
Interdisciplinary Studies on Information Structure 02 (2005): 55–85
Dipper, S., M. Götze and M. Stede (eds.):

Heterogeneity in Focus: Creating and Using Linguistic Databases
©2005 Andreas Witt

Multiple Hierarchies: New Aspects of an Old Solution1*

Andreas Witt
Universität Bielefeld

In this paper, we present the Multiple Annotation approach, which
solves two problems: the problem of annotating overlapping
structures, and the problem that occurs when documents should be
annotated according to different, possibly heterogeneous tag sets. This
approach has many advantages: it is based on XML, the modeling of
alternative annotations is possible, each level can be viewed
separately, and new levels can be added at any time. The files can be
regarded as an interrelated unit, with the text serving as the implicit
link. Two representations of the information contained in the multiple
files (one in Prolog and one in XML) are described. These
representations serve as a base for several applications.

1 Introduction

Markup expresses characteristics or interpretation of text. It is obvious that there

is, at least potentially, more than one view for a given text. Often it is necessary

to express these different or alternative views of text explicitly, i.e. by markup.

At the moment, it seems to be a tendency to annotate more and more

information. This development definitely takes place in the field of linguistics,

where language data is associated with information from several linguistic levels

of description, e.g. semantics, syntax, morphology, phonology levels which

1 This paper is a slightly modified reprint. (Originally published in the Online-Proceedings
of the Extreme Markup Languages 2004, see http://www.extrememarkup.com).

* The different aspects of this approach are used within several projects of ‘Research Group:
Text-technological Modeling of Information’ which is funded by the German Research
Foundation (DFG). I would like to thank Harald Lüngen and Neill Kipp for their help and
all the reviewers of this paper for their helpful comments.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14509995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Andreas Witt56

are (relatively) independent of each other. But also text simply published on the

web is combined with more and more meta-information. Since markup

expresses meta-information about text, the amount of markup will increase,

especially if the semantic web will emerge. And, of course, more markup

implies that it becomes more likely to encounter multiple hierarchies.

This paper deals with two different problems:

1. the problem of annotating overlapping structures, and

2. the problem that occurs when documents should be annotated according

to different, possibly heterogeneous tag sets.

As a solution of both problems the technique of annotating documents in

multiple forms is proposed and described in detail. The paper also discusses the

disadvantages of the approach, disadvantages that are definitely the reason why

a lot of projects reject this solution: “An obvious and also simple solution would

be to make a separate file for each transcription. However, this makes

comparison between levels unnecessarily cumbersome, and it is notoriously

difficult to keep track of revisions in parallel files.” (Haugen, 2004)

This paper shows how it is possible and what is needed to overcome these

problems.

2 Multi-hierarchically Structured Text

Publishing, especially print publishing, was the driving force behind the

development of markup languages. Text was viewed as an ordered hierarchy of

content objects (OHCO). Consequently most markup languages are based on the

OHCO assumption. The term and the acronym were introduced by DeRose et al.

(1990) and were further discussed by Renear et al. (1996).

Multiple Hierarchies 57

2.1 Problems of OHCO-based Markup-Languages and Possible Solutions

From a formal point of view, SGML-based markup systems allow for the

representation of exactly one hierarchy. Hence, in principle, only one structure

can be represented in one document. In practice, this restriction often does not

receive special attention as different structures often can be expressed within

one hierarchy. Thus, e.g., the logical structure of a text, i.e. the division into

captions, lists, sections etc., differs completely from the syntactic structure such

as the division of the text into sentences and phrases. Especially, none of the

elements belonging to the different tag sets overlap. Hence, it is possible to

project both structures into one hierarchy without problems. The disadvantage

is, however, that this necessarily results in a mixture of these structures, in the

annotated text as well as in the corresponding document grammar.

The problem of multiple hierarchies is often discussed. The main reason

for this might be the view of document engineers, who are faced with the fact

that ranges of text marked up by SGML or XML elements must not overlap.

Single-hierarchically structured text is a consequence of this restriction. If

overlapping does not occur, the problem of combining heterogeneous tag sets is

often ignored. Hence, a mixture of structures can be found quite often in text

represented in one syntactic hierarchy. One example was already given, another

example is HTML. Even in its ‘strict’ version, different structures can be mixed,

at least through the often promoted use of the elements span and div

combined with an assignment of a class information.

To avoid confusion when talking about multiply structured text and text

ideally organized by multiple hierarchies, the terms ‘level’ or ‘level of

description’ are used when referring to a logical unit, e.g. visual document

structure or logical text structure. When referring to a structure organizing the

text technically in a hierarchically ordered way, the terms ‘layer’ or ‘tier’ are

Andreas Witt58

used. A level can be expressed by means of one or more layers and a layer

may/can include markup information on one or more levels (cf. Bayerl et al.,

1999).

2.1.1 SGML/XML Approaches

The problem of representing multiple hierarchies has often been addressed and

several solutions have been proposed, especially in the field of humanities

computing, which is by nature concerned with text and its interpretation or its

description. Consequently, the best collection of techniques is presented by the

Text Encoding Initiative (TEI, see ACH/ACL/ALLC (1994) and Barnard et al.

