4,371 research outputs found

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Web Queries: From a Web of Data to a Semantic Web?

    Get PDF

    A Programming Language for Web Service Development

    Get PDF
    There is now widespread acceptance of Web services and service-oriented architectures. But despite the agreement on key Web services standards there remain many challenges. Programming environments based on WSDL support go some way to facilitating Web service development. However Web services fundamentally rely on XML and Schema, not on contemporary programming language type systems such as those of Java or .NET. Moreover, Web services are based on a messaging paradigm and hence bring forward the traditional problems of messaging systems including concurrency control and message correlation. It is easy to write simple synchronous Web services using traditional programming languages; however more realistic scenarios are surprisingly difficult to implement. To alleviate these issues we propose a programming language which directly supports Web service development. The language leverages XQuery for native XML processing, supports implicit message correlation and has high level join calculus-style concurrency control. We illustrate the features of the language through a motivating example

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Engineering polymer informatics: Towards the computer-aided design of polymers

    Get PDF
    The computer-aided design of polymers is one of the holy grails of modern chemical informatics and of significant interest for a number of communities in polymer science. The paper outlines a vision for the in silico design of polymers and presents an information model for polymers based on modern semantic web technologies, thus laying the foundations for achieving the vision

    Online Integration of Semistructured Data

    Get PDF
    Data integration systems play an important role in the development of distributed multi-database systems. Data integration collects data from heterogeneous and distributed sources, and provides a global view of data to the users. Systems need to process user\u27s applications in the shortest possible time. The virtualization approach to data integration systems ensures that the answers to user requests are the most up-to-date ones. In contrast, the materialization approach reduces data transmission time at the expense of data consistency between the central and remote sites. The virtualization approach to data integration systems can be applied in either batch or online mode. Batch processing requires all data to be available at a central site before processing is started. Delays in transmission of