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Abstract 
This project addressed the conceptual fundamentals of data storage, investigating 

techniques for provision of highly generic storage facilities that can be tailored to 

produce various individually customised storage infrastructures, compliant to the 

needs of particular applications. This requires the separation of mechanism and policy 

wherever possible. Aspirations include: actors, whether users or individual processes, 

should be able to bind to, update and manipulate data and programs transparently with 

respect to their respective locations; programs should be expressed independently of 

the storage and network technology involved in their execution; storage facilities 

should be structure-neutral so that actors can impose multiple interpretations over 

information, simultaneously and safely; information should not be discarded so that 

arbitrary historical views are supported; raw stored information should be open to all; 

where security restrictions on its use are required this should be achieved using 

cryptographic techniques. The key advances of the research were: 

 

1) the identification of a candidate set of minimal storage system building blocks, 

which are sufficiently simple to avoid encapsulating policy where it cannot be 

customised by applications, and composable to build highly flexible storage 

architectures 

 

2) insight into the nature of append-only storage components, and the issues 

arising from their application to common storage use-cases 

1 Introduction 

The XBase project aims to provide actors (processes, users) general storage facilities 

which will be compliant to the needs of particular applications. The main goal is to 

provide a lightweight and flexible system through which users will be able to 

customise their own storage infrastructure. 

The system consists of a minimal, simple set of fully customisable components, 

orthogonal in one another. In particular such a system aims to be flexible and portable 

in the sense that users will be able to bind to, update and manipulate data and 

programs without regard to: 

 the location of the actors, the data or the programs. This means that a given 

program will work anywhere (with the appropriate infrastructure installed), 

regardless of its physical location or that of the data accessed. 

 the storage technology employed. 

 the network technology employed. 

In such a system stores should not impose their own structure on the information 

stored (structure neutrality). This means that the same store may be used for 

information of various structures. In addition, the data stored and/or extracted from a 

store should be able to be interpreted in different ways. 
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Another requirement for XBase is that it should be able to treat different components 

of the system as data. As an example, it should be able for a store to be stored in 

another store. These components should be defined in a general way (interfaces) in 

order to allow programs to operate over different styles of stores in a uniform way. 

This means that programs should be able to access other programs and data in the 

same way no matter what style of store it is used – instantiate interfaces to abstract 

over concrete syntax of store. 

Finally, data and programs should be stored in such a way that will allow historical 

views of data and programs. 

 

2 The Rest of the World 

 

Most of the existing systems provide a “heavyweight”, complex approach in storing 

and retrieving data and programs. Each of the systems mentioned below provide a 

separate mechanism for storing data. 

In addition, in order for these systems to become flexible and efficient, they provide 

more than it is needed and in most of the cases they are not optimised for particular 

applications. 

Current paradigms for binding to data in programming languages are: file systems, 

programming languages, various storage systems, WWW, various internet 

applications. 

 

2.1 File Systems 

Various programming language/file system bindings, using appropriate sets of system 

calls: 

 

 C - Unix style 

 C - Windows style 

 Java - Unix/Windows 

 

File system implementation: 

 

 inodes 

 FAT etc 

2.2 Storage 

 relational database 

 persistent store – binding to data; nature of stores/pointers themselves 

 transactional store of various types 

 XML document repository 

 private data in public place e.g. on web page 

 “objects” with shared state c.f. weather map example 

2.3 Web 

Conventional web servers and browsers. 

 

Process involved when a hyper-link is clicked on: 
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html → key extracting interpreter → string → caster[key] → key → store → string → 

caster[html] → html 

2.4 Other Internet 

Various internet applications: 

 

 CDDB 

 napster 

 gnutella 

 freenet 

 google 

2.5 Data with Multiple Interpretations 

 XML and programming language objects / historical views / bitmaps 

 

3 Main Aspects of the XBase System (Meeting the Requirements) 

The XBase system uses various features of the system/architectures described in 

section 2. There are two types of bindings: keys to data and names to keys. A possible 

general flow of information when saving data in a store is: data => key =>name. A 

possible general flow of information when retrieving data from a store is: 

name=>key=>data. Data can be retrieved by providing either a name or a key. 

The main philosophy of the system is that data is stored in a uniform way without 

regard to the particular format (in some cases type). This means for example that an 

XML document can be stored in the same repository as a word document. However, 

the data retrieved from a store have to be interpreted before any further usage. More 

than one interpretation may be imposed over data. These interpretations are specified 

by an actor and may exist concurrently. The system is flexible enough to allow any 

user to create its own interpretation. 

Another aspect of the system is related to protection. Actors may not be involved in 

the process of protecting data directly. This means that there is neither Unix style (e.g. 

<user>+go) nor type system protection. Instead data is protected by possibly requiring 

an actor to name the data or to interpret it (by using encryption/decryption algorithms) 

or by both. 

Data can only be appended in a store, which means that there is no notion of erase. 

This implies that various versions of the same piece of data may exist in a store. An 

external mechanism may be built on top of that facility in order to allow the support 

of historical views. 

All the aspects of the system described above are expressed in terms of component 

definitions. A particular set of interfaces is provided, each of which abstracts over a 

concrete definition of the corresponding component. These components are described 

in the next section. 
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4 Design  

4.1 Components and Supported Interfaces 

There are four main concepts defined in the XBase system. These are: Store, Namer, 

Caster, Interpreter. Other sub-components used by the system are Name, Key, 

Bitstring each of which represents a name, a key and data respectively. 

The Store provides a one-one mapping between Keys and Bitstrings. This mapping, 

which is under the control of the store, may fail if store fails, or if an invalid key is 

presented. The interface to a Store consists of three procedures, which are: 

 

put: BitString -> Key 

get: Key -> BitString or error 

getStoreID: -> BitString 

 

The Caster translates between entities and representations (BitStrings) stored in a 

Store. It involves coercion and sometimes various computations and validity 

checking. The interface to a Caster consists of two procedures, which are (assuming 

that the entity’s type is t): 

reflect: BitString -> t or error 

reify: t -> BitString or error 

 

The Interpreter translates between BitStrings. It involves arbitrary computation such 

as encryption. The interface to an Interpreter consists of two procedures, which are: 

 

interpret: BitString -> BitString 

 

The Namer provides a many-many mapping between Names and Keys. A Name may 

be bound to multiple Keys (set retrieval). A Key may be bound to multiple Names 

(aliasing). The mapping, which is under the control of caller, may be updated so given 

Name may refer to various Keys over time. The interface to a Namer consists of three 

procedures, which are: 

 

lookup: Name -> set[Key] 

bind: Name,Key 

unbind: Name,Key 

4.2 Using and Composing the XBase Components 

 

The components defined in section 4.1 can be composed in various ways depending 

on the use case. An example use case of retrieving and putting from/in a store of an 

exam paper document is shown in Figure 1.  
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Figure 1: An example use case 

In the case of reading a document, a personal store (PS) is retrieved from a root store 

(RS). The resulting representation of PS is decrypted (using a decrypting interpreter) 

and reflected (using a store caster). The resulting store entity is presented with the 

document’s key, producing its representation. This representation is decrypted (using 

a document’s interpreter) and reflected (using a document’s caster) in order to 

produce the desired entity. A Namer could be used in order to resolve the document’s 

key by presenting a requiring a name rather than a key. 

In order to write a document the reverse process is performed as shown at the bottom 

of Figure 1. 

The particular use case assumes that the components already exist before 

composition. However, since these components are data themselves, they can be 

retrieved from any other store in the same way as data. For example, a representation 

of a caster can be retrieved from a store, which is then possibly interpreted (using a 

decrypting algorithm) and reflected to a caster entity (using a caster for that particular 

caster.  

 

4.3 Styles and Dimensions 

 

XBase provides the model upon which a user can build a particular implementation of 

any component. Different use cases require different styles of Stores, Casters, 

Interpreters and Namers been generated. The only requirement for writing a 

component is that it has to conform to the corresponding interface. In this document 

we provide some example implementations of various components. The dimensions 

for each of the component are described in the following sub-sections. 

 

4.3.1 Stores 

Different styles of Stores are categorised according to the following dimensions: 
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 Locality: that is where the information is stored. Example stores are: 

o a local store: that is an instantiation of a store which exists in the same 

place with the program that manipulates it (at the implementation level 

there may be variations such as): 

 using a single file for backing storage of the bindings, 

 using multiple files for backing storage of the bindings 

 use no backing storage for the bindings at all but keep them 

transient. 

o a proxy store: that is a store that knows about other stores (this may be 

recursive, i.e. that store knows about another store that knows about 

other stores …), 

 Shareability: that is whether a store can be “exported” to the rest of the world. 

An example is a shareable store, which can be either a local or a proxy store 

and access is allowed by any other store. A store been non-shareable means 

that access is granted only to the owner, 

 Persistence: an example is a root store which is probably the only fixed 

component in the system. It can be either a local store or a proxy store and it is 

the analogous to the root of persistence in persistent systems, 

 

4.3.2 Casters 

Different styles of Casters are categorised according to the following dimensions: 

 Generality: that is how general is the type of the entity about to be flattened 

(e.g. a single type, a more complex type). 

 Flattening Strategy: that is what is the particular decision made for flattening 

the entity (e.g. should the representation be self-contained or not). 

Example casters are: 

 XBase component casters: that is casters that produce or flatten XBase 

components. An example of such a caster is a store caster. 

 Intermediate form casters: that is casters which can be applied on a group of 

application specific casters. An example of such a caster is a Java serialisation 

caster. 

 Application specific casters: that is casters which comply with particular 

format of entities/representations. An example of such a caster is an XML 

document caster. 

 

4.3.3 Interpreters 

Different styles of Interpreters are categorised according to the following dimensions: 

 Transformation policy: that is what do we want to achieve with the 

transformation (e.g. encryption, compression). 

 

4.3.4 Namers 

Different styles of Namers are categorised according to the following dimensions: 

 Locality: that is how and where do we save the bindings. Examples of such 

Namers are: 

o A Namer with backing storage: it saves the name, key bindings in a file 

in a local host. 

o A Namer with no backing storage: it uses no backing storage at all. 

Name, key binding are transient, and the only way to make that namer 

persistent is to reify it, using the appropriate caster, and put it in a store 
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as data. Retrieval of the namer involves reflecting the previously stored 

representation. 

 Persistence: that is whether we want to make the bindings persistent or not. 

 

A concrete implementation of all the ideas mentioned above has already been 

implemented and is described in the next section. 

 

5 Implementation 

 

This section describes a set of Java interfaces which implement the basic ideas of the 

XBase model as well as various Java classes that implement those interfaces. The 

current implementation has been structured into two Java packages containing the 

classes shown in fig 2. 

Package xbase.model contains interfaces and some concrete implementations of 

XBase components. Package xbase.exceptions contains exceptions that are thrown 

when a failure occurs. This exception is caught either by the system or is required to 

be caught by the user.  

 

 

Figure 2: Packages in the current implementation 

In the sections that follow, the interfaces are coloured in dark blue background and 

their concrete implementations as well as other classes in cyan. Note that the blue 

lines denote associations and the green dashed lines denote inheritance. 
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5.1 The Store 

 

As mentioned earlier different styles of stores are defined in the XBase system. These 

are shown in Figure 3. All types of Stores inherit for interface IStore, which means 

that implementation of put, get and getStoreID operations should be provided. In the 

figure, two classes inherit directly from that interface (LocalNotShareableStore and 

LocalStore). Although both are styles of a local store what makes them different is the 

particular implementation of the backing storage. The former uses a single file to store 

data. However, the latter uses a file per data unit, that is a file per BitString, and 

supports multiple backing storage locations details of which are specified by instances 

of class BackingStorageDetails. 