(1995)). The TEI describes the techniques for using SGML for annotating

multiple hierarchies. (1) CONCUR: an optional feature of SGML (not available in

XML) which allows multiple hierarchies to be marked up concurrently in the

same document, (2) milestone elements: empty elements which mark the

boundaries between elements, in a non-nesting structure, (3) fragmentation of an

item: the division of what logically is a single element into two or more parts,

each of which nests properly within its context, (4) virtual joins: the recreation

of a virtual element from fragments of text, (5) redundant encoding of

information in multiple forms.

With the exception of the extremely rarely implemented option CONCUR, in

effect, all of these techniques are workarounds:

- Milestones do not allow for making use of a key concept of XML, namely

elements containing a range of text. This leads to several consequences:

o No content model restriction can be stated by a document grammar

for the range of text between the milestones marking the begin and

the end of the region. This results in not being able to use an XML

editor for annotating these regions.

Multiple Hierarchies 59

o Standard SGML parsers cannot check whether milestone elements

marking the begin and the end of a region match.

o It is more difficult or impossible to process these regions by means

of a style sheet, e.g. by XSLT or, respectively, by CSS.

- The technique of fragmentation results in ‘containers’ containing only a

part of the text. So for instance, an element sentence or para that is

fragmented simply does not contain a sentence or a paragraph.

- The technique of virtual joins requires a separate interpretation of the

SGML document.

- Redundant encoding in multiple forms results in multiple files which are

not integrated in a larger unit containing all the information of the

different layers.

Another technique not mentioned directly by the TEI guidelines is stand-off

annotation, i.e. (new) layers of annotation are added by building a new tree

whose nodes are SGML elements which do not contain textual content

(#PCDATA in terms of the DTD syntax), but links to another layer.

In some respects stand-off annotation is a generalization of virtual joins,

because not only contents of elements are joined, but also ranges between points

within the document. Sometimes these ranges make use of markup already

contained in a layer, sometimes special pointers are used to refer to the specific

text elements which are the object of the annotation (Pianta and Bentivogli,

2004). With the first introduction of this concept (Thompson and McKelvie,

1997) this second approach was described.

In practice, however, most often an already-annotated layer is taken as the

primary annotation tier, to which the stand-off annotation is linked. In the case

of linguistic annotation often the annotation level ‘word’ is used as the primary

annotation layer. In most of its applications, stand-off annotation makes use of

Andreas Witt60

one layer as the link target of the new tier, but it is also possible to link to

several already existing layers (see Carletta et al., 2003).

In any case, stand-off annotation results in new hierarchies established by

new annotation layers that are linked to already existing annotations. Sometimes

the new layer is included in the same document, sometimes the layers are

separated.

This approach has the advantage that it is based on SGML/XML and that

different levels of description are kept separate. However, this approach has

some drawbacks too:

- The new layers require a separate interpretation.

- The layers, although separate, depend on each other. They can only be

interpreted by reference to the layer(s) they point to.

- Although all information is included, the information is difficult to access

using generic methods. As a consequence, standard parsing or editing

software cannot be employed.

- Standard document grammars (e.g. the TEI Relax NG scheme, the

XHTML-DTD, or the W3C Schema for DocBook) can only be used for

levels containing both markup and textual data.

- Linking to a sub-element range, or to textual data not annotated at all is

difficult. The pointing mechanism defined by the TEI or by XPointer can

be used, but requires another special software solution.

- The primary layer should be a (primary) level. The choice of such a

primary level is not an easy task. Often its declaration is arbitrary and

artificial.

Despite these disadvantages the technique of stand-off annotation is used in a lot

of projects faced with the problem of multiple hierarchies, especially in the area

of annotating linguistic data.

Multiple Hierarchies 61

2.1.2 Namespaces

The Namespace standard provides a mechanism to specify where a specific

element has been defined (Bray et al. 1999). Connecting elements with their

defining document grammars is done by adding a prefix to the element or the

attribute names. The prefix points, at least conceptually, to a document

grammar, in which the element or the attribute is defined. Thus the logical

structure of a text can be marked up with e.g. XHTML elements for captions,

sections, lists etc. and its syntactic structure can be marked up by using an

adequate module of the DTD of the TEI. If a corresponding namespace has been

defined, a caption belonging to the logical structure of the text can be referenced

by html:h2 instead of only h2, whereas a word or a morph can be marked up

by tei:w or tei:m instead of w or m. This enrichment of the annotation

facilitates the recognition of the relation between the annotation and a specific

level (here text structure and morphology).

Unfortunately, some problems remain. Sometimes a document grammar

defines several different structures, possibly in a modular way. The document

grammars defined by the TEI-DTD are a good example of this. As an ad-hoc

solution, one could try to define different namespaces for the same document

grammar. A first prefix teins1 and a second prefix teins2 could be defined.

Because the prefixes have only the function of a place holder for the expanded

name spaces, it is necessary to declare several different ‘real’ namespaces for

one DTD. But this would definitely be against the intention of the standard.

