3 99.7% 242.5 212.0 99.1% 1.6 212.5 99.2% 99.9 2.4× 59.7%
s5378 253.1 99.5% 1583.2 113.2 99.3% 61.4 110.1 99.5% 444.7 3.6× 56.5%
s15850 1023.7 99.4% 6255.0 767.1 99.0% 346.0 743.9 99.5% 2525.0 2.5× 27.3%
s35932 2329.0 99.3% 27380.6 1638.0 99.3% 1022.6 1607.2 99.1% 11599.3 2.4× 31.0%
s38417 2175.1 99.6% 11259.7 1452.8 98.2% 575.6 1488.2 99.8% 4774.3 2.4× 31.5%
s38584 2532.5 99.3% 19803.2 1773.2 95.5% 676.3 1892.0 99.7% 6907.1 2.9× 25.3%

• Nearest Rounding obtains good discrete solution in short time, since with

smaller tuning step, the continuous solution can be rounded with smaller errors

compared to large tuning step case.

• The solution quality of Binary Batch is worst among all algorithms. In addition,

it runs slower than large step case since more discrete levels need to be handled.

• Our discretization approach often saves area compared to Nearest Rounding

while achieving high timing yield.

In summary, one sees that our continuous unified adaptivity optimization ap-

proach is consistently better than optimization on logic or clock signal alone, and

it runs very efficiently since no Monte Carlo simulations are involved. In addition,

our discretization approach is highly effective and it significantly outperforms Nearest

Rounding and Binary Batch.

135

G. Conclusion

To the best of the authors’ knowledge, this work is the first one considering unified

adaptivity optimization on logic and clock signals, which saves much area cost com-

pared to optimization on logic or clock signals alone and it does need any assumption

on variation distributions. Our continuous optimization is based on a novel linear

programming formulation which is efficiently solved by a robust technique where no

Monte Carlo simulation is needed. To compute the discrete solution, the continuous

solution is used to guide the discretization process to greatly reduce search space.

This process involves binary search accelerated dynamic programming, batch based

optimization, and Latin Hypercube sampling based fast simulation. Our experimental

results demonstrate that up to 50% area cost reduction can be obtained by the uni-

fied tuning and the discretization significantly outperforms the alternatives in terms

of solution quality and runtime.

136

CHAPTER VI

CONCLUSION

In the dissertation, various innovative algorithmic techniques are proposed for design

and manufacturing closure in nanoscale circuit design. They can be classified into two

categories, namely, deterministic optimizations and variation-aware optimizations.

Two deterministic optimizations, namely, buffer insertion and gate sizing, are

addressed in the research. For buffer insertion, a new slew buffering formulation is

presented and the general slew buffering problem is proved to be NP-hard. Despite

this, an ultra-fast dynamic programming algorithm is proposed. It is then extended to

handle the difficult case without input slew assumptions, which involves the maximum

matching technique. We also propose algorithms for continuous slew buffering and

slew buffering with blockage avoidance which makes the approaches ready for practical

use. For gate sizing, a new algorithm is proposed to handle discrete gate library in

contrast to unrealistic continuous gate library assumed by most existing algorithms.

Our approach is a continuous solution guided dynamic programming approach, which

integrates the high solution quality of dynamic programming with the short runtime

of rounding continuous solution. Our experimental results demonstrate that the new

algorithm saves up to 21% area while satisfying the timing constraint compared to

the existing alternative.

Two variation-aware optimizations, namely, lithography-driven optimizations and

post-silicon tuning-driven optimizations, are addressed in the research. For lithography-

driven optimization, three algorithms are proposed for the problem of cell placement

considering manufacturability. They are cell flipping algorithm, single row optimiza-

tion algorithm and multiple row optimization algorthm. These algorithms are based

on dynamic programming and graph theoretic approaches, and can provide differ-

137

ent tradeoff between critical dimension (CD) variation reduction and wirelength in-

crease. Our experimental results on realistic netlists and cell library demonstrate

that over 15% CD variation reduction can be obtained in post-OPC stage by the new

approaches while only less than 1% additional wire is introduced. For post-silicon

tuning-driven optimization, a new algorithm for unified adaptivity optimization on

logical and clock signal tuning is proposed. It is based on a novel linear programming

formulation which is solved by an advanced robust linear programming technique.