A special style of an IStore is defined by interface IProxyStore, all implementations of 

which must specify operations addTarget, removeTarget and lookupTarget as well as 

the operations inherited from IStore interface (such an implementation is provided 

through class ProxyStore). IProxyStore defines a store that knows about other stores. 

A target can be either another store (instantiation of the IStore interface) or a URL 

specifying the location of another store. 

 

Figure 3: Different styles of Stores defined in the XBase system. 

Any style of store may be accessible by other stores only if it is shareable. 

Shareability is defined by having a store inherit from interface IShareable. An actor 

may switch shareability on/off. If shareability is off this means that store is private 

and cannot be accessible by any other store. Shareability of a store may even be 

changed remotely through an IProxyStore as well as locally through a program. In 

order to achieve the former, a unique id is used. 

Switching the shareability of a store to on means that the particular store is accessible 

by any other store. Behind the scenes the store registers itself as shareable in a 

daemon that starts automatically either at system start-up or when switching the 

shareability of the store. The daemon accepts various requests from other stores. 

Creating new instances of a store from within a program can only be achieved through 

a store factory. As shown in Figure 3, all the styles of stores mentioned above may be 

created by invoking the appropriate static method of class StoreFactory. 
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A Root Store may be retrieved through the static method XBase.getRootStore in a 

way that is hidden from an actor. However, it is not a special type of store, since it 

implements the IStore interface. It can also implement the IProxyStore interface in 

which case the way other stores or data are retrieved is done differently from having a 

local store as root. 

Root stores can be stabilised by invoking method XBase.stabiliseRoot (see later 

section). Stabilisation means that a store is reified in order to produce a representation 

which is saved in a particular place in the local node. In order to create the Root Store 

on system restart, that representation is retrieved and reflected to an instantiation of 

IStore. 

 

5.2 The Caster 

 

Each XBase entity (including components in the model) requires its corresponding 

Caster in order to provide the facility to flatten the entity into a general enough 

representation and recreate the entity from that representation. All the casters inherit 

from interface ICaster, which means that they must implement methods reflect and 

reify. 

Fig 4 shows various casters defined as part of the XBase model. Class BytesCaster is 

an example of an Intermediate Form Caster introduced earlier. Classes 

NameCaster, KeyCaster, StoreCaster, NamerCaster, InterpreterCaster are examples 

of XBase Component Casters. Classes WordDocumentCaster, 

AudioDocumentCaster, XMLCaster, shown in Figure 17, are examples of 

Application Specific Casters. 

 

Figure 4: Different styles of Casters as part of the XBase model 

An interesting case of a caster is the StoreCaster, which provides the procedural 

interface to flatten a store as well as create a store from a representation. The 

particular caster uses DOM to flatten a store into an XML representation and create a 

store from an XML document. An example of such a representation is shown in 
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Figure 5. The XML document represents an IProxyStore that knows about a local 

store, another IProxyStore and other IProxyStore on different nodes. The local store 

has two backing storage locations. Each backing storage location consists of a url and 

a list of those files that contained in the url at the time of reification. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<network ID="2" SHAREABLE="true"> 

    <localStores> 

        <local ID="1" SHAREABLE="true"> 

            <backingStorage ID="1"> 

                <url>file:///Z:/Projects/XBase/prototype/DefaultStore0</url> 

                <files> 

                    <file ID="1">7da32c717e8b34e9126489e221ccf194</file> 

                    <file ID="2">24679927be100dc8d6df280d88f20d77</file> 

                </files> 

            </backingStorage> 

            <backingStorage ID="2"> 

                <url>file:///Z:/Projects/XBase/prototype/DefaultStore1</url> 

                <files> 

                    <file ID="1">7da32c717e8b34e9126489e221ccf194</file> 

                </files> 

            </backingStorage> 

        </local> 

        <network ID="3" SHAREABLE="true"> 

            <localStores/> 

            <remoteNodes> 

                <url>http://tsipouro.dcs.st-and.ac.uk:17000</url> 

            </remoteNodes> 

        </network> 

    </localStores> 

    <remoteNodes> 

        <url>http://ouzo.dcs.st-and.ac.uk:17000</url> 

        <url>http://burgie.dcs.st-and.ac.uk:17000</url> 

        <url>http://panda.dcs.st-and.ac.uk:17000</url> 

    </remoteNodes> 

</network> 

Figure 5: An example XML representation of a store 

 

5.3 Other Components 

 

Other components that are part of the XBase model are defined by the interfaces and 

classes shown in fig 6. Concrete implementations of Interpreters and Namers are 

provided by instantiating the IInterpreter and the INamer interface respectively. The 

former requires implementation of operation interpret, which translates between 

representations. The latter requires the implementation of operations lookup, bind and 

unbind, which manipulate name, key bindings. An example Namer is class Namer, 

which stores the bindings in a Java Hashtable. Example interpreters are provided 
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through classes InvertionEncryptor and InvertionDecryptor, which reverse the order 

of bytes in the given representation. 

Names, keys and representations are defined in the model through interfaces IName, 

IKey and IBitString respectively. Concrete implementations of those interfaces are 

classes Name, Key and BitString, which effectively wrap and manipulate a string, a 

string and an array of bytes respectively. 

 

Figure 6: Various XBase components used in the model 

 

6 Various Use Cases 

 

In this section we provide particular examples of composing the XBase components 

described above. The use cases presented here demonstrate: 

 root store usage (Use Case 1), 

 root store usage with other XBase components (Use Case 2), 

 store operations over different types of entities (Use Case 3), 

 local store usage (Use Case 4), 

 proxy store as a root store (Use Case 5), 

 store operations over a remote node (Use Case 6), 

 re-directing store operations from one remote node to another (Use Case 7). 

The sections that follow contain descriptions of various scenarios and their 

corresponding Java source code that shows the way that XBase components may be 

composed to satisfy the scenario. 

 

6.1 Use Case 1 (UC1) 

The aim of UC1 is to demonstrate the usage of a root store. The root store is a local 

store. The scenario is as follows: 

 

“On node tsipouro create an instance of class Person, add it in the 

root store, and retrieve it using the pre-recorded key.” 

 

An abstract diagrammatic description of the use case is shown in Figure 7. 
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Figure 7: Use case diagram for UC1 

The classes used for satisfying the needs of UC1 are shown in Figure 8. Class Person 

is accompanied by its corresponding caster (class PersonCaster). The representation 

of a Person instance is a string containing the name and the age. 

 

 

Figure 8: Classes used in UC1 

 

The source for achieving the storing part of UC1, by making use of interpreters and 

namer as well, in shown in Figure 9. 

 
// Create an instance of class Person 

Person graham = new Person("Graham", 35); 

 

// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

 

// Create a Caster specifically written for persons 

PersonCaster personCaster = new PersonCaster(); 

 

// Flatten the person into a bitstring 

IBitString personRep = personCaster.reify(graham); 

 

// Put the representation in the root store 

IKey grahamKey = rootStore.put(personRep); 

Figure 9: Storing part of UC1 
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The source code for retrieving a person with a name previously recorded, is shown in 

Figure 10. 

 
// Retrieve an instance of the root store 

IStore rootStoreAgain = XBase.getRootStore(); 

 

// Retrieve the representation of the person using the key 

IBitString grahamRep = rootStoreAgain.get( grahamKey  ); 

 

// Create a Caster specifically written for persons 

PersonCaster personCaster = new PersonCaster(); 

 

// Recreate the object using the representation 

Person reflectedGraham = (Person)personCaster.reflect( grahamRep ); 

 

// Print out the details 

reflectedGraham.inspect(); 

Figure 10: Retrieval part of UC1 

 

The result of executing the code illustrated above is shown in Figure 11. 

 

 

Figure 11: Result of UC1 

 

6.2 Use Case 2 (UC2) 

The aim of UC2 is to demonstrate the usage of a root store together with other XBase 

components, such as a namer. UC2 extends UC1, which means that the root store is 

still a local store. The scenario is as follows: 

 

“On node tsipouro create an instance of class Person, encrypt it, add 

it in the root store and record the name. Using that name retrieve it 

from the root store, decrypt it and display its details.” 

 

An abstract diagrammatic description of the use case is shown in Figure 12. 
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Figure 12: Use case diagram for UC2 

The classes used for satisfying the needs of UC2 are shown in Figure 8. Class Person 

is accompanied by its corresponding caster (class PersonCaster). The representation 

of a Person instance is a string containing the name and the age. 

The source for achieving the storing part of UC2, by making use of a namer as well, 

in shown in Figure 13. 

 
// Create an instance of class Person 

Person vangelis = new Person("Vangelis", 29); 

 

// Create a globally accessible namer 

myNamer = new Namer(); 

 

// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

 

// Create a Caster specifically written for persons 

PersonCaster personCaster = new PersonCaster(); 

 

// Flatten the person into a bitstring 

IBitString personRep = personCaster.reify( vangelis ); 

 

// Create an encryption interpreter 

IInterpreter encryptionInterpreter = new InvertionEncryptor(); 

 

// Encrypt the representation of person 

IBitString encryptedPersonRep = encryptionInterpreter.interpret(personRep); 

 

// Put the encrypted representation in the root store 

IKey vangelisKey = rootStore.put(encryptedPersonRep); 
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// Bind the resulted key with a name 

IName vangelisName = new Name(aPerson.name); 

INamer myNamer = new Namer(); 

myNamer.bind( vangelisName, vangelisKey ); 

   

// Create a caster specifically written for namers. 

ICaster namerCaster = new NamerCaster(); 

   

// Flatten the namer into a bitstring 

IBitString namerRep = namerCaster.reify(myNamer); 

   

// Put the namer rep in the store 

IKey namerKey = rootStore.put(namerRep); 

Figure 13: Storing part of UC2 

The source code for retrieving a person with a name and a key for a namer recorded 

previously, is shown in Figure 14. 

 
// Retrieve an instance of the root store 

IStore rootStoreAgain = XBase.getRootStore(); 

 

// Retrieve the namer rep from the store using the pre-recorded key 

IBitString namerRep = rootStoreAgain.get(namerKey); 

   

// Create a caster specifically written for namers. 

ICaster namerCaster = new NamerCaster(); 

   

// Create a namer from a bitstring 

INamer reflectedNamer = (INamer)namerCaster.reflect(namerRep); 

   

// Find the key using the person's name 

IKey[] vangelisKeys = reflectedNamer.lookup( new Name("Vangelis") ); 

 

// Retrieve the representation of the person using the key 

IBitString vangelisRep = rootStoreAgain.get( vangelisKeys[0] ); 

 

// Create an decryption interpreter 

IInterpreter decryptionInterpreter = new InvertionDecryptor(); 

 

// Decrypt the representation of person 

IBitString decryptedPersonRep = decryptionInterpreter.interpret( vangelisRep ); 

 

// Create a Caster specifically written for persons 

PersonCaster personCaster = new PersonCaster(); 

 

// Recreate the object using the representation 

Person reflectedVangelis = (Person)personCaster.reflect(decryptedPersonRep); 

 

// Print out the details 

reflectedVangelis.inspect(); 

Figure 14: Retrieval part of UC2 

The result of executing the code illustrated above is shown in Figure 15. 
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Figure 15: Result of UC2 

6.3 Use Case 3 (UC3) 

 

The aim of UC3 is to demonstrate store operations over different type of entities. 

Example entities used here are: a word document, an audio clip, an image and an xml 

document. The scenario is as follows: 

 

“On node tsipouro add representations of a word document, an audio 

clip, an image and an xml document in the root store. Retrieve those 

entities from the root store and show the results.” 

 

An abstract diagrammatic description of the use case is shown in Figure 16. 

 

 

Figure 16: Use case diagram for UC3 

The classes used for satisfying the needs of UC3 are shown in Figure 16. The 

different entities are represented by classes WordDocument, AudioClip, ImageIcon 

(part of standard JDK) and Document (part of the Xerces DOM implementation). 