Nonetheless namespaces are an important help when using markup that

belongs to different levels of description, since it provides a means to refer to an

element not only by its name or its generic identifier but additionally by its

defining document grammar.

Andreas Witt62

A minor problem of namespaces might occur when using schema

languages which allow for context-sensitive definitions of content models. With

this technique it is possible to define a different content model for regions

marked up with elements with the same element name. For example, Relax NG

and XML Schema allow for such definitions. The (slightly) different definitions

of an element para in sections and para in the context footnote, where

(embedded) footnotes should be prohibited, is an often used example of the use

of this option. But since the namespace points to the document grammar and not

to the element definition, context-sensitively defined elements cannot be

distinguished.

One problem has not been addressed by the namespace recommendation

at all: the problem of overlapping hierarchies.

2.1.3 Non SGML-based Markup languages

Some non-SGML-based markup languages have been proposed in the last few

years. An example of such a markup language is the Multi-Element Code

System (MECS, Sperberg-McQueen and Huitfeld 1999) or TexMECS (Huitfeldt

and Sperberg-McQueen, 2001). Its major extension with respect to SGML and

XML is that overlapping ranges are admitted within documents.

In 2002 another markup language was proposed, called Layered Markup

and Annotation Language (LMNL, Tennison and Piez (2002)). LMNL is a

markup language which not only allows for annotating overlapping elements but

also for connecting the element names to corresponding annotation levels. All

structures modeled by XML can also be modeled by LMNL.

2.1.4 Discussion

The problem of annotating multiple hierarchies can be divided into two different

and relatively independent problems: (1) SGML-based markup systems cannot

handle ‘overlapping hierarchies’ and (2) the tag sets used or needed for a certain

Multiple Hierarchies 63

annotation task are sometimes quite heterogeneous. The first problem is

addressed by the solutions proposed in the TEI guidelines, by stand-off

annotation, and by the TexMECS markup language, which does not conform to

SGML. The second problem is addressed by the namespace recommendation.

LMNL provides a solution for both problems: regions marked up by

different elements may overlap and its layered annotation approach is specially

designed for this task. But, since LMNL does not conform to SGML, not to

mention XML, it has not been applied up to now.2

Another possibility mentioned above is redundant encoding in multiple

forms. This approach is rarely used by the markup community. The reasons for

this seem to be clear: First, most people try to avoid redundancy. Second, and

more important, multiple encodings in different forms are independent of each

other, but people who deal with annotated text are only interested in an

integrated format.

On the other hand, it is also an advantage if one annotated document is not

related to another document, because then the document is an independent unit

of information. This leads to several more advantages.

- If a document is used for separate annotation levels, this results in each

level being able to be viewed separately and new levels to be added at any

time, without reference to and dependence on existing files.

- Standardized document grammars can be used for some annotation levels

and specialized document grammars can be defined in an intuitive way,

i.e. declaring that an element can contain text and not only attributes

whose values point to some other element in some other annotation layer.

2 One exception is described by Alexander Czmiel (2004). He implemented a subset of

LMNL in an XML-conformant way. Of course, some of the advantages of LMNL cannot
be achieved by such an XML-based representation.

Andreas Witt64

Moreover, the approach (as well as stand-off) has additional advantages over the

milestones and the fragmentation approach:

- The modeling of alternative annotations based on different theoretical

assumptions is possible (see Sasaki et al. (2003) for the usefulness of this

point in the field of linguistics).

- Each document instance uses its own DTD (or Schema), i.e. document

grammars are not mixed up.

We therefore conclude that this approach has a lot of advantages with respect to

the aspects of editing, maintenance, interchange, and reusability of XML-

annotated data. What remains to be solved is the main drawback of independent

annotations: How is it possible to connect these layers?

We also conclude that a special representation model for these data is

needed, because of the redundancy in the data. This representation format is

desired for storing and processing this information. From a theoretical point of

view, LMNL would be an ideal format. From a practical viewpoint a stand-off

annotation approach is most suited for these tasks and, in fact, is used most

frequently.

2.2 Multiple Annotations and their Representation

Beside the advantages of the annotation in multiple form, the main problem of

this approach has been addressed: the independence of the tiers. But

interrelations of annotation layers are of interest for many persons concerned

with structuring and modeling of information. In this section a method is

presented which complements the advantages of redundant encoding of

information in multiple forms with possibilities to link these multiple forms and

represent them uniformly. Furthermore, conversion tools for the annotation

format and possible representation formats are described.

Multiple Hierarchies 65

Fig. 1: Screenshot of the rendering of the HTML-version of the example-text

2.2.1 XML-based Multi-layer Annotation

One obvious way to interrelate different annotations of same textual data exists.

The different annotations could be regarded as transformations of each other.

Hence, the relations between the XML documents can be declared in an XSLT-

program or an XSLT-stylesheet. This stylesheet can be viewed as a description

of relations between two XML vocabularies. But for composing such a

stylesheet it is necessary to have information on the relation of the elements

defined in the different vocabularies. Moreover, this approach could only be

successful, if the relations between the elements can be stated unambiguously.