The continuous solution is then discretized by binary search accelerated dynamic

programming, batch based optimization, and Latin Hypercube sampling based fast

simulation. Our experimental results demonstrate that up to 50% area cost reduc-

tion can be obtained by the unified optimization compared to optimization on logic

or clock alone. In addition, the proposed discretization approach significantly out-

performs the alternatives in terms of solution quality and runtime.

As the design flow of VLSI systems becomes increasingly complex, each design

step needs to be optimized for efficient design and manufacturing closure. Although

this research focuses on some steps, algorithmic techniques proposed in this research

have the potential to be applied to similar problems. It is interesting to incorporate

these approaches with problem specific knowledge to effectively and efficiently solve

other design automation problems.

138

REFERENCES

[1] Semiconductor Industry Association, International Technology Roadmap For

Semiconductors, San Jose, California, 2005.

[2] S. Heo, K. Barr, and K. Asanovic, “Reducing power density through activity

migration,” in Proc. ACM International Symposium on Low Power Electronics

and Design, Seoul, Korea, August 2003, pp. 217–222.

[3] P. Saxena and N. Menezes and P. Cocchini and D.A. Kirkpatrick, “Repeater

scaling and its impact on CAD,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 23, no. 4, pp. 451–463, April 2004.

[4] J. Cong, “An interconnect centric design flow for nanometer technologies,” Proc.

IEEE, vol. 89, pp. 505–528, April 2001.

[5] P.J. Osler, “Placement driven synthesis case studies on two sets of two chips: hi-

erarchical and flat,” in Proc. ACM International Symposium on Physical Design,

Phoenix, Arizona, April 2004, pp. 190–197.

[6] O. Coudert, “Gate sizing for constrained delay/power/area optimization,” IEEE

Transactions on Very Large Scale Integration Systems, vol. 5, no. 4, pp. 465–472,

1997.

[7] F. Beeftink, P. Kudva, D. Kung, and L. Stok, “Gate-size selection for standard

cell libraries,” in Proc. IEEE/ACM International Conference on Computer-

Aided Design, San Jose, California, November 1998, pp. 545–550.

[8] M. Mani, A. Devgan, and M. Orshansky, “An efficient algorithm for statis-

tical minimization of total power under timing yield constraints,” in Proc.

139

ACM/IEEE Design Automation Conference, Anaheim, California, June 2005,

pp. 309–314.

[9] A. Agarwal, K. Chopra, D. Blaauw, and V. Zolotov, “Circuit optimization

using statistical static timing analysis,” in Proc. ACM/IEEE Design Automation

Conference, Anaheim, California, June 2005, pp. 321–324.

[10] J. Singh, V. Nookala, Z.-Q. Luo, and S. S. Sapatnekar, “Robust gate sizing by

geometric programming,” in Proc. ACM/IEEE Design Automation Conference,

Anaheim, California, June 2005, pp. 315–320.

[11] S.H. Kulkarni, D.M. Sylvester, and D. Blaauw, “A statistical framework for post-

silicon tuning through body bias clustering,” in Proc. IEEE/ACM International

Conference on Computer-Aided Design, San Jose, California, November 2006,

pp. 39–46.

[12] J.W. Tschanz, J.T. Kao, S.G. Narendra, R. Nair, D.A. Antoniadis, A.P. Chan-

drakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die

and within-die parameter variations on microprocessor frequency and leakage,”

IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1396–1401, November

2002.

[13] M. Mani, A. Singh, and M. Orshansky, “Joint design-time and post-silicon mini-

mization of parametric yield loss using adjustable robust optimization,” in Proc.