Each entity is accompanied by its corresponding caster (classes 

WordDocumentCaster, AudioClipCaster, ImageCaster and XMLCaster respectively). 

Note that for word documents and audio clips, the representation encapsulated is an 

array of bytes. 
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Figure 17: Classes used in UC3 

The source code for achieving the storing part of the scenario is shown in Figure 18. 

Note that method Util.readBytesFromAFile reads the bytes stored in the given file. 

Also method Util.createDOMFromFile parses an XML document stored in the given 

file. 
 

// *********** Create objects *********** 

// Create a word document object 

WordDocument wordDoc = new WordDocument( Util.readBytesFromAFile("testWord.doc") ); 

    

// Create an audio clip object 

AudioClip audioClip = new AudioClip( Util.readBytesFromAFile("testaudio.wav") ); 

    

// Create an image object 

ImageIcon vangelisImage = new ImageIcon("vangelis.gif"); 

    

// Create another image object 

ImageIcon grahamImage = new ImageIcon("graham.gif"); 

    

// Create a DOM document object from a string representation of an XML document 

Document xmlDoc = Util.createDOMFromFile("examplesDir/xbaseMembers.xml"); 

 

// ************** Put entities in the root store and record the keys ********* 

// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

      

// Create a caster specifically written for word documents 

ICaster wordDocCaster = new WordDocumentCaster(); 

   

// Flatten the word doc into a bitstring 

IBitString wordDocRep = wordDocCaster.reify( wordDoc ); 

 

// Put the representation of the word doc in the root store 

IKey wordDocKey = rootStore.put( wordDocRep ); 

 

// Create a caster specifically written for audio clips 

ICaster audioClipCaster = new AudioClipCaster(); 

   

// Flatten the audio clip into a bitstring 

IBitString audioClipRep = audioClipCaster.reify( audioClip );  

 

// Put the representation of the audio clip in the root store 
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IKey audioClipKey = rootStore.put( audioClipRep ); 

 

// Create a caster specifically written for images 

ICaster imageCaster = new ImageCaster(); 

   

// Flatten the image into a bitstring 

IBitString imageRep = imageCaster.reify( image ); 

      

// Put the representation of the image in the root store 

IKey imageKey = rootStore.put( imageRep ); 

 

// Create a caster specifically written for XML documents 

ICaster xmlDocCaster = new XMLCaster(); 

   

// Flatten the XML document into a bitstring 

IBitString xmlDocRep = xmlDocCaster.reify( xmlDoc ); 

 

// Put the representation of the XML document in the root store 

IKey xmlDocKey = rootStore.put( xmlDocRep ); 

 

Figure 18: The storing part of UC3 

 

The source code for retrieving the entities using their pre-recorded keys is shown in 

Figure 19. 

 
// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

 

// ***** Retrieve the entities from the root store using the pre-recorded keys ***** 

 

     // Retrieve the word doc from the store 

     IBitString wordDocRep = rootStore.get( wordDocKey ); 

 

     // Create a caster specifically written for word documents 

     ICaster wordDocCaster = new WordDocumentCaster(); 

   

 // Create a word doc object from the bitstring 

     WordDocument wordDoc = (WordDocument)wordDocCaster.reflect( wordDocRep ); 

 

     // Retrieve the audio clip from the store 

     IBitString audioClipRep = rootStore.get( audioClipKey ); 

      

     // Create a caster specifically written for audio clips 

 ICaster audioClipCaster = new AudioClipCaster(); 

   

 // Create an audio clip object from the bitstring 

     AudioClip audioClip = (AudioClip)audioClipCaster.reflect( audioClipRep ); 

 

     // Get the representation of the image 

     IBitString imageRep = rootStore.get( imageKey ); 

 

 // Create a caster specifically written for Images 

     ICaster imageCaster = new ImageCaster(); 

   

 // Create the image object using the caster over the representation 

 ImageIcon reflectedImage = (ImageIcon)imageCaster.reflect( imageRep ); 

 

     // Retrieve the XML document from the store. 
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     IBitString xmlDocRep = rootStore.get( xmlDocKey ); 

 

     // Create a caster specifically written for XML documents 

     ICaster xmlDocCaster = new XMLCaster(); 

   

 // Create an XML document DOM object from the bitstring 

     Document reflectedXMLDoc = (Document)xmlDocCaster.reflect( xmlDocRep ); 

 

// ******** Manipulate the entities appropriately ***************** 

 // Display the word document 

 reflectedWordDoc.displayDocument(); 

    

 // Play the audio clip 

 reflectedAudioClip.play(); 

    

 // Display the images 

 Util.displayImage( reflectedVangelisImage, "Vangelis" ); 

 Util.displayImage( reflectedGrahamImage, "Graham" ); 

    

 // Display the xml document 

 Util.displayXMLDocument( reflectedXMLDoc ); 

Figure 19: The retrieval part of UC3 

 

The result of executing the code illustrated above displays the word document, plays 

the audio clip, displays the images and displays the XML DOM tree. This is shown in 

Figure 20 (word document), Figure 21 (images) and Figure 22 (XML document). 

 

 

Figure 20: Result of UC3 (Word Document) 

 

 

Figure 21: Result of UC3 (Image) 
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Figure 22: Result of UC3 (XML DOM tree) 

 

6.4 Use Case 4 (UC4) 

The aim of UC3 is to demonstrate the usage of local stores when these are treated as 

any other XBase entity, that is been reified, added in another local store and reflected. 

The scenario is as follows: 

 

“On node tsipouro create a local store and add a representation of an 

XML document. Make that local store persistent by reifying it and 

adding it in a root store. Retrieve the XML document from the root 

store through that local store and display the tree.” 

 

An abstract diagrammatic description of the use case is shown in Figure 23. 

 

 

Figure 23: Use case diagram for UC4 

In order to satisfy the needs of UC4 a caster is required to reflect and reify an XML 

DOM object. As shown in Figure 17, class XMLCaster provides an implementation of 

such a caster. 

The source code for achieving the storing part of UC4 is shown in Figure 27. 
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// Create a DOM document object from a string representation of an XML document 

Document xmlDoc = Util.createDOMFromFile("xbaseMembers.xml"); 

 

// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

 

// Create a caster specifically written for XML documents 

ICaster xmlDocCaster = new XMLCaster(); 

 

// Flatten the XML document into a bitstring 

IBitString xmlDocRep = xmlDocCaster.reify( xmlDoc ); 

 

// Create a local store 

IStore myLocalStore = StoreFactory.createLocalStore(); 

 

// Put the representation of the XML document in the local store 

IKey xmlDocKey = myLocalStore.put( xmlDocRep ); 

 

// Create a caster specifically written for stores 

ICaster storeCaster = new StoreCaster(); 

 

// Reify the store 

IBitString storeRep = storeCaster.reify( myLocalStore ); 

 

// Put the representation of the local store in the root store 

IKey storeKey = rootStore.put( storeRep ); 

Figure 24: The storing part of UC4 

The source code for achieving the retrieval part of UC4 is shown in 
 

// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

      

// Retrieve a representation of the local store 

IBitString storeRep = rootStore.get(  storeKey  ); 

      

// Create a caster specifically written for stores 

ICaster storeCaster = new StoreCaster(); 

      

// Create a store object using the appropriate caster 

IStore myLocalStore = (IStore)storeCaster.reflect( storeRep ); 

      

// Retrieve the XML document from the store. 

IBitString xmlDocRep = myLocalStore.get( xmlDocKey  ); 

 

// Create a caster specifically written for XML documents 

ICaster xmlDocCaster = new XMLCaster(); 

   

// Create an XML document DOM object from the bitstring 

Document reflectedXMLDoc = (Document)xmlDocCaster.reflect( xmlDocRep ); 

 

// Display the xml document 

Util.displayXMLDocument( reflectedXMLDoc ); 

Figure 25: Retrieval part of UC4 

Executing the code illustrated above results in displaying the XML DOM tree shown 

in Figure 22. 
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6.5 Use Case 5 (UC5) 

The aim of UC5 is to demonstrate the usage of a root store been a proxy store. The 

scenario is as follows: 

 

“On node tsipouro create a shareable local store, add an XML 

document and make that local store reachable from the root store 

(root store is a proxy store). Finally, retrieve the XML document and 

display the XML DOM tree.” 

 

An abstract diagrammatic description of the use case is shown in Figure 26. 

 

Figure 26: Use case diagram for UC5 

 

In order to satisfy the needs of UC5 a caster is required to reflect and reify an XML 

DOM object. As shown in Figure 17, class XMLCaster provides an implementation of 

such a caster. 

The source code for achieving the storing part of UC5 is shown in Figure 27. 

 
// Create a DOM document object from a string representation of an XML document 

Document xmlDoc = Util.createDOMFromFile("xbaseMembers.xml"); 

 

// Set the type of the root store to be a proxy store 

XBase.setRootStoreProperty("proxy"); 

 

// Retrieve an instance of the root store. 

// We expect to have an instance of IProxyStore, that is why we perform a check first. 

// If it is any other type of store, do nothing 

if (XBase.getRootStore() instanceof IProxyStore) { // It is an instance of IProxyStore 

 

// Retrieve an instance of the root store 

IProxyStore rootStore = (IProxyStore)XBase.getRootStore(); 

 

// Create a caster specifically written for XML documents 

ICaster xmlDocCaster = new XMLCaster(); 

    

// Flatten the XML document into a bitstring 

IBitString xmlDocRep = xmlDocCaster.reify( xmlDoc ); 

       

// Create a shareable local store 

IStore myLocalStore = StoreFactory.createLocalStore(true); 

       

// Put the representation of the XML document in that local store 

IKey xmlDocKey = myLocalStore.put( xmlDocRep ); 



Report on the XBase Project CS/03/1 

23 

      

// Make the local stors reachable from the root store (root store is a proxy store) 

rootStore.addTarget(myLocalStore); 

 

} else throw new CannotCreateStoreException("Illegal type of store. IProxyStore expected."); 

Figure 27: The storing part of UC5 

 

The source code for achieving the retrieval part of UC5 is shown in Figure 28.  

 
// Retrieve an instance of the root store. 

// No check is performed because we are using the root store as an IStore and not as an IProxyStore. 

IStore rootStore = XBase.getRootStore(); 

      

// Retrieve the XML document through the root store. 

// Root store is a proxy store that knows about a local store 

// Operation ROOTSTORE.get scans sequentially the store that is aware of. 

// The only reachable store is shareable and performing a get returns the requested entity. 

IBitString xmlDocRep = rootStore.get( xmlDocKey ); 

      

// Create a caster specifically written for XML documents 

ICaster xmlDocCaster = new XMLCaster(); 

   

// Create an XML document DOM object from the bitstring 

Document reflectedXMLDoc = (Document)xmlDocCaster.reflect( xmlDocRep ); 

 

// Display the xml document 

Util.displayXMLDocument( reflectedXMLDoc ); 

Figure 28: Retrieval part of UC5 

 

Note that by default stores are not shareable when they created by StoreFactory 

unless otherwise specified, as in this particular use case. 

The resulting XML DOM tree is the same as the one shown in Figure 22. Figure 29 

illustrates messages produced during the process of looking in stores reachable from 

the root. The first store found (store with ID bd…953) referenced through the proxy 

root store is shareable and contains the desired XML representation. 

 

 

Figure 29: Console window messages when performing UC5 

6.6 Use Case 6 (UC6) 

The aim of UC6 is to demonstrate operations performed on stores in remote hosts. 

The scenario is as follows: 

 

“On node ouzo create a shareable local store and add an Image. On 

node tsipouro create a proxy store that knows about the local stores 
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on ouzo and add another image through that proxy store. Finally, 

retrieve both of the images from node tsipouro.” 