Another way to link the different forms was proposed by Witt (2002). The

central idea of this approach is that the annotated text itself serves as the link.

This is achieved by annotating exactly the same text several times.

Andreas Witt66

This approach is described by means of a simple example. Below the

XHTML-source of a user’s manual is given (see also Fig. 1)

<xhtml><h1>TROUBLESHOOTING</h1>
...
<table border="1">
 <tr>
 <td align="center">Problem</td>
 <td align="center">Cause</td>
 <td align="center">Remedy</td>
 </tr>
 <tr>
 <td valign="top">Tape does not run.</td>
 <td valign="top">
 Power cord is off.
 Tape is completely wound up.
 Tape is loose.
 Cassette is not loaded properly.
 Defective cassette.
 </td>
 <td valign="top">
 Check power cord.
 Rewind tape.
 Tighten tape with a pencil, etc.
 Load cassette properly.
 Replace cassette.</td>
</tr>
<tr>
 <td valign="top">Tape is not recorded when recording button
is pressed.</td>
 <td valign="top">
 No cassette is loaded.
 Erase prevention tab is broken off.
 </td>
 <td valign="top">
 Load cassette.
 Cover hole with plastic tape.
 </td>
</tr>
</table></xhtml>

The same fragment of text can be annotated in a more content-oriented way or

semantically:

Multiple Hierarchies 67

<r><h1>TROUBLESHOOTING</h1>
...
<p-c-r>
 <description>
 <first>Problem</first>
 <second>Cause</second>
 <third>Remedy</third>
 </description>
 <case>
 <problem>Tape does not run.</problem>
 <potential_causes>
 <cause>Power cord is off.</cause>
 <cause>Tape is completely wound up.</cause>
 <cause>Tape is loose.</cause>
 <cause>Cassette is not loaded properly.</cause>
 <cause>Defective cassette.</cause>
 </potential_causes>
 <potential_remedies>
 <remedy>Check power cord.</remedy>
 <remedy>Rewind tape.</remedy>
 <remedy>Tighten tape with a pencil, etc.</remedy>
 <remedy>Load cassette properly.</remedy>
 <remedy>Replace cassette.</remedy></potential_remedies>
</case>
<case><problem>Tape is not recorded when recording button is
pressed.</problem>
 <potential_causes>
 <cause>No cassette is loaded.</cause>
 <cause>Erase prevention tab is broken off.</cause>
 </potential_causes>
 <potential_remedies>
 <remedy>Load cassette.</remedy>
 <remedy>Cover hole with plastic tape.</remedy>
 </potential_remedies>
</case>
</p-c-r></r>

As can be seen, the text content of both versions is identical, but the markup is

different.

2.2.2 Representation

The multiply annotated XML documents are the basis of the representations. For

further processing of the text it is necessary to represent them uniformly. Two

alternative representations are described in the next subsections.

Andreas Witt68

PROLOG

Sperberg-McQueen et al. (2001) discuss the meaning and interpretation of

markup. For explaining their approach, annotated documents are represented in

the programming language Prolog. In their representation, every element,

attribute, and the content are saved as so-called Prolog facts. This approach has

been extended, so that multiple annotations as described in the previous section

can be represented. Through this all separate annotations can be associated in a

data basis, which then can be used e.g. for automatic detection of relations

between the annotation levels (see section 3.2).

In the simplest setting, for any element, attribute and text node of each

annotation level a Prolog fact is built which contains the following information:

1. a cross reference to the annotation level;
2. the absolute start position of the text passage which is marked up;
3. the end position of that text passage;
4. the position of the unit in the tree representation of the annotation level;
5. the element name or — if necessary — the attribute name, respectively

Some Prolog facts containing information from the two levels of the above

examples should serve as an illustration.

node('tape-xhtml.xml', 729, 786, [1,5,3,2], element('td')).
node('tape-xhtml.xml', 729, 786, [1,5,3,2,1], element('ul')).
node('tape-xhtml.xml', 729, 751, [1,5,3,2,…], element('li')).
node('tape-thema.xml', 729, 786, [1,5,3,2], element('pot…’)).
node('tape-thema.xml', 729, 751, [1,5,3,…], element('cause')).

The first argument contains the name of a layer, i.e. tape-xhtml.xml and

tape-thema.xml. The second element points to the beginning of a range

annotated with the respective element (the fifth argument). In the example, all

the ranges start at the same position. The end of each range is given as the third

Multiple Hierarchies 69

argument. The position in the tree (argument four3) is given as a list, pointing to

the nodes within the tree representation of the respective annotation layer.

Attributes are represented in a similar way, using the Prolog predicate

attr:
attr('tape-xhtml.xml', 729, 786, [1, 5, 3, 2],
 'valign', 'top').

The textual content is given by the predicate pcdata_node:
pcdata_node(729, 730, 'N').
pcdata_node(730, 731, 'o').
pcdata_node(731, 732, ' ').
pcdata_node(732, 733, 'c').
pcdata_node(733, 734, 'a').
pcdata_node(734, 735, 's').
pcdata_node(735, 736, 's').