IEEE/ACM International Conference on Computer-Aided Design, San Jose, Cal-

ifornia, November 2006, pp. 19–26.

[14] J.-L. Tsai, L. Zhang, and C.-P. Chen, “Statistical timing analysis driven post-

silicon-tunable clock-tree synthesis,” in Proc. IEEE/ACM International Con-

ference on Computer-Aided Design, San Jose, California, November 2005, pp.

140

575–581.

[15] V. Khandelwal and A. Srivastava, “Variability-driven formulation for simulta-

neous gate sizing and post-silicon tunability allocation,” in Proc. ACM Interna-

tional Symposium on Physical Design, Austin, Texas, March 2007, pp. 11–18.

[16] L.P.P.P. van Ginneken, “Buffer placement in distributed RC-tree networks for

minimal Elmore delay,” in Proc. IEEE International Symposium on Circuits

and Systems, New Orleans, Louisiana, May 1990, pp. 865–868.

[17] J. Lillis and C.-K. Cheng and T.-T.Y. Lin, “Optimal wire sizing and buffer

insertion for low power and a generalized delay model,” IEEE Journal of Solid

State Circuits, vol. 31, no. 3, pp. 437–447, March 1996.

[18] C.J. Alpert and A. Devgan and S.T. Quay, “Buffer insertion for noise and

delay optimization,” in Proc. ACM/IEEE Design Automation Conference, San

Francisco, California, June 1998, pp. 362–367.

[19] W. Shi and Z. Li and C. Alpert, “Complexity analysis and speedup techniques

for optimal buffer insertion with minimum cost,” in Proc. IEEE Asia and South

Pacific Design Automation Conference, Yokohama, Japan, January 2004, pp.

609–614.

[20] W. Shi and Z. Li, “A fast algorithm for optimal buffer insertion,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,

no. 6, pp. 879–891, June 2005.

[21] Z. Li, C.N. Sze, C.J. Alpert, J. Hu, and W. Shi, “Making fast buffer insertion

even faster via approximation techniques,” in Proc. IEEE Asia and South Pacific

Design Automation Conference, January 2005, pp. 13–18.

141

[22] Z. Li and W. Shi, “An O(bn2) time algorithm for optimal buffer insertion with

b buffer types,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 25, no. 3, pp. 484–489, March 2006.

[23] N. Menezes and C.-P. Chen, “Spec-based repeater insertion and wire sizing for

on-chip interconnect,” in Proc. IEEE International Conference on VLSI Design,

1999, pp. 476–483.

[24] C.J. Alpert and A. Devgan and S.T. Quay, “Buffer insertion with accurate gate

and interconnect delay computation,” in Proc. ACM/IEEE Design Automation

Conference, New Orleans, Louisiana, June 1999, pp. 479–484.

[25] C.J. Alpert and A.B. Kahng and B. Liu and I. Mandoiu and A. Zelikovsky,

“Minimum-buffered routing of non-critical nets for slew rate and reliability con-

trol,” in Proc. IEEE/ACM International Conference on Computer Aided Design,

San Jose, California, November 2001, pp. 408–415.

[26] C.J. Alpert and J. Hu and S.S. Sapatnekar and P.G. Villarrubia, “A practical

methodology for early buffer and wire resource allocation,” in Proc. ACM/IEEE

Design Automation Conference, Las Vegas, Nevada, June 2001, pp. 189–194.

[27] C.V. Kashyap and C.J. Alpert and F. Liu and A. Devgan, “Closed form expres-

sions for extending step delay and slew metrics to ramp inputs,” in Proc. ACM

International Symposium on Physical Design, Monterey, California, April 2003,

pp. 24–31.

[28] H.B. Bakoglu, Circuits, Interconnects, and Packaging for VLSI, Boston, MA,

Addison Wesley, 1990.

[29] N.H. Weste and K. Eshraghian, Principles of CMOS VLSI Design, pp. 221–223,

Boston, MA, Addison Wesley, 1993.