 

An abstract diagrammatic description of the use case is shown in Figure 30. 

 

 

Figure 30: Use case diagram for UC6 

In order to satisfy the needs of UC6 a caster is required to reflect and reify an image 

object. As shown in Figure 17, class ImageCaster provides an implementation of such 

a caster. 

The source code for achieving the storing part of UC6 on ouzo is shown in Figure 31. 

 
// Create an image object 

ImageIcon vangelisImage = new ImageIcon("vangelis.gif"); 

 

// Create a caster specifically written for images 

ICaster imageCaster = new ImageCaster(); 

   

// Flatten the image into a bitstring 

IBitString imageRep = imageCaster.reify( image ); 

 

// Create a shareable local store 

IStore myLocalStore = StoreFactory.createLocalStore(true); 

      

// Put the representation of the image in the local store 

IKey vangelisImageKey = myLocalStore.put( imageRep ); 

Figure 31: Storing part on ouzo of UC6 

 

The source code for achieving the storing part of UC6 on tsipouro is shown in Figure 

32. Note that method Util.createURL creates a URL Java object using the given host. 
 

// Create an image object 

ImageIcon grahamImage = new ImageIcon("graham.gif"); 

 

// Create a caster specifically written for images 

ICaster imageCaster = new ImageCaster(); 

   

// Flatten the image into a bitstring 

IBitString imageRep = imageCaster.reify( grahamImage ); 

  

// Create a proxy store that knows about host ouzo. 

// The URL does not specify a particular store, which means that this proxy store will be aware of all 

the shareable stores in the remote host. 
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IStore aProxyStore = StoreFactory.createProxyStore( Util.createURL("ouzo.dcs.st-and.ac.uk") ); 

   

// Put the encrypted representation of the image in the proxy store 

// Behind the scenes: 

// since the proxy store is not aware of any local stores, it will redirect the request to the available stores 

on remote hosts. 

// The only available store on a remote host is on ouzo, and this is where the operation is performed. 

IKey vangelis = aProxyStore.put( imageRep ); 

Figure 32: Storing part on tsipouro of UC6 

 

The source code for achieving the retrieving part of UC6 on tsipouro is shown in 

Figure 33. Note that both of the images are retrieved using the pre-recorded keys. 

 
// Create a proxy store that knows about node ouzo 

// The URL does not specify a particular store, which means that this proxy store will be aware of all 

the shareable stores in the remote host.  

IStore aProxyStore = StoreFactory.createProxyStore( Util.createURL("ouzo.dcs.st-and.ac.uk") ); 

      

// Get the representation of the first image 

// Behind the scenes: 

// since the proxy store is not aware of any local stores, it will redirect the request to the available 

stores on remote hosts. 

// The only available store on a remote host is on ouzo, and this is where the operation is performed. 

IBitString vangelisImageRep = aProxyStore.get( vangelisImageKey ); 

      

// Get the representation of the second image. 

// The steps that are followed behind the scenes are the same as when retrieving the first image. 

IBitString grahamImageRep = aProxyStore.get( grahamImageKey ); 

 

// Create a caster specifically written for Images 

ICaster imageCaster = new ImageCaster(); 

   

// Create the image objects using the caster over the decrypted representation 

ImageIcon reflectedVangelisImage = (ImageIcon)imageCaster.reflect( vangelisImageRep ); 

ImageIcon reflectedGrahamImage = (ImageIcon)imageCaster.reflect( grahamImageRep ); 

 

// Display the images 

displayImage(reflectedVangelisImage ); 

displayImage(reflectedGrahamImage ); 

Figure 33: The retrieval part on tsipouro of UC6 

The result of executing the code illustrated above is shown in Figure 21. Figure 34 

illustrates messages produced during the process of retrieving the images Since, the 

proxy store on node tsipouro only references a store on node ouzo both of the 

requests are redirected to the latter. These requests are successful and both the 

representations of the images are sent back to tsipouro and displayed there. 
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Figure 34: Console window messages when performing UC6 

6.7 Use Case 7 (UC7) 

UC7 is a variation of UC6. The aim of UC7 is to demonstrate a different topology of 

stores in remote hosts. In particular, the process of redirecting requests on stores in 

three hosts is illustrated. The scenario is as follows: 

 

“On node panda create a shareable local store. On node ouzo create a 

shareable proxy store that knows about node panda. On node tsipouro 

create a shareable proxy store that knows about ouzo. Add an XML 

document on the proxy store on tsipouro and retrieve it later on.” 

 

An abstract diagrammatic description of the use case is shown in Figure 35. 

 

 

Figure 35: Use case diagram for UC7 

In order to satisfy the needs of UC5 a caster is required to reflect and reify an XML 

DOM object. As shown in Figure 17, class XMLCaster provides an implementation of 

such a caster. 

The source code for creating a local store on panda is shown in Figure 36. 

 
// Create a shareable local store 

IStore pandaLocalStore = StoreFactory.createLocalStore(true); 

Figure 36: Creating a shareable local store on panda 

The source code for creating a shareable proxy store on ouzo that knows about stores 

on node panda is shown in Figure 37. 
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// Create a shareable local store 

IProxyStore ouzoProxyStore = StoreFactory.createProxyStore(true); 

 

// Make that proxy store aware of host panda 

// The URL does not specify a particular store, which means that this proxy store will be 

aware of all the shareable stores in the remote host. 

ouzoProxyStore.addTarget( Util.createURL("panda.dcs.st-and.ac.uk") ); 

Figure 37: Creating a shareable proxy store on ouzo 

 

The source code for achieving the storing part of UC7on tsipouro is shown in Figure 

38. 

 
// Create a DOM document object from a string representation of an XML document 

Document xmlDoc = Util.createDOMFromFile("xbaseMembers.xml"); 

 

// Create a caster specifically written for XML documents 

ICaster xmlDocCaster = new XMLCaster(); 

   

// Flatten the XML document into a bitstring 

IBitString xmlDocRep = xmlDocCaster.reify( xmlDoc ); 

   

// Create a proxy store that knows about node ouzo  

IStore aProxyStore = StoreFactory.createProxyStore( Util.createURL("ouzo.dcs.st-and.ac.uk") ); 

 

// Put the representation of the XML document in the proxy store 

// Behind the scenes: 

// since the proxy store is not aware of any local stores, it will redirect the request to the available 

stores on remote hosts. 

// The only available store on a remote host is on ouzo, and this is where the operation is performed. 

// Ouzo receives the request. The only store available on ouzo to satisfy the request is a proxy store 

which redirects the request to panda. 

// The operation is performed on panda, which replies to ouzo, and ouzo replies to the original request. 

IKey xmlDocKey = aProxyStore.put( xmlDocRep );  

Figure 38: Storing part of UC7 on tsipouro 

The source code for achieving the retrieval part of UC7 on tsipouro is shown in 

Figure 39 
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// Create a proxy store that knows about node ouzo  

IStore aProxyStore = StoreFactory.createProxyStore( Util.createURL("ouzo.dcs.st-and.ac.uk") ); 

      

// Retrieve the XML document from the proxy store. 

// Behind the scenes: 

// since the proxy store is not aware of any local stores, it will redirect the request to the available 

stores on remote hosts. 

// The only available store on a remote host is on ouzo, and this is where the operation is performed. 

// Ouzo receives the request. The only store available on ouzo to satisfy the request is a proxy store 

which redirects the request to panda. 

// The operation is performed on panda, which replies to ouzo, and ouzo replies to the original request. 

IBitString xmlDocRep = aProxyStore.get( xmlDocKey ); 

 

// Create a caster specifically written for XML documents 

ICaster xmlDocCaster = new XMLCaster(); 

   

// Create an XML document DOM object from the bitstring 

Document reflectedXMLDoc = (Document)xmlDocCaster.reflect( xmlDocRep ); 

 

// Display the xml document 

Util.displayXMLDocument( reflectedXMLDoc ); 

Figure 39: Retrieval part on tsipouro of UC5 

The result of executing the code illustrated above is shown in Figure 22. Figure 40 

illustrates messages generated when redirecting requests. The upper windows displays 

messages on tsipouro whereas the lower window displays messages on ouzo. The 

messages on tsipouro indicate that request is forwarded to ouzo. Ouzo receives the 

message and redirects the request to panda. Panda sends back to ouzo the requested 

representation, and ouzo sends it back to tsipouro, where it is manipulated 

appropriately. 

 

 

Figure 40: Result of UC7 
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7 Failure Semantics 

 

There are several XBase exceptions thrown when constructing XBase components as 

well as performing several operations. In some cases it is significant for these 

exceptions to be caught explicitly by the programmer, since it is required to specify 

what has to be done when a failure occurs. Other exceptions are caught implicitly by 

the system. The reason for defining such exceptions is to give semantics in the case of 

particular failures, especially Java system failures. This means that basic Java 

exceptions are wrapped into XBase defined exceptions. Figure 41shows the set of 

exceptions used in the XBase system. 

 

 

Figure 41: Exceptions thrown when composing XBase components 

 

Table 1 contains a short description of the exceptions displayed above. Note that the 

first four exceptions are caught by the XBase system, whereas the rest are required to 

be caught by the use case programmer. 

 

Exception Class Thrown when the system attempts to… 

StoreNotFoundException open an existing store and fails when it does not find one or a 

network store does not contain any stores at all 

StoreExistsException create a new local store that already exists (refers to backing storage) 

DaemonException start a daemon and this fails 

IllegalKeyException compare two keys that are not of the same format 

CannotCreateStoreException create a local store and fails when the underlying backing storage 

cannot be created 

KeyNotFoundException perform a get operation and fails when there is no binding for the 

given key 

KeyExistsException perform a put operation and fails when there is already a binding 

with the same key 

ReflectException translate a representation into a Java object and fails when either an 

internal error occurs and or the representation is of the wrong format 

ReifyException flatten a Java object into representation and fails when either an 

internal error occurs and or the object cannot be flattened 

InterpretationException interpret a representation into another representation and fails when 

the result is not the desired one 

NameNotFoundException find a name in a namer and fails when the request binding cannot be 

found 

RootStabilisationException stabilise a root a fails due to unexpected errors. 

Table 1: Exceptions thrown in the XBase system 
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8 Persistence of XML Documents 

 

This section addresses various issues related to the persistence of XML documents 

using the XBase framework (A description of which is provided elsehere). In 

particular we should be able to store and retrieve a set of XML documents to/from a 

persistent repository (e.g. persistent store) using the XBase components described 

elsewhere. As shown in the following figure, in order to achieve that a set of 

representations must be created first. These representations can be stored and 

retrieved to/from a store. 

 

 

 

Figure 42: Persistence of XML Documents - Use Case 

 

In this section we mainly concentrate on the process of creating representations from 

entities (XML documents) and vice versa (reification and reflection respectively). 

This process has been introduced earlier as casting. There are several issues with 

respect to the form of the representation and the way such a representation is 

produced. These issues are discussed in the next two sub sections: the first discusses 

the dimensions in casting XML documents within a distributed XBase system without 

taking into account the process of update whereas the second describes what 

changes/additions in the original design should made in order to include updating and 

versioning as well. 

 

8.1 Casting without update 

 

This section discusses the main issues in flattening a set of XML documents into a set 

of representations and vice versa (reification and reflection respectively). Casting 

should be performed by taking into account that the resulting representations may be 

distributed around different stores. However, the main issues here are related to the 

following dimensions: 

 The form of the representation(s) possibly resulting from reification, 
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 The way that reification and reflection processes are performed. In particular, 

the way a set of representations is produced when reifying an XML document 

as well as the way an XML document is constructed when reflecting a set of 

representations. 