Such a collection of Prolog facts contains all the information of the different

annotations and can serve as a data basis for further developments of Prolog

programs.

XML-BASED REPRESENTATION

Multiply annotated XML files can also be represented in an XML-based format.

Such a presentation could be achieved by transforming the Prolog facts into

XML elements, e.g. the predicate node with its five arguments could be

transformed to an empty XML element node with five attributes. However,

such a Prolog-in-XML representation would not make much sense.

A representation using the technique of virtual joins, or stand-off

annotation, is more interesting, because this technique is used to represent

multiple hierarchies. Moreover, most of the above mentioned disadvantages of

3 In first case this means: The element td is the second daughter of the third daughter of the

fifth daughter of the root element.

Andreas Witt70

this technique do not exist when this format is an add-on for the multiple

annotation of XML layers.

The European language technology project NITE developed a format for

representing heavily annotated data. This format is well suited for this task.

The NITE-format (Carletta et al., 2003) combines several files forming a

corpus. These files are interrelated with each other. One way to represent the

two annotation layers tape-xhtml.xml and tape-thema.xml is given in

the next examples. The NITE-corpus consists of four separate files, in the

examples these could be:

- tape.corpus.xml contains meta-information, e.g. names of the files

of the corpus, names of the defined elements and attributes etc.

- o1.stream.xml contains the textual data supplemented with reference

points for linking with the other layers

- o1.tape-xhtml.xml comprises the markup of tape-xhtml..xml

- o1.tape-thema.xml expresses the information provided by the

markup of the file tape-thema.xml

One possible representation of the textual stream would supply any character

with an ID:
<char nite:id="char_727">e</char>
<char nite:id="char_728">d</char>
<char nite:id="char_729">.</char>
<char nite:id="char_730">N</char>
<char nite:id="char_731">o</char>
<char nite:id="char_732"> </char>
<char nite:id="char_733">c</char>
<char nite:id="char_734">a</char>
<char nite:id="char_735">s</char>
<char nite:id="char_736">s</char>

Alternatively, in larger text single words could serve as the reference units.

The next example shows how the elements of the thematic annotation are

linked to the text.

Multiple Hierarchies 71

 <nite:child href="o1.stream.xml#id('char_727')" />
 <nite:child href="o1.stream.xml#id('char_728')" />
 <nite:child href="o1.stream.xml#id('char_729')" />
</problem>
<potential_causes nite:id="potential_causes_2" >
 <cause nite:id="cause_6" >
 <nite:child href="o1.stream.xml#id('char_730')" />
 <nite:child href="o1.stream.xml#id('char_731')" />
 <nite:child href="o1.stream.xml#id('char_732')" />
 <nite:child href="o1.stream.xml#id('char_733')" />

The elements potential_causes and cause begin at the character with

the reference char_730, i.e. the first character of the string ‘No cassette is

loaded’. The string itself is given by references to the characters in the file

o1.stream.xml.

2.2.3 Conversion

The conversion from XML to Prolog is implemented in Python. The program

xml2prolog.py receives as an input one or more XML documents and

outputs a collection of Prolog facts.4

The element <Root> is represented as the fact:

node(AnnotationLayer, 0, n, [1], element(Root)).

where n refers to the last character in the textual data. The XML attributes of

the root element att1 and att2 and their values val1 and val2 are

represented as two facts:

attr(AnnotationLayer, 0, n, [1], 'att1', 'val1').
attr(AnnotationLayer, 0, n, [1], 'att2', 'val2').

This representation contains some redundant information, because the pointers

to the character (0 and n) could be inferred automatically by means of the

4 This program is mainly written and maintained by Daniel Naber and Oliver Schonefeld. It

is available via the project Web pages (http://www.text-technology.de; ‘Projekt Sekimo’).

Andreas Witt72

information of the respective element, but the explicit indication of this

information can speed up processing.

Some options for the transformation process are:

compare: the primary data, i.e. the PCDATA content of the elements of the XML

files is compared; if the primary data is not identical, the first different character

is shown;

pcdata/pcdatanodes: character data is included;

aggressive: whitespace is added or removed anywhere in the document if

whitespace is the reason for differences of the primary data;

filter: some elements in some files should be filtered (including their textual

content), e.g. <script> within HTML-documents.

That way it is possible to convert any number of identical but differently

marked up texts into a collection of Prolog facts.

For the conversion of text which is annotated in multiple forms according

to the NITE-format, another program has been developed.5 This program is

called nexus.pl and is implemented in the Perl programming language. The

functionalities are similar to xml2prolog.py. The input is n annotations of

the same text. The program outputs a NITE-corpus that consists of the n+2 files

described above.

2.2.4 Discussion

It has been shown that the technique of annotating the same text in multiple

forms has many advantages and that its main drawback can be avoided.

However, exactly the same data has to be annotated several times. With this

prerequisite the multiply annotated files can be regarded as a unit which is

heavily interrelated, because the text serves as the implicit link.

