4 research outputs found

    RFID-MA XTEA: Cost-Effective RFID-Mutual Authentication Design using XTEA Security on FPGA Platform

    Get PDF
    RFID systems are one of the essential technologies and used many diverse applications. The security and privacy are the primary concern in RFID systems which are overcome by using suitable authentication protocols. In this manuscript, the cost-effective RFID-Mutual Authentication (MA) using a lightweight Extended Tiny encryption algorithm (XTEA) is designed to overcome the security and privacy issues on Hardware Platform. The proposed design provides two levels of security, which includes secured Tag identification and mutual authentication.  The RFID-MA mainly has Reader and Tag along with the backend Server. It establishes the secured authentication between Tag and Reader using XTEA. The XTEA with Cipher block chaining (CBC) is incorporated in RFID for secured MA purposes. The authentication process completed based on the challenge and response between Reader and Tag using XTEA-CBC. The present work is designed using Verilog-HDL on the Xilinx environment and implemented on Artix-7 FPGA.  The simulation and synthesis results discussed with hardware constraints like Area, power, and time. The present work is compared with existing similar approaches with hardware constraints improvements

    Comparison of Hardware and Software Based Encryption for Secure Communication in Wireless Sensor Networks

    Get PDF
    International audienceThis paper deals with the energy efficient issue of cryptographic mechanisms used for secure communication between devices in wireless sensor networks. Since these devices are mainly targeted for low power consumption appliances, there is an effort for optimization of any aspects needed for regular sensor operation. On a basis of utilization of hardware cryptographic accelerators integrated in microcontrollers, this article provides the comparison between software and hardware solutions. Proposed work examines the problems and solutions for implementation of security algorithms for WSN devices. Because the speed of hardware accelerator should be much higher than the software implementation, there are examination tests of energy consumption and validation of performance of this feature. Main contribution of the article is real testbed evaluation of the time latency and energy requirements needed for securing the communication. In addition, global evaluation for all important network communication parameters like throughput, delay and delivery ratio are also provided

    RFID Mutual Authentication Protocols based on Gene Mutation and Transfer

    Get PDF
    Radio Frequency Identification (RFID) is a technology that is very popular due to the simplicity in its technology and high adaptability in a variety of areas. The simplicity in the technology, however, comes with a caveat – RFID tags have severe resource restrictions, which make them vulnerable to a range of security attacks. Such vulnerability often results in the loss of privacy of the tag owner and other attacks on tags. Previous research in RFID security has mainly focused on authenticating entities such as readers / servers, which communicate with the tag. Any security mechanism is only as strong as the encryption keys used. Since RFID communication is wireless, critical messages such as key exchange messages are vulnerable to attacks. Therefore, we present a mutual authentication protocol that relies on independent generation and dynamic updates of encryption keys thereby removing the need for key exchange, which is based on the concept of gene mutation and transfer. We also present an enhanced version of this protocol, which improves the security offered by the first protocol. The novelty of the proposed protocols is in the independent generation, dynamic and continuous updates of encryption keys and the use of the concept of gene mutation / transfer to offer mutual authentication of the communicating entities. The proposed protocols are validated by simulation studies and security analysis

    RFID Mutual Authentication Protocols based on Gene Mutation and Transfer

    Get PDF
    Radio Frequency Identification (RFID) is a technology that is very popular due to the simplicity in its technology and high adaptability in a variety of areas. The simplicity in the technology, however, comes with a caveat – RFID tags have severe resource restrictions, which make them vulnerable to a range of security attacks. Such vulnerability often results in the loss of privacy of the tag owner and other attacks on tags. Previous research in RFID security has mainly focused on authenticating entities such as readers / servers, which communicate with the tag. Any security mechanism is only as strong as the encryption keys used. Since RFID communication is wireless, critical messages such as key exchange messages are vulnerable to attacks. Therefore, we present a mutual authentication protocol that relies on independent generation and dynamic updates of encryption keys thereby removing the need for key exchange, which is based on the concept of gene mutation and transfer. We also present an enhanced version of this protocol, which improves the security offered by the first protocol. The novelty of the proposed protocols is in the independent generation, dynamic and continuous updates of encryption keys and the use of the concept of gene mutation / transfer to offer mutual authentication of the communicating entities. The proposed protocols are validated by simulation studies and security analysis
    corecore