 

The process of casting and effectively the form of the representation depends on 

several policies that should be taken into account. Some of these policies are user 

specified whereas some others provide the different options at the implementation 

level. These policies can be summarised as follows (extended discussion about these 

policies is included in the next section): 

 

 User Policies 

o Granularity: this policy specifies the number of representations 

resulted from the process of reification as well as the way mapping 

between these fragments is achieved, given a set of XML documents. 

 

 Implementation Policies 

o Representation format: this policy specifies the particular format of a 

representation of an XML document. An example format is the XML 

format. 

o Reference format: this policy specifies the format of a reference from 

one representation fragment to another. Possible alternatives are: key, 

name etc. References here are used in order to denote other 

representations of XML documents and they are not used in the same 

way as XML references (e.g. Xlink, Xpointer etc). The policy chosen 

affects the underlying store communication infrastructure, that is if the 

reference does not contain any information about the location of the 

referenced representation, an external mechanism is required to locate 

it. Similarly, if names are used as references then a policy specifies 

how names are resolved. Possible alternatives are: user specified 

namer, fixed position of a namer etc. 

 

The next two sections discuss those policies (user and implementation respectively). 

This is followed by a definition of a particular set of requirements that will guide us to 

decide which particular policies are suitable to satisfy those requirements. Finally, a 

description of a particular implementation of a caster is provided. 

For the rest of this document we will assume the following use case: an XML 

document is reified and this results in a set of representations. These representations 

are then reflected in order to give us a copy of the original XML document (an 

example will be given in a later section). In addition, when we refer to an XML 

document we denote an entity. 

 

8.1.1 User Policies 

 

User policies define a set of parameters that are external to the caster. In other words 

it defines various user specific customisations that make the system compliant to the 

user needs. These customisations could be applied to any XML document caster and 

they only change the default behaviour of the caster and not the way it is 

implemented. 
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The main issue here is to specify the granularity, that is given an XML document how 

many fragments are resulted from the process of reifying. In addition, when breaking 

an XML document into smaller fragments a mapping between these fragments is 

required. The spectrum of granularity is in between having a single fragment per 

XML tag and having a fragment for the whole XML document. There is a trade of 

between efficiency and flexibility as we move from one extreme case to another. 

Choosing either of the cases is an implementation decision and results in too fine or 

coarse grained representations respectively. 

However, the user may customise the granularity, that is finding the critical point 

where efficiency and flexibility will be maximised with respect to the particular needs 

of the application. Customisation requires the user to provide the corresponding set of 

rules, which can be expressed in the form of XML schemas. The schema defines 

which elements of the XML document are kept in the same representation. An 

example of a schema will be given later. 

 

8.1.2 Implementation Policies 

 

Implementation policies define a set of different parameters that should be taken into 

account when designing a caster. These parameters are hard-coded in the caster and 

consequently hidden from the user. Different set of policies results in different casters.  

The first policy is related to the particular format of the representation(s) of an XML 

document. Any format can be suitable, whether it is intelligible or not. However, this 

requires from the caster to provide the mechanism in order to interpret it 

appropriately. An intelligible candidate format for a representation can be a self-

contained valid XML document. The usage of XML allows the caster to use already 

predefined tools to manipulate that format. In addition the usage of a standard format 

makes it understandable by any user. Using XML as the format for representations 

means that both the XML documents (entities) and their representations are in XML 

format. The difference is that a representation may contain references to other 

representations, which have to be resolved first (an operation performed inside the 

caster) in order to reflect to the desired XML document entity. 

The form that references between representations have is specified by another policy. 

The process of reifying an XML document may result in more than one 

representations that reference each other. This is analogous to having hyper-links 

denoting entities in a hyper-code system. 

A reference to any other representation should contain sufficient information which 

will be used in order to retrieve the referenced representation from anywhere in the 

distributed environment (that is a local or a remote store). This implies that during 

casting (reflection in particular), the caster will attempt to resolve the reference. 

A possible form of a reference could be a key that will be generated for the referenced 

representation during the reification process.  This form of a reference is suitable only 

in a system with no update or versioning and in a system with a store that is able to 

accept a key generated externally (the key is generated during the reification process 

and if a user puts that representation is a store, this store will not generate a key but 

will accept the key that is provided by the user). 

Another possible form of a reference to a representation of an XML document is a 

name, which can be accessible either locally or globally. This form of a representation 

does not require neither a system with no update or versioning nor a system with a 

store been able to accept a key externally (since the system can generate a name for 

the referenced representation during the reification process and if a user puts that 
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representation in a store, the key resulted is bound to that name). However, it requires 

the system to make use of a namer (a data structure that binds names with keys), 

which brings up the issue of where this namer is located (see policy about namers 

later on). 

However, in either case (key or name) we make the assumption that there is an 

external mechanism for locating the referenced representation, since this kind of 

reference contains no information about the location. This means that the underlying 

store communication infrastructure is sufficient to be able to discover representations 

from given keys. The mechanism for making stores knowing about each other can be 

plugged in the XBase system (e.g. a Pastry peer-to-peer). 

An alternative to that is to have a form of reference that contains information about 

the location of the referenced representation, which means that the system does not 

depend on the store communication scheme. However, this makes the representation 

location dependant and the system less flexible especially if a system supports update 

and versioning. 

In any case, the fact that the representation that corresponds to a reference may 

contain more references to other representations, which require resolution as well, 

makes the reflection process a recursive operation. In addition, the operation of 

resolving references may lead to cycles, which are detected as casting goes along by 

keeping track of each representation (more details later on). 

Another point is that a reference has different semantics from an XML reference (e.g. 

XLink, XPointer) and the difference is that the former corresponds to a representation 

that has to be resolved first, whereas the latter is part of the original XML document 

(entity). 

In the case of making use of a name as a reference, we have to specify how these 

names are resolved. Using the XBase framework this problem can be solved by using 

namers. The policy here is related to locating namers that contain the name/key 

bindings. This is required by a caster when attempting to resolve the name. Choosing 

an alternative for that policy is a trade of between efficiency and flexibility. 

One possibility is to make use of a user specified namer. Although this possibly 

allows fast resolving (especially in the case where the namer is used locally), however 

it does not automate the process of resolving names, since it requires from the user to 

specify the location where the namer resides. 

Another alternative is to make use of a namer or a set of namers, which are located in 

a fixed place (e.g. making use of a root namer). In this case, the system attempts to 

automatically find the appropriate root namer and resolve the name, however making 

the process less flexible, due to the fact that the namer is kept is a fixed location. 

 

 

8.1.3 Requirements for a distributed XBase system with no update or 

versioning 

 

Several general requirements for designing an XBase system have been specified in 

an earlier document. These requirements were: simplicity, flexibility, efficiency and 

portability. XML document casting is guided by these dimensions. This section 

describes a more concrete set of requirements that extend the original requirements 

and guide us choose a particular implementation of a caster. These requirements are: 

 The system must allow distributed information. This means that fragments or 

representations may be scattered around in different places and the caster 

should be able to find that information as efficient as possible 
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 The representation chosen for XML documents should be in an intelligible 

standard form. The user should be able to customise the granularity as much as 

possible (this has been described in a previous section) in order to make it 

compliant to his needs. 

 References to other representations of XML documents should contain enough 

information in order to retrieve the referenced entity from anywhere in the 

system (e.g. a store) in the most flexible way. The restrictions imposed by a 

particular implementation should be as much as possible minimal. 

 

8.1.4 Meeting the requirements (Choosing particular policies) 

 

The requirements specified in the previous section allow us to define a particular set 

of policies in order to produce a particular XML document flattening technique (and 

effectively to provide a particular implementation of a caster. A set that satisfies the 

criteria specified above is: 

 The representation is in XML format. Reifying an XML document results in a 

set of fragments that may reference each other. The user specifies the rules (in 

the form of XML schema) that will instruct the caster about the granularity 

when it is attempted to normalise an XML document. The rule is that a 

separate fragment will be created for each reference in the schema (See XML 

schema ref attribute. 

 The reference is a name that has to be resolved during casting. Resolution is a 

two stage process: first the name is to be presented to a user specified namer in 

order to get the key which is then presented to the underlying storage 

infrastructure in order to retrieve the requested representation. 

 

8.1.5 A Proposed XML Document Casting Technique 

 

In this section we describe a particular implementation of a caster that satisfy the 

policies described above. This involves the definition of the interfaces as well as a 

description of the algorithms. 

Interface Caster, defined elsewhere, should be modified accordingly since reifying an 

XML document may result in more than one representation. Similarly, the reflect 

operation should be able to accept the result of the reification process, that is a set of 

representation fragments. Therefore, the original definition of interface caster 

described elsewhere should be modified to the following (t is the XML document 

entity that contains both the XML document and an XML schema): 

 

reify: t -> set[BitString] or error 

reflect: set[BitString]-> t or error 

 

 

8.1.5.1 Description of the Algorithms 

 

Below we describe the algorithms for both operations. The policies that guide the 

particular implementation are: 

 the representation is in XML format, 

 the reference is a name and the namer used to resolve it is in the form of a root 

namer in a fixed location. 
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The algorithm for the reify operation is shown in Figure 43: 
 

 Extract the rules of granularity, (variable schema), included in the given entity. 

 Extract the xml document to be reified (variable xml), included in the given entity. 

 If xml==null then throw an error 

 If schema==null then , If policy is to throw an error, then throw it else generate a 

default schema. 

 Validate the document against the schema. If this fails then throw an error 

 Start parsing the schema, recursively scan all the elements 

 For each element tag that references another element tag record the XPath expression 

and record it in a vector (variable paths) 

 Start parsing the xml document, recursively scan all the element. 

 For each element tag{ 

o If the current element’s XPath expression exists in paths then { 

 Replace that element with a reference tag that has the general form 

<XBaseRef ref=”(system generated ID)”> (SYS–ID1). 

 Create a new document by wrapping that element within a new tag 

that has the general form <XbaseName ref=”(the ID generated 

before)”>. 

o } 

 } 

 Wrap the outer most tag within a new tag that has the general form 

<XbaseName ref=”(system generated ID SYS-ID2)” 

schemaRef=”(SYS-ID2)-schema”> 

 Wrap the schema fragment within a new tag that has the general form 

<XbaseName ref=”(SYS_ID2)-schema”> 

 return the resulting bitstrings 

Figure 43: An algorithm for the reify operation 

The way that the Ids (both SYS-ID1 and SYS-ID2) are generated by the system is 

implementation specific. A general pattern for both kinds of Ids could be: 

 

 SYS-ID1: (Node IP address)+(Element full path and name)+(counter) 

 SYS-ID2: (Node IP address)+(Element full path and name)+(outer most tag 

keyword)+(counter) 

 

For example: 

 

 SYS-ID1: 192.0.0.1-XBaseMembers/researchFellows/person-1 

 SYS-ID2: 192.0.0.1-XBaseMembersOuterMostTag-1 

 

Note that the above algorithm consists of two parts. The first part scans a schema 

definition in order to extract XPaths. These XPaths are used in the second part of the 

algorithm in order to create the different fragments. Consequently an alternative 

implementation of the reify operation could be to ask from the user to specify XPaths 

rather than the schema, which sometimes could be hard or could require a 

sophisticated User Interface. 

 

An algorithm for the reflect operation is shown in Figure 44: 

 

 For each given fragment { 
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o If it is well formed then extract the name and the document that is 

encapsulated, and record that tuple in tuples. 

 } 

 if there is at least one invalid fragment then throw an error 

 Extract the fragment that contains the outer most tag (variable rootDoc) 

 If rootDoc==null then throw an error 

 Extract the fragment that contains the schema (variable rootSchemaDoc) 

 Starting from rootDoc, recursively scan all the elements. 

 For each reference in the fragment (XBaseRef element) { 

o Extract the name from the reference 

o If there is a fragment among the given that is identified by a name that is 

equal with the name included in the reference { 

 Replace the reference tag with the element encapsulated in the 

fragment 

o } else throw an error 

o Recursively scan the children of the element for references and perform the 

same substitution task. 