5 This program has been developed by Jan Frederik Maas. Also this program is available via

the project Web pages.

Multiple Hierarchies 73

After that, two different formats have been described. One format is an

interrelated Prolog representation of the information contained in the multiple

files. The other format is based on XML and was developed for the processing

and the exchange of linguistic corpora annotated on several levels of description.

Furthermore, programs for the automatic transformation of multiply

annotated text to the integrated formats have been introduced.

3 Aspects of Processing Multiply Annotated Text

In this section, techniques and software implementations for editing, inferring

and unifying separately annotated texts are presented. Moreover, a technique of

unifying the multiple forms will be discussed.

3.1 Editing

The editing of copies of text, each annotated separately, definitely is not an easy

task. One way to do this is annotating each file with the help of a standard XML

editor. Since, at least in some scenarios, the text is given and need not be

changed, this approach offers at least two advantages: standard XML-editing

software is available and the automatic comparison of the textual content (e.g.

by the option ‘compare’ of the transformation program xml2prolog described

above) allows quality assurance, since it is highly unlikely that exactly the same

modification of the textual data occurred twice (or even more times) in different

files. Unfortunately, this has also several drawbacks. One of these is connected

with the comparison of whitespace. Since sometimes whitespace matters, it

makes no sense to collapse all whitespace. On the other hand, most often this

difference should be ignored. Therefore a special whitespace normalization

Andreas Witt74

program has been implemented.6 But if textual data must be changed, textual

content must be changed in different files. This task requires special editing

software.

Fig. 2: Editor mode for changing textual content

At the time of writing this paper two master’s thesis projects are concerned with

implementing special editing software for this task.

One editor is web-based (implemented in PHP) and allows for typing and

changing the textual content of multiply annotated files. The two screenshots

6 This program is written and maintained by Oliver Schonefeld. It is available via the project
Web pages (http://www.text-technology.de; ‘Projekt Sekimo’).

Multiple Hierarchies 75

give an impression of this program. Fig. 2 shows how text can be modified. As

can be seen, the markup cannot be changed in this mode.

Fig. 3 shows the non-XML-based markup employed internally by the

editor. This format can be used by experts to modify not only the textual content

but also the markup.

Fig. 3: Editor mode editing textual content and markup

The existence of such an editor is important for this approach. Otherwise, it is

very difficult to change multiply annotated text, because each modification of

the text must be done in each layer.

In a second master’s thesis an editor will be implemented in the Java

programming language, using the Eclipse platform. The aim of this master’s

Andreas Witt76

project is the implementation of an editor capable of associating several

document grammars with one text. The insertion of elements is a two step

process: first, the annotator refers to a document grammar the element belongs

to and, second, (s)he can choose an element out of a list of elements that are

allowed at this point according to the schema. When saving the document, for

each associated schema one file will be saved. The validation will take place for

each of these files.

3.1.1 Relations Between Annotations

The markup within a single document is hierarchically structured. The structure,

leaving aside cross-references, can be represented as a tree. Between the nodes

of the tree there exist certain relations, i.e. subordination, (direct) neighborhood,

etc. These relations can be used for queries for structural characteristics in one

layer. Such queries can be formulated in several ways, as e.g. with XSLT, in

query languages like XQuery or (when using the appropriate library) in Prolog

(see Sperberg-McQueen et al., 2002).

Fig. 4: Example annotation with two layers

When regarding more than one annotated layer more relations can be found. The

figure above depicts the two layers of the example annotation, the XHTML

Multiple Hierarchies 77

layer and the content-oriented annotation layer. This visualization shows some

of these relations.

An aligned representation of both layers shows that an identical range in

the primary data is marked up with different elements.
...<potential_causes><cause>No cassette is loaded.</cause>...
...<td valign="top">No cassette is loaded....

Durand (1999) and Durusau & O’Donnell (2002) assembled all the possible

relations between elements of different layers. The visualization is based on the

presentation of Durusau & O’Donnell (2002).
Start-tag identity
<a>..................................
............

Full inclusion
<a>..................................

Total identity
<a>..................................
..................................

End-point identity
 <a>......................
..................................

Ranges annotated by different elements overlap
<a>....................

The end-position of one element is shared by the start-tag of
another element
<a>.................

etc.

Andreas Witt78

Within our project, the Prolog fact base is used as a base for inferencing these

relations. For this task, special Prolog predicates have been implemented.7

Alternatively, the NITE XML search tools8 could be used for

representations conforming to the NITE representation.

3.2 Relations Between Annotation Layers

More general information on the relations between element classes, i.e. the set

of all instances of an element, is more interesting than a comparison of relations

between single element instances. To do this, a set of meta relations have been

defined. A meta relation holds under certain conditions.

The meta relation identity between the element classes a and b

holds, if for every occurrence of an element instance a the same range of text is

annotated by an element instance b and vice versa.

Meta-relation identity:
<a>....................
....................

