23,418 research outputs found

    Report on the XBase Project

    Get PDF
    This project addressed the conceptual fundamentals of data storage, investigating techniques for provision of highly generic storage facilities that can be tailored to produce various individually customised storage infrastructures, compliant to the needs of particular applications. This requires the separation of mechanism and policy wherever possible. Aspirations include: actors, whether users or individual processes, should be able to bind to, update and manipulate data and programs transparently with respect to their respective locations; programs should be expressed independently of the storage and network technology involved in their execution; storage facilities should be structure-neutral so that actors can impose multiple interpretations over information, simultaneously and safely; information should not be discarded so that arbitrary historical views are supported; raw stored information should be open to all; where security restrictions on its use are required this should be achieved using cryptographic techniques. The key advances of the research were: 1) the identification of a candidate set of minimal storage system building blocks, which are sufficiently simple to avoid encapsulating policy where it cannot be customised by applications, and composable to build highly flexible storage architectures 2) insight into the nature of append-only storage components, and the issues arising from their application to common storage use-cases

    Home-grown CASE tools with XML and XSLT

    Get PDF
    This paper demonstrates an approach to software generation where xml representations of models are transformed to implementations by XSLT style sheets. Although XSLT was not primarily intended for this use, it serves quite well. There are only few problems in this approach, and we identify these based on our examples

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Multiple hierarchies : new aspects of an old solution

    Get PDF
    In this paper, we present the Multiple Annotation approach, which solves two problems: the problem of annotating overlapping structures, and the problem that occurs when documents should be annotated according to different, possibly heterogeneous tag sets. This approach has many advantages: it is based on XML, the modeling of alternative annotations is possible, each level can be viewed separately, and new levels can be added at any time. The files can be regarded as an interrelated unit, with the text serving as the implicit link. Two representations of the information contained in the multiple files (one in Prolog and one in XML) are described. These representations serve as a base for several applications

    Experience in using a typed functional language for the development of a security application

    Full text link
    In this paper we present our experience in developing a security application using a typed functional language. We describe how the formal grounding of its semantic and compiler have allowed for a trustworthy development and have facilitated the fulfillment of the security specification.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    A standard format and a graphical user interface for spin system specification

    Get PDF
    We introduce a simple and general XML format for spin system description that is the result of extensive consultations within Magnetic Resonance community and unifies under one roof all major existing spin interaction specification conventions. The format is human-readable, easy to edit and easy to parse using standard XML libraries. We also describe a graphical user interface that was designed to facilitate construction and visualization of complicated spin systems. The interface is capable of generating input files for several popular spin dynamics simulation packages.Comment: Submitted for publicatio
    corecore