 } 

 Create an XML entity that couples the resulted XML document and the schema (both 

rootDoc and rootSchemaDoc) 

 Return that entity 

Figure 44: An algorithm for the reflect operation 

 

The algorithm described above requires the user to provide all the necessary 

fragments as parameters. This means the system only looks among the given for a 

requested fragment. An alternative approach is to make use of a root namer in order to 

find a request fragment. The highlighted lines in Figure 44, will be replaced by the 

piece of code shown in Figure 45: 

 
o If there is a fragment among the given that is identified by a name that is 

equal with the name included in the reference then keep it for later use 

(variable fragment) 

o else if the root namer contains a binding with a name that is equal to the 

name included in the reference element then { 

 Find the corresponding key by resolving the name in the root namer 

 Present that key to the root store. 

 If there is a fragment as a result then keep it for later use (variable 

fragment) 

 else throw an error. 

 Replace the reference tag with the element encapsulated in fragment 

o } else throw an error 

 

Figure 45: Resolving a name reference in the reflect operation 

Using the second algorithm for resolving a name provides more flexibility in the 

process of storing and retrieving XML documents. The only thing that the user has to 

remember when reifying an XML document is the name of the fragment that 

encapsulates the outer most element. Use case 2 demonstrates the way that can be 

done.  

 

8.1.5.2 An Example 
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In order to describe how the proposed caster implementation works, we are going to 

reify the XML document shown in Figure 46, which describes some various 

information about the members of the XBase project (Note that this is not a 

description of a use case. It only shows what is the result of reification for a particular 

example): 

 
<XBaseMembers> 

<researchFellows> 

<person> 

<name> Evangelos Zirintsis</name> 

<address> 

<town>St Andrews</town> 

</address> 

<age>29</age> 

</person> 

</researchFellows> 

<teachingStaff> 

<person> 

<name> Graham Kirby</name> 

<address> 

<town>Kingsbarns</town> 

</address> 

<age>36</age> 

</person> 

<person> 

<name> Ron Morrison</name> 

<address> 

<town>St Andrews</town> 

</address> 

</person> 

<person> 

<name> Al Dearle</name> 

<address> 

<town>St Andrews</town> 

</address> 

</person> 

</teachingStaff> 

</XBaseMembers> 

Figure 46: An example XML document 

A schema that the example XML document complies is shown in Figure 47: 

 
<xsd:schema xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”> 

<xsd:element name = “XBaseMembers” /> 

</xsd:schema> 

Figure 47: A schema definition that corresponds to the XML document displayed in Figure 46 

 

The above schema can be used in order to specify the granularity. In this particular 

case no separate fragments will be created. Another example of a schema is shown in 

Figure 48: 
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<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

   <xsd:element name="XBaseMembers"> 

      <xsd:complexType> 

         <xsd:sequence> 

            <xsd:element name="researchFellows"> 

               <xsd:complexType> 

                  <xsd:sequence> 

                     <xsd:element ref="person" minOccurs = "0" maxOccurs = "unbounded" /> 

                  <xsd:sequence> 

               </xsd:complexType> 

            </xsd:element> 

            <xsd:element name=" teachingStaff "> 

               <xsd:complexType> 

                  <xsd:sequence> 

                     <xsd:element ref="person" minOccurs = "0" maxOccurs = "unbounded" /> 

                  <xsd:sequence> 

               </xsd:complexType> 

            </xsd:element> 

         </xsd:sequence> 

      </xsd:complexType> 

   </xsd:element> 

 

   <xsd:element name="person"> 

      <xsd:complexType> 

         <xsd:sequence> 

            <xsd:element name = "name" /> 

               <xsd:element ref="address" /> 

               <xsd:element name="age" minOccurs = "0" /> 

            </xsd:sequence> 

      </xsd:complexType> 

   </xsd:element> 

 

   <xsd:element name="address" /> 

 

</xsd:schema> 

Figure 48: An alternative schema definition 

 

The definition of that schema effectively groups together the details of each person 

separately. In addition, information about address is grouped together in a separate 

fragment. 

The reification process included in a caster takes into account the schema and 

transforms the original XML document into the following representation; 

 
<XBaseName  ref=”192.0.0.1-XbaseMembersOuterMostTag-1” 

schemaRef=”192.0.0.1-XbaseMembers-OuterMostTag-schema-1”> 

<XBaseMembers> 

<researchFellows> 

<XbaseRef ref=”192.0.0.1-XBaseMembers/researchFellows/person-1” /> 

</researchFellows> 

<teachingStaff> 

<XbaseRef ref=”192.0.0.1-XBaseMembers/teachingStaff/person-1”> 

<XbaseRef ref=”192.0.0.1-XBaseMembers/ teachingStaff /person-2”> 

<XbaseRef ref=”192.0.0.1-XBaseMembers/ teachingStaff /person-3”> 
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</teachingStaff> 

</XBaseMembers> 

</ XBaseName> 

Figure 49: The transformed version of the original XML document 

In this representation the person elements have been replaced by a tag that specifies a 

name, which acts as a reference. The fragments for each of the person elements are 

kept separately. In the XML shown in Figure 50 we show the fragment for the first 

person element (The fragments of other person elements have similar format). This 

fragment is wrapped in a tag which contains information about the name given by the 

system. 

 
<XBaseName ref=”192.0.0.1-XBaseMembers/teachingStaff/person-1”> 

<person> 

<name> Evangelos Zirintsis</name> 

<XBaseRef ref=”192.0.0.1-XBaseMembers/teachingStaff/person/address-1” /> 

<age>29</age> 

</person> 

</ XBaseName> 

Figure 50: A fragment containing the details of a person 

The fragment above contains a reference to an the specified address element which is 

shown in Figure 51: 

 
<XBaseName ref=”192.0.0.1-XBaseMembers/teachingStaff/person/address-1”> 

<address> 

<town> St Andrews</town> 

</address> 

</ XBaseName> 

Figure 51: A fragment containing address details 

 

8.2 Flattening with update and versioning 

 

This section describes the extra dimensions of a system that supports updating and 

versioning. 

The first policy is related to XML document updating. A sub-policy is to define the 

update model, that is categorising the different kinds of update that can be performed 

on an XML document and decide which ones will be supported by the current XBase 

implementation. The first main category includes updates to an XML document that 

results in an XML document that conforms to the original schema. This involves 

modification of tag values, addition and deletion of nodes. The current system fully 

supports this kind of update. 

The second category includes any updates that result in an XML document that does 

not conform to the schema included in the XML entity (entity t as defined earlier). In 

addition to modification of tag values, addition and deletion this involves 

modification of nodes as well. This kind of update is supported in the current system 

as long as the user provides the new schema that the updated XML document 

conforms to. 

Another sub-policy concerning XML document updating is related to the XML 

difference discovering mechanism. This is to specify the way that the system 
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discovers the differences between different versions of XML documents. A possible 

decision is to have the caster in charge of discovering which XML documents have 

been updated. This is done by comparing the original set of fragments that consist the 

representation of an XML entity with the fragments resulting after making any 

changes. This results in possible differences which denote updated XML fragments. 

Another alternative is to present the fragments resulting after making changes to the 

store. The store produces a key which is then compared to the existing keys. If the key 

already exists in the store this means that the fragment has not been changed. This 

alternative takes advantage of the fact that the keys generated are content-based. 

Another policy is related to defining the identity of individual nodes in an XML 

document. In the update model defining identities is necessary in order for the system 

to decide which fragment is the updated version of which original fragment. The 

policy here is to decide how to provide identity. One alternative is to insert an ID 

attribute in each element, which means that the original XML document has to be 

modified. Another alternative is to keep an external mapping between IDs and nodes 

(see later section). 

Another policy is related to supporting historical versions, In particular this refers to 

the information stored. It has two branches. The first is what information should be 

stored and the second where to store it. Possible alternatives for the former are: a 

timestamp automatically generated by the system, a version ID, provided by the user. 

A possible alternative for the latter is to store it inside a namer, which means that the 

user has to provide version information together with the name. 

 

8.2.1 Extra components/modifications required 

 

Entity t defined earlier has to be modified in order to include information about node 

identity. In particular, apart from the XML document and the corresponding schema, 

entity t contains the mapping between ids and nodes included in the XML document. 

Each node has a unique name which is used as id for as long as this node is “alive”. 

In order to support update and historical versions, the namer should support resolving 

a name together with version information. The interface for namers in that case should 

be the following (Note that VersionTuple couples together a name and version 

information): 

 

lookup: VersionTuple -> Key or error 

bind: VersionTuple, Key 

unbind: VersionTuple, Key 

 

Use Case 3 describes how to use the new components in order to perform an update. 

8.3 Use Cases 

 

In this section we provide particular examples of composing the XBase components 

described in another document, in order to provide persistence of XML documents. 

The use cases presented here demonstrate: 

 Usage of a caster for the persistence of a particular XML document – The user 

has to know about all the keys (Use Case 1) 

 Usage of a root store and root namer for the persistence of a particular XML 

document – The user has to know only about the name of the fragment of the 
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top level tag. A user interface is also used to demonstrate the way the user can 

specify granularity (Use Case 2). 

 Usage of extra/modified components required to support update and historical 

versions (Use Case 3). 

The sections that follow contain descriptions of various scenarios and their 

corresponding Java source code that shows the way that XBase components may be 

composed to satisfy the scenario. 

Note that the code demonstrated is split into two levels. The first level is the end user 

level, that is the high level API used to satisfy the scenario. The second level is the 

XBase user level, that demonstrates the way XBase components may be composed. 

 

8.3.1 Use Case 1 (UC1) 

 

The aim of UC1 is to demonstrate the usage of a caster in order to put/retrieve an 

XML document to/from a store respectively. The root store is a proxy store that 

knows about a local store. The scenario is as follows: 

 

“On node tsipouro add an XML document in a local store which 

is accessible through the root store (root store is proxy store). 

Using the resulting keys retrieve the fragments and present them 

to the caster in order to reconstruct the XML document.” 

 

The end user code of UC1 is shown in Figure 52. 

 
// Create a DOM document object from a string representation of an XML document 

Document xmlDoc = Util.createDOMFromFile(“examplesDir/xbaseMembers.xml”); 

 

// Create a DOM document object from a string representation of an XML schema 

Document xmlSchema = Util.createDOMFromFile(“examplesDir/xbaseMembers.xsd”); 

 

// Create an XML entity instance that couples the document and the schema. 

// IDs are initially empty. 

IXMLEntity xmlEntity = new XMLEntity(xmlDoc, xmlSchema); 

 

// Put the entity in the store 

IKey[] keys = putXMLEntity( xmlEntity ); 

 

// Using the keys retrieve the XML entity from the store. 

IXMLEntity retrievedXMLEntity = getXMLEntity( keys ); 

 

// Display the xml document 

Util.displayXMLDocument( retrievedXMLEntity.getXMLDocument ); 

Figure 52: The end user code of UC1 

The source for achieving the storing part of UC1 (method putXMLEntity) is shown in 

Figure 53. 
 

// Set the type of the root store to be a proxy store 

XBase.setRootStoreProperty("proxy"); 

 

// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

 

// Create a shareable local store 

IStore myLocalStore = StoreFactory.createLocalStore(true); 
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// Make the local store reachable from the root store (root store is a proxy store) 

rootStore.addTarget(myLocalStore); 

 

// Create a caster specifically written for XML documents 

IXMLCaster xmlDocCaster = new XMLCaster(); 

 

// Flatten the XML document into a set of bitstrings 

IBitString[] xmlDocRep = xmlDocCaster.reify(xmlEntity); 

 

// Put the representation of the XML document in the root store and record the keys. 