The meta relation inclusion between the element classes a and b holds, if

for every occurrence of an element instance a the same range of text is

annotated by an element instance b, and if the meta-relation identity does

not hold, i.e. for all occurrences, one of the following configurations can be

found:
<a>..................
................................

 <a>....................
..

7 This program was mainly written by Daniela Goecke. It is available via the project Web

pages.
8 NXT Search is freely available (binaries, documentation, and source code) via

http://www.ims.uni-stuttgart.de/projekte/nite/download.shtml.

Multiple Hierarchies 79

 <a>....................
.......................................

<a>....................
....................

The meta-relation overlap between the element classes a and b holds, if for

every occurrence of an element instance a the range annotated by a overlaps

with the range annotated by an element instance b. For all occurrences of a, the

following configuration can be found:
<a>....................

The inferred meta-relations indicate whether theoretical constructs modeled by

(certain elements of) two document grammars are in some relation to each other.

So it might be investigated whether certain constructs used by different

linguistic theories (e.g. in traditional Japanese grammar and in ‘modern’ phrase

structure grammars) are alphabetical variants of each other. Moreover, with

these meta-relations, generalizations stated by researchers or inferred

automatically on a small empirical basis can be falsified.

Unfortunately, however, the research conducted by the projects of the

DFG research group mentioned above showed that these meta-relations do not

hold very often. The reason for this lies in the way they are defined: a meta

relation between two elements holds if certain conditions hold for all

occurrences of these elements. It would be interesting to explore whether certain

meta relations exist under certain conditions.

One possibility for a refinement of the meta relations is a description of

specific contexts where these relations do hold. Context specifications allow for

expressing such a condition.

A context specification could be expressed by a set of XPath expressions,

but XPath seems to be a language that is too powerful for context specifications.

Andreas Witt80

Therefore, an alternative format to express structural properties, called "Context

Specification Document" (CSD), has been developed (Sasaki and Pönninghaus,

2003).

3.3 Unification of Annotation Layers

Of course, sometimes an integrated XML representation is necessary. Therefore

a program for the unification of multiply annotated documents has been

developed.9 With this Prolog program two document layers can be merged. The

architecture of this program is visualized in the next figure.

Fig. 5: Unification of annotation layers

9 This program was mainly written by Daniela Goecke and is maintained by Harald Lüngen.
It is called semt.pl and it is also available via the project web pages. It is also described
by Witt et al. (2004).

Multiple Hierarchies 81

The Prolog predicate (semt) receives four arguments:

layer1 (to be unified)

layer2 (to be unified)

list of elements which should be deleted in the process of unification

The result of the merger (again a collection of Prolog facts) is written to a new

file specified in the fourth argument. The new database contains a copy of all

layers in the input database plus the result layer.

In case the unification results in a layer where the elements are not

properly nested, a second result layer (a difference list) is created. The resulting

database is re-converted to XML, again using a Python program.

If no difference list exists, the result of the merging of two layers can be

linearised as an XML document straightforwardly. In case the resulting fact base

contains a difference list, two different linearizations can be generated. The

default processing uses milestone elements to mark the borders of incompatible

elements. Alternatively, the technique of fragmentation of elements can be

invoked.

4 Conclusion

In this paper it was argued that the problem of representing and processing

multiply structured data should be subdivided into two separate problems. First,

it is necessary to declare and/or apply to this data elements and attributes

defined by different document grammars or belonging to different tag sets. It is

desirable to be able to distinguish these elements according to their origins.

Furthermore it can happen that the elements belonging to different tag sets mark

overlapping regions, which would result in structures that are difficult to handle

with SGML-based markup languages. Several proposed solutions for both

problems have been discussed. It was argued that the most simple solution, i.e.

Andreas Witt82

annotation of multiple structures or hierarchies in multiple files, can be a way to

overcome both problems and that this approach offers many benefits. However,

it is necessary to ensure that the multiple files can be represented as a single

unit. For doing this, some preconditions have to be accepted by the users of this

approach.

5 References

ACH/ACL/ALLC (1994). Guidelines for Electronic Text Encoding and

Interchange (TEI P3). C. M. Sperberg-McQueen and L. Burnard (eds.).

Chicago, Oxford: Text Encoding Initiative.

Barnard, David, Lou Burnard, Jean-Pierre Gaspart, Lynne A. Price, C. M.

Sperberg-McQueen, and Giovanni Battista Varile (1995). Hierarchical

Encoding of Text: Technical Problems and SGML Solutions. In: N. Ide

and J. Véronis (eds.). The Text Encoding Initiative: Background and

Context, Special Issue of Computers and the Humanities, 29(3), pp. 211-

231.

Bayerl, Petra Saskia, Harald Lüngen, Daniela Goecke, Andreas Witt, and

Daniel Naber (2003). Methods for the Semantic Analysis of Document

Markup. In: C. Roisin, E. Munson, and C. Vanoirbeek (eds.). Proceedings

of the ACM Symposium on Document Engineering (DocEng 2003), pp.

161-170.

Bray, Tim, Dave Hollander, and Andrew Layman (eds.) (1999). Namespaces in

XML. W3C Recommendation, World Wide Web Consortium.