142

[30] “EinsTimer Users Guide and Language Reference,” Hopewell Junction, NY,

IBM Microelectronics Division, 1995.

[31] T. Feder and R. Motwani, “Clique partitions, graph compression, and speeding-

up algorithms,” in Proc. ACM Symposium on Theory of Computing, New Or-

leans, Louisiana, May 1991, pp. 123–133.

[32] A.V. Goldberg, “An efficient implementation of a scaling minimum-cost flow

algorithm,” Journal of Algorithms, vol. 22, no. 1, pp. 1–29, January 1997.

[33] J. Hu and C.J. Alpert and S.T. Quay and G. Gandham, “Buffer insertion with

adaptive blockage avoidance,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 22, no. 4, pp. 492–498, April 2003.

[34] J.P. Fishburn and A.E. Dunlop, “TILOS: A posynomial programming ap-

proach to transistor sizing,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design, San Jose, California, November 1985, pp. 326–328.

[35] C.-P. Chen, C.C.N. Chu, and D.F. Wong, “Fast and exact simultaneous gate and

wire sizing by lagrangian relaxation,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 18, no. 7, pp. 1014–1025, July

1999.

[36] S. Boyd, S.J. Kim, D. Patil, and M. Horowitz, “Digital circuit optimization

via geometric programming,” Operations Research, vol. 53, no. 6, pp. 899–932,

2005.

[37] W. Chuang, S. Sapatnekar, and I. Hajj, “Delay and area optimization for dis-

crete gate sizes under double-sided timing constraints,” in Proc. IEEE Custom

Integrated Circuits Conference, San Diego, California, May 1993, pp. 9.4.1–9.4.4.

143

[38] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via

hashing,” in Proc. ACM International Conference on Very Large Data Bases,

Edinburgh, Scotland, September 1999, pp. 518–529.

[39] K. Kasamasetty, M. Ketkar, and S. S. Sapatnekar, “A new class of convex func-

tions for delay modeling and its application to the transistor sizing problem,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 19, no. 7, pp. 779–788, July 2000.

[40] Jeremy Buhler, “Efficient large-scale sequence comparison by locality-sensitive

hashing,” Bioinformatics, vol. 17, no. 5, pp. 419–428, 2001.

[41] A.K.-K. Wong, Resolution enhancement techniques in optical lithography, SPIE

Press, 2001.

[42] L.-D. Huang and D.F. Wong, “Optical proximity correction (OPC)-friendly

maze routing,” in Proc. ACM/IEEE Design Automation Conference, San Diego,

California, June 2004, pp. 186 – 191.

[43] J. Mitra, P. Yu, and D.Z. Pan, “RADAR: RET-aware detailed routing using fast

lithography simulations,” in Proc. ACM/IEEE Design Automation Conference,

Anaheim, Californina, June 2005, pp. 369 – 372.

[44] V. Kheterpal, T. Hersan, V. Rovner, D. Motiani, Y. Takagawa, L. Pileggi, and

A. Strojwas, “Design methodology for IC manufacturability based on regular

logic-bricks,” in Proc. ACM/IEEE Design Automation Conference, Anaheim,

California, June 2005, pp. 353–358.

[45] L. Pileggi, H. Schmit, A.J. Strojwas, P. Gopalakrishnan, V. Kheterpal, A. Koora-

paty, C. Patel, V. Rovner, and K.Y. Tong, “Exploring regular fabrics to optimize

144

the performance-cost trade-off,” in Proc. ACM/IEEE Design Automation Con-

ference, Anaheim, California, June 2003, pp. 782–787.

[46] L. Liebmann, “Layout impact of resolution enhancement techniques: impedi-

ment or opportunity,” in Proc. International Symposium on Physical Design,

Monterey, California, April 2003, pp. 110–117.

[47] P. Gupta, A.B. Kahng, and C.-H. Park, “Detailed placement for improved depth

of focus and CD control,” in Proc. IEEE Asia and South Pacific Design Automa-

tion Conference, Shanghai, China, January 2005, pp. 343–348.