IKey[] theKeys = new Key[xmlDocRep.length]; 

for (int i=0; i<theKeys.length; i++) theKeys[i] = rootStore.put( xmlDocRep[i] ); 

 

return keys; 

Figure 53: The storing part of UC1 

 

The source for achieving the retrieval part of UC1 (method retrieveXMLEntity) is 

shown in Figure 54. 

 
// Retrieve an instance of the root store 

IStore rootStore = XBase.getRootStore(); 

 

// Retrieve the fragments from the store 

IBitString[] xmlDocRep = new BitString[ theKeys.length ]; 
for (int i=0; i<theKeys.length; i++) xmlDocRep[i] = rootStore.get( theKeys[i] ); 

 

// Create a caster specifically written for XML documents 

IXMLCaster xmlDocCaster = new XMLCaster(); 

 

// Cast the representation into an entity 

IXMLTuple xmlDocAgain = xmlDocCaster.reflect(xmlDocRep); 

 

return xmlDocAgain; 

Figure 54: The retrieval part of UC1 

The result of executing the code shown in Figure 52 is shown in Figure 55. 
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Figure 55: The result of Use Case 1 

 

8.3.2 Use Case 2 (UC2) 

 

The aim of UC2 is to demonstrate the usage of a root namer in order to put/retrieve an 

XML document to/from a store respectively as well as demonstrate the way the user 

can specify the granularity rules. The root store is a proxy store that knows about a 

local store. The root namer is retrieved and stored from/to the proxy store. The 

scenario is as follows: 

 

“On node tsipouro add an XML document in a local store which 

is accessible through the root store. Retrieve the XML document 

from the proxy store using a pre-recorded name.” 

 

The end user code of UC2 is shown in Figure 56. 

 
// Create a DOM document object from a string representation of an XML document 

Document xmlDoc = Util.createDOMFromFile(“examplesDir/xbaseMembers.xml”); 

 

// Retrieve the XML schema 
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Document xmlSchema = getGranularity( xmlDoc ) 

 

// Create an XML entity instance that couples the document and the schema. 

// IDs are initially empty. 

IXMLEntity xmlEntity = new XMLEntity(xmlDoc, xmlSchema); 

 

// Put the entity in the store 

IName xmlDocName = putXMLEntity( xmlEntity ); 

 

// Using the keys retrieve the XML entity from the store. 

IXMLEntity retrievedXMLEntity = getXMLEntity(xmlDocName); 

 

// Display the xml document 

Util.displayXMLDocument( retrievedXMLEntity.getXMLDocument ); 

Figure 56: The end user code of UC2 

The source for having the user specify the granularity rules (method getGranularity) 

is shown in Figure 57. Note that any tool can be used in order to generate the schema. 

In this particular use case we are using the XSDInference by IBM [REFERENCE]. 

 
// Generate the most general schema given the XML document 

Document generalSchema = generateSchema( xmlDoc ); 

 

// Now open a tree walker view with that schema. 

TreeWalkerView schemaTree = new TreeWalkerView( generalSchema ); 

 

// Wait for input from the user. When it is done then extract the schema and return it. 

Document granularitySchema = schemaTree.getXMLDocument(); 

Figure 57: Specifying granularity 

 

The source for achieving the storing part of UC2 (method putXMLEntity) is shown in 

Figure 58. 
 

// Set the type of the root store to be a proxy store 

XBase.setRootStoreProperty("proxy"); 

 

// Retrieve an instance of the root store and the root namer 

IProxyStore rootStore = XBase.getRootStore(); 

INamer rootNamer = XBase.getRootNamer(); 

 

// Create a shareable local store 

IStore myLocalStore = StoreFactory.createLocalStore(true); 

 

// Make the local store reachable from the root store (root store is a proxy store) 

rootStore.addTarget(myLocalStore); 

 

// Create a caster specifically written for XML documents 

IXMLCaster xmlDocCaster = new XMLCaster(); 

 

// Flatten the XML document into a set of bitstrings 

IBitString[] xmlDocRep = xmlDocCaster.reify( xmlEntity ); 

 

// Put the representation of the XML document in the root store and record the outer most tag name. 

IKey aKey; 
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IName aName; 

IName recordedName; 

for (int i=0; i<xmlDocRep.length; i++) { 

 

// Put the particular fragment in the store 

aKey = rootStore.put( xmlDocRep[i] ); 

 

// Read the fragment and extract the name. 

aName = XMLGlobals.extractNameFromRep( xmlDocRep[i] ); 

 

// Bind the name with the key 

if (aName != null) rootNamer.bind(aName, aKey); 

 

// If the fragment represents the outer most tag then record its name. 

if (XMLGlobals.rootTag(xmlDocRep[i]) ) recordedName = aName; 

} 

return recordedName; 

Figure 58: The storing part of UC2 

 

The source for achieving the retrieval part of UC2 (method getXMLEntity) is shown 

in Figure 59. 

 
// Retrieve an instance of the root store and the root namer 

IStore rootStore = XBase.getRootStore(); 

INamer rootNamer = XBase.getRootNamer(); 

 

// Resolve the recorded name 

IKey xmlKey =rootNamer.lookup( recordedName ); 

 

// Retrieve the fragment containing the outer most tag from the store 

IBitString xmlFragment = rootStore.get( xmlKey[0] ); 

 

// Having the fragment find whats the name of the fragment that represents the schema. 

IName schema Name = XMLGlobals.extractSchemaNameFromRep( xmlFragment ); 

 

// Resolve that name 

IKey[] schemaKey = rootNamer.lookup( schemaName ); 

 

// Present the key to store in order to get the schema fragment 

IBitString schemaFragment = rootStore.get( schemaKey[0] ); 

 

// Create a caster specifically written for XML documents 

IXMLCaster xmlDocCaster = new XMLCaster(); 

 

// Cast the representation into an entity. 

// The caster is only presented with one fragment which means that any other fragments required 

// will be retrieved through the root store during the casting process 

IBitString[] fragments = { xmlDocRep, schemaFragment};  

IXMLTuple xmlDocAgain = xmlDocCaster.reflect( fragments ); 

 

return xmlDocAgain; 

Figure 59: The retrieval part of UC2 

 

The root namer is retrieved using function getRootNamer. The source in Figure 60 

demonstrates the steps followed for retrieving the root namer. 

 
// Check whether we have already created a value for the root namer 
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if (XBase.rootNamer == null) { // It seems not 

  

// Retrieve the representation of the root namer. 

IBitString rootNamerRep = XBase.getRootNamerRep(); 

 

// Create a caster specifically written for namers 

ICaster namerCaster = new NamerCaster(); 

 

// Create a namer entity from the representation and record it. 

XBase.rootNamer = namerCaster.reflect( rootNamerRep ); 

} 

return XBase.rootNamer; 

Figure 60: Retrieving the root namer 

The following figures illustrate the user interface for specifying the granularity. 

Figure 61 illustrates the most general schema generated by a tool for the given XML 

document. 

 

 

Figure 61: The most general schema generated in UC2 

 

In Figure 62, the user has separated the nodes in the schema that will define 

granularity. For example, notice that line 9 was replaced by a reference to a high-level 

node which is specified in line 14. 
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Figure 62: Specifying granularity 

 

8.3.3 Use Case 3 (UC3) 

 

The aim of UC3 is to demonstrate the usage of a root namer that supports different 

versions of XML documents/fragments, in order to put/retrieve an XML document 

to/from a store respectively. The root store is a proxy store that knows about a local 

store. The root namer is retrieved and stored from/to the proxy store. The scenario is 

as follows: 

 

“On node tsipouro retrieve an XML document from the root 

store. Apply an arbitrary numbers of modifications to that XML 

document and put it back to the store. Retrieve that XML 

document using a pre-recorded name and display it.” 

 

The end user code of UC3 is shown in Figure 63. (It is assumed that the user has 

already put an XML document in the store and has recorded the name of the outer 

most tag (name myXMLDocument) ). 

 
// Retrieve the XML document using the given name as shown in the previous use case. 

IXMLTuple xmlEntity = getXMLDocument( new Name( myXMLDocument ) ); 

    

// Apply an arbitrary number of changes to that document. 

changeXMLDocument( xmlEntity ); 

 

// Now perform an update by adding in the store only the modified or new fragments. 

updateXMLDocument( xmlEntity ); 

    

// Display the updated document 

Util.displayXMLDocument( (Document)xmlEntity.getXMLDocument() ); 

Figure 63: The end use code of UC3 

The source code for updating the entity (method updateXMLDocument) is shown in 

Figure 64. 
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// Create a caster for XML documents. 

IXMLTuple xmlEntity = getXMLDocument(xmlDocName); 

    

// Reify the given entity. 

IBitString[] fragments = xmlCaster.reify( xmlEntity ); 

 

// Retrieve an instance of the root store and the root namer 

IProxyStore rootStore = (IProxyStore)XBase.getRootStore(); 

INamer rootNamer = XBase.getRootNamer(); 

    

// Attempt to put the fragments in the store. If the store complaints about a key already present then do  

// nothing 

IKey aKey; 

IName aName; 

for (int i=0; i<fragments.length; i++) { 

    try { 

// Put the particular fragment in the store 

aKey = rootStore.put(fragments [i] ); 

 

// Read the fragment and extract the name. 

aName = XMLGlobals.extractNameFromRep(fragments [i] ); 

 

// Bind the name with the key 

if (aName != null) rootNamer.bind(aName, aKey); 

    } catch (KeyExistsException kee) { } 

} 

 

XBase.stabiliseRoot(); 

Figure 64: The source code for updating fragments 

The particular implementation relies of the fact that the keys generated by the store 

are content based. This means that if two fragments have the same key this means that 

their contents are exactly the same. Fragments with different content produce different 

keys. 

An alternative implementation of an update algorithm could be to compare the 

original fragments with the fragments resulting after updating the XML entity and 

reifying it. Although this implementation does not depend on the store feedback, is 

more expensive than the previous, since fragment comparison is performed. 

 

8.4 Measurements 

 

This section describes various tests performed using the XBase framework as a 

storage infrastructure. For time experiments the numbers resulted are seconds, 

whereas for space experiments the numbers are bytes. It should be noted that each 

number is the average of performing the experiment 10 times. 

The first experiment was to measure time and space for storing and retrieving a 

simple XML document (XBaseMembers), that contains personal details of 5 people. 

The resulting numbers are shown in Table 2, The first column contains the results 

when user specified granularity is applied, whereas the second column contains the 

results when the default granularity is applied (by default that granularity is the whole 

XML document). Finally the third column contains the results of performing store and 

retrieve without using the XBase framework, that is simple file storage and retrieval 

functionality provided by the Java API. 
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With 
granularity 

Without 
granularity 

File 
storage 

 XBaseMembers (Time)    

1 reify 1.141 1.061  

2 everything except reify (resolve 
name, put) 0.772 0.381  

3 Total storage 1.913 1.442 0.130 

     

4 reflect 0.451 0.100  

5 everything except reflect  (resolve 
name, put) 0.050 0.040  

6 Total retrieval 0.501 0.140 0.050 

     

7 Reflect & reify 1.592 1.161  

8 everything except reflect & reify  
(resolve name, put) 0.822 0.421  

9 Total storage and retrieval 2.414 1.582 0.180 

     

 XBaseMembers (Space)    

10 Local store 3281 880  

11 Root store rep 864 447  

12 Namer rep 1960 464  

13 Total storage required (bytes) 6105 1791 1468 

     

14 No of fragments created 10 2 2 

Table 2: Measuring time and space for storing and retrieving a simple XML document 

 

Lines 1-3 contain the results for storing the XML document, whereas lines 4-6 contain 

the results for retrieving the XML document. The totals for performing storage and 

retrieval are included in lines 7-9. 