Carletta, Jean, Jonathan Kilgour, Tim O’Donnell, Stefan Evert, and Holger

Voormann (2003). The NITE Object Model Library for Handling

Structured Linguistic Annotation on Multimodal Data Sets. In:

Multiple Hierarchies 83

Proceedings of the EACL Workshop on Language Technology and the

Semantic Web (3rd Workshop on NLP and XML, NLPXML-2003).

Czmiel, Alexander (2004). XML for Overlapping Structures (XfOS) using a non

XML Data Model. ALLC/ACH 2004, Joint Conference of the ALLC and

ACH, Göteborg.

DeRose, Steve, David Durand, Elli Mylonas, and Allen Renear (1990). What is

Text, Really? Journal of Computing in Higher Education, 1(2), pp. 3-26.

Durand, David G. (1999). Palimpest: Change-Oriented Concurrency Control

for the Support of Collaborative Applications. PhD Thesis, Boston

University.

Durusau, Patrick and Matthew Brook O’Donnell (2002). Concurrent Markup

for XML Documents. XML Europe 2002.

Haugen, Odd Einar (2004). Parallel Views: Multi-level Encoding of Medieval

Nordic Primary Sources. Literary and Linguistic Computing, 19(1), pp.

73-91.

Huitfeldt, Claus and C. M. Sperberg-McQueen (2001). TexMECS: An

Experimental Markup Meta-Language for Complex Documents.

http://www.hit.uib.no/claus/mlcd/papers/texmecs.html.

Pianta, Emanuele and Luisa Bentivogli (2004). Annotating Discontinuous

Structures in XML: the Multiword Case. In: A. Witt, U. Heid, H. S.

Thompson, J. Carletta, and P. Wittenburg (eds.). Proceedings of the

LREC-Satellite-Workshop on XML-based Richly Annotated Corpora,

Lisbon, pp. 30-37.

Renear, Allen, Elli Mylonas, and David Durand (1996). Refining Our Notion of

What Text Really Is: The Problem of Overlapping Hierarchies. In:

International Association for Literary and Linguistic Computing: Selected

papers from the ALLC/ACH Conference: Christ Church, Oxford, April

1992. Oxford: Clarendon Press.

Andreas Witt84

Sasaki, Felix and Jens Pönninghaus (2003). Testing Structural Properties in

Textual Data: Beyond Document Grammars. Literary and Linguistic

Computing, 18(1), pp. 89-100.

Sasaki, Felix, Andreas Witt, and Dieter Metzing (2003). Declarations of

Relations, Differences and Transformations between Theory-specific

Treebanks: A New Methodology. In: J. Nivre (ed.). Proceedings of the

Second Workshop on Treebanks and Linguistic Theories, Växjö, pp. 141-

152.

SGML ISO 8879:1986. Information processing – Text and office systems –

Standard Generalized Markup Language (SGML).

Sperberg-McQueen, C. M. and Claus Huitfeldt (1999). Concurrent Document

Hierarchies in MECS and SGML. Literary and Linguistic Computing,

14(1), pp. 29-42.

Sperberg-McQueen, C. M., Claus Huitfeldt, and Allen Renear (2001).

Meaning and Interpretation of Markup. Markup Languages: Theory &

Practice 2(3), pp. 215-234.

Sperberg-McQueen, C. M., David Dubin, Claus Huitfeldt, and Allan Renear

(2002). Drawing Inferences on the Basis of Markup. In: Proceedings of

Extreme Markup Languages 2002.

Tennison, Jeni and Wendell Piez (2002). The Layered Markup and Annotation

Language. In: Proceedings of Extreme Markup Languages 2002.

Thompson, Henry S. and David McKelvie. Hyperlink Semantics for Standoff

Markup of Read-Only Documents. In: Proceedings of SGML Europe ’97.

Witt, Andreas, Meaning and Interpretation of Concurrent Markup. In:

ALLC/ACH 2002, Joint Conference of the ALLC and ACH, Tübingen.

Witt, Andreas, Harald Lüngen, Felix Sasaki, and Daniela Goecke (2004).

Unification of XML Documents with Concurrent Markup. In: ALLC/ACH

2004, Joint Conference of the ALLC and ACH. Göteborg.

Multiple Hierarchies 85

XQuery (2004) XQuery 1.0: An XML Query Language. S. Boag, D.

Chamberlin, M. F. Fernàndez, D. Florescu, J. Robie, and J. Siméon (eds.).

W3C Working Draft, 23 July 2004.

XSL Transformations (1999). XSL Transformations (XSLT) Version 1.0. J.

Clark (ed.). W3C Recommendation, 16 November 1999.

Andreas Witt
Universität Bielefeld
Fakultät für Linguistik und Literaturwissenschaft
Arbeitsbereich Computerlinguistik und Texttechnologie
Postfach 10 01 31
33501 Bielefeld
Germany
andreas.witt@uni-bielefeld.de
http://coli.lili.uni-bielefeld.de/~andreas/