[48] S. Sinha, C. Chiang, X. Hong, and Y. Cai, “Efficient process-hotspot detection

using range pattern matching,” in Proc. IEEE/ACM International Conference

on Computer-Aided Design, San Jose, California, November 2006, pp. 625–632.

[49] D.M. Pawlowski and L. Deng and M.D.-F. Wong, “Boundary-based cellwise

OPC for standard-cell layouts,” in Proc. SPIE, Volume 6521, Design for Manu-

facturability through Design-Process Integration, 2007, p. 65211O.

[50] C.-W. Sham, E.F.Y. Young, and C. Chu, “Optimal cell flipping in placement

and floorplanning,” in Proc. ACM/IEEE Design Automation Conference, San

Francisco, California, July 2006, pp. 1109 – 1114.

[51] S. Hu and J. Hu, “Pattern sensitive placement for manufacturability,” in Proc.

ACM International Symposium on Physical Design, Austin, Texas, March 2007,

pp. 27–34.

[52] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algo-

rithms, Cambridge, MA, MIT Press, 2nd edition, 2001.

[53] N. Viswanathan and C.C.N. Chu, “Fastplace: Efficient analytical placement

145

using cell shifting, iterative local refinement and a hybrid net model,” in Proc.

ACM International Symposium on Physical Design, Phoenix, Arizona, April

2004, pp. 26–33.

[54] M. Mani and M. Orshansky, “A new statistical optimization algorithm for gate

sizing,” in Proc. International Conference on Computer Design, San Jose, Cali-

fornia, October 2004, pp. 272–277.

[55] A. Singh, M. Mani, and M. Orshansky, “Statistical technology mapping for

parametric yield,” in Proc. IEEE/ACM International Conference on Computer-

Aided Design, San Jose, California, November 2005, pp. 511–518.

[56] A. Agarwal, K. Chopra, V. Zolotov, and D. Blaauw, “Statistical timing based

optimization using gate sizing,” in Proc. ACM/IEEE Design Automation and

Test in Europe Conference, Munich, Germany, March 2005, pp. 400–405.

[57] D. Bertsimas and M. Sim, “The price of robustness,” Operations Research, vol.

52, no. 1, pp. 35–53, 2004.

[58] V. Nawale and T. Chen, “Optimal useful clock skew scheduling in the presence

of variations using robust ILP-formulations,” in Proc. IEEE/ACM International

Conference on Computer-Aided Design, San Jose, California, November 2006,

pp. 27–32.

[59] A.L. Soyster, “Convex programming with set-inclusive constraints and applica-

tions to inexact linear programming,” Operations Research, vol. 21, pp. 1154–

1157, 1973.

[60] K.T. Fang, K. Fang, and L. Runze, Design and Modelling for Computer Exper-

iments, Boca Raton, FL, CRC Press, 2005.

146

[61] S.K. Tiwary, P.K. Tiwary, and R.A. Rutenbar, “Generation of yield-aware pareto

surfaces for hierarchical circuit design space exploration,” in Proc. ACM/IEEE

Design Automation Conference, San Francisco, Californina, July 2006, pp. 31–

36.

147

VITA

Shiyan Hu received the B.S. degree in Computer Science and Technology from

Beijing University of Aeronautics and Astronautics, China, the M.S. degree in Com-

puter Science from Polytechnic University, Brooklyn, NY, and the Ph.D. degree in

Computer Engineering from Texas A&M University.

In 2007, he worked as a graduate research intern at the IBM Austin Research

Lab. His research interests are primarily on VLSI Computer-Aided Design including

buffer insertion, routing, gate sizing, variation-aware optimization, and design for

manufacturability. His mailing address is Department of Electrical and Computer

Engineering, Mail Stop 3128, Texas A&M University, College Station, TX, 77843-

3128.

The typist for this thesis was Shiyan Hu.