Lines 10-13 show the amount of space required in each case. Note that in the XBase 

framework, a file is required to store a Local Store representation (line 10), another 

file is required to store the Root Store representation (line 11) and finally another file 

is required to store the Namer representation (line 12). Finally, line 14 includes the 

numbers of XML fragments created in each case. 

The same measuring criteria were used to perform a similar experiment using a much 

bigger XML document (Othello), which contains the verses of the play. The results 

we got for that XML document are shown in Table 3: 
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With 
granularity 

Without 
granularity 

File 
storage 

 Othelo (Time)    

1 reify 6.489 4.396  

2 everything except reify 
(resolve name, put) 97.230 2.574  

3 Total storage 103.719 6.970 0.821 

     

4 reflect 3.210 2.560  

5 everything except reflect  
(resolve name, get) 116.220 1.917  

6 Total retrieval 119.430 4.477 0.792 

     

7 Reflect & reify 9.699 6.956  

8 everything except reflect & 
reify  (resolve name, put) 213.450 4.491  

9 Total storage and retrieval 223.149 11.447 1.613 

     

 Othelo (Space)    

10 Local store 443000 243287  

11 Root store rep 62700 447  

12 Namer rep 144000 432  

13 Total storage required (bytes) 649700 244166 242216 

     

14 No of fragments created 1183 2 2 

Table 3: Same measuring criteria for a bigger XML document 

The experiments described above store and retrieve XML documents without taking 

into consideration the fact that some of the fragments might be updated. A separate 

experiment was performed, using the XBaseMembers XML document, which 

measures the time for two different techniques of update and for three different kinds 

of updates. The results are shown in Table 4. 

There are three kinds of update defined in this experiment. The first is to edit an 

existing fragment (column 1), the second is to add a new fragment (column 2) and the 

third is to delete an existing fragment (column 3). 

The two different update techniques are included in the rows. This is to decide 

whether an XML fragment is an updated version of an existing fragment in the store 

or not. 

The first technique(lines 1-3) presents the fragments to the store and if the fragment 

exists it does not add it. In the second technique (lines 4-7) the decision is made 

before the fragments are presented to the store. This is done by comparing the original 

fragments with the fragments resulted from performing any kind of update shown in 

the columns. This measurement includes the time it takes to compare those fragments. 

 

 

 

  Edit Addition Deletion 
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 XBaseMembers    

1 Update by presenting to store 0.130 0.201 0.140 

2 reify 0.060 0.060 0.070 

3 everything except reify 0.070 0.141 0.070 

     

4 Update by comparing source 0.110 0.181 0.110 

5 reify 0.050 0.060 0.050 

6 compare 0.010 0.010 0.010 

7 everything except reify & 
compare 0.050 0.111 0.050 

Table 4: Experiment measuring update 
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9 Persistence of Objects 

 

This section addresses various issues related to the persistence of objects documents 

using the XBase framework (A description of which is provided elsewhere). It mainly 

refers to the way that object graphs are flattened. The technique used for casting XML 

document can be used, with some modifications, to cast object/object graphs. In this 

document we only describe the extra dimensions we should take into account to 

successfully perform the casting process. 

 

9.1 Object Casting 

 

The easiest way to provide object casting tools is to make use of existing technology. 

One possible way of achieving that is to make use of standard Java serialisation. This 

technique requires classes to implement interface Serializable.  

Another alternative is to serialise the object graph using the standard XML API 

included in JDK 1.4.0 and then cast the resulting XML document using the XML 

caster described elsewhere. However, this technique has one main drawback: the 

XML serialiser can only serialise Java Beans. 

Converting objects into java beans or into Serializable objects is a complicated 

process that require class rewriting and copying of objects, which means that we may 

loose information about identity. 

An alternative to both is to borrow the technique we used for XML casting and 

modify it accordingly to cast objects. This technique is what we describe in the rest of 

this document. 

 

9.1.1 Policies 

The set of policies defined elsewhere (XML persistence document) apply for the case 

of casting objects. In particular, granularity could be specified per object, per object 

graph or could be user customised. The simplest case is to specify granularity per 

object. 

The representation format could be in XML format. As for the reference format a 

name could be used to reference the representation of another object. 

The extra dimensions when casting objects are implementation policies: 

 

 Object State Storing: this policy has two branches. The first specifies the 

technique used for object introspection in order to extract the state of an 

object. Possible alternatives are: 

o Reflection: the limitations here are related to the native methods. It 

does seem to have any limitations as far as private members is 

concerned. 

o User specified technique. 

The second sub-policy specifies the information stored within the 

representation of an object. Possible alternatives are: 

o Its state only: this can be used in the case of having a system that deals 

with class loading separately. 

o Its state and any relevant code (e.g. in the case of Java this could 

include the fields and the bytes of the class). The representation of the 

code can be kept either in the same place as the representation of the 
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object or kept separately possibly in a different location, in which case 

the representation of the object should contain a reference to the 

representation of the corresponding code. 

 Support for Object Updating: as in the case of casting XML documents, this 

is to specify the way that the system discovers the differences between 

different versions of objects. Possible alternatives are: 

o Modify the VM in order to make objects dirty when they are updated. 

This is not suitable if interoperability is required. 

o Don’t modify the VM but keep externally information about “dirty” 

objects. In order to achieve that techniques such as source code 

transformation, or byte code transformation may be used. This is not 

suitable if simplicity is required, that is hide as much as possible from 

the user. 

o The caster is in charge to decide which objects have been updated. 

This is done in a similar way to XML documents (this is described 

elsewhere). 

 

9.1.2 A Proposed Object Casting Technique 

 

In this section we describe a particular implementation of a caster. Interface Caster, 

defined elsewhere, should be modified accordingly since reifying an object may result 

in more than one representation. Similarly, the reflect operation should be able to 

accept the result of the reification process, that is a set of representation fragments. 

Therefore, the original definition of interface caster described elsewhere should be 

modified to the following (t is the object): 

 

reify: t -> set[BitString] or error 

reflect: set[BitString]-> t or error 

 

9.1.2.1 Description of the Algorithms 

 

Below we describe the algorithms for both operations. The policies that guide the 

particular implementation are: 

 the representation is in XML format, 

 the reference is a name and the namer used to resolve it is in the form of a root 

namer in a fixed location. 

 

The algorithm for the reify operation is shown in Figure 43: 
 

 If object to be reified ==null then throw an error 

 For each object in the object graph { 

o If we have visited that object then do nothing else record that we have visited 

the object to avoid a cycle. 

o Create an XML representation skeleton (XML-SKEL) 

o Use reflection to extract the fields and their values 

o For each field { 

 generate an XML representation (FIELD-SKEL) 

 if there is a reference to another object then create a reference that 

has the general form <XbaseRef ref=”(SYS-ID)” />. 
o } 

o if we have the class of that particular object then { 
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 Create a code XML skeleton (CODE-SKEL) 

 Create a reference that has the general form as shown above. 

o } 

 } 

Figure 65: An algorithm for the reify operation 

The skeleton for an object’s representation (XML-SKEL) has the following general 

form: 

 

<XbaseName ref=”(SYS-ID)”> 

<fields> 

…… 

</fields> 

<code> (CODE-ID) </code> 

</XbaseName> 

 

The skeleton XML generated for each of the fields (FIELD-SKEL) is shown bellow: 

<field1> 

<name> … </name> 

<type> … </type> 

<value> (either the value itself if it is primitive or a reference </value 

</field1> 

 

The sheleton XML generated for code (CODE-SKEL) is shown bellow:  

<XbaseName ref=”(CODE-ID)”> 

<code> 

<className> (The name of the class) </className> 

<bytes> (The bytes) </bytes> 

</code> 

</XbaseName> 

 

SYS-ID and CODE-ID are generated by the system. They have the general form: 

 

 SYS-ID: (Node IP address)+(Object’s class full package name)+(counter) 

 CODE-ID: (Node IP address)+”class_”+(Class full name) + (counter) 

 

For example: 

 

 SYS-ID: 192.0.0.1-person-1 

 SYS-ID: 192.0.0.1-class_person-1 

 

An algorithm for the reflect operation is shown in Figure 44: 

 

 For each given fragment { 

o If it is not well formed then extract the name and the document that is 

encapsulated, and record that tuple in tuples. 

o If it represents a class then extract the bytes and load the class. 

 } 

 if there is at least one invalid fragment then throw an error 

 if we have visited that representation then do nothing else record it to avoid cycles. 

 Create a java object (object). 
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 For each reference in the fragment (XBaseRef element) { 

o Extract the name from the reference 

o If there is a fragment among the given that is identified by a name that is 

equal with the name included in the reference then keep it for later use 

(variable fragment) 

o else if the root namer contains a binding with a name that is equal to the 

name included in the reference element then { 

 Find the corresponding key by resolving the name in the root namer 

 Present that key to the root store. 

 If there is a fragment as a result then keep it for later use (variable 

fragment) 

 else throw an error. 

 Replace the reference tag with the element encapsulated in fragment 

o } else throw an error 

o Create a java object from that fragment. 

o Update the field value included in object. 

o Recursively scan the children of the element for references and perform the 

same task. 

 } 

 Return the object 

Figure 66: An algorithm for the reflect operation 

 

9.1.2.2 An Example 

 

An example of implementing that technique is shown below. We assume that we have 

two instances of class Person and Address respectively as live objects but not 

persistent on host ouzo. Object Person has a public field name with value “Vangelis” 

and another field address that references an instance of class Address that has a public 

field address with value “St Andrews”. We want to make them persistent by 

producing an XML representation for each one. The representation for the instance of 

class Person will look like this: 

<XbaseName ref=”person1”> 

<fields> 

 <field1> 

  <name>name</Name> 

  <type>java.lang.String</Type> 

  <value>Vangelis</Value> 

 </field1> 

 <field2> 

  <name>address</Name> 

  <type>Address</Type> 

  <value> 

 <XbaseRef ref=”192.0.0.1-address1” /> 

</value> 

  </field2> 

 </fields> 

 <code> 192.0.0.1-class_Person-1 </code> 

</ XbaseName > 

 

The representation for the instance of class Address will look like this: 
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<XbaseName ref=”192.0.0.1-address1”> 

<fields> 

 <field1> 

  <name>name</Name> 

  <type>java.lang.String</Type> 

  <value>St Andrews</Value> 

 </field1> 

 </fields> 

 <code> 192.0.0.1-class_Address-1 </code> 

</ XbaseName > 

 

The representation for class Person is illustrated below (The representation of class 

Address will have similar format): 

 

<XbaseName ref=”192.0.0.1-class_Person-1”> 

 <code> 

  <className> Person </className> 

  <bytes> [bytes read from a file] </bytes> 

 </code> 

</ XbaseName > 

 

Having those representations we may put them in a store (possibly the root store) and 

we get back keys. The resulting keys are bound to names plus timestamps and are 

placed in the root namer. Newly created objects are separated from objects resulting 

from the process of reflection by making use of an external mapping between the 

latter and Ids (this is done in the same way as in the case of XML document in order 

to provide identity). 

Assuming that we perform an update to the instance of class Person, the steps we 

have to follow when putting the representations in the store are similar to the steps 

that have to be followed in the case of updating XML documents: 

 Produce a representation for each object in the object graph. This will look 

similar to the representations shown above. 

 Attempt to put the representations in the store. For unchanged objects this will 

not have any effect. However, for modified objects this will put the new 

representation in the store and will return a new key. 

 Bind that key with the name of the original object and a new timestamp. That 

binding will be placed in the root namer (this automatically creates a new 

object). 

 

The caster deals with cyclic object graphs/representations by keeping track of the 

objects/representations been traversed. This implies that every time a new 

object/representation is about to be created, the system checks first whether this has 

already been done or not. 

  

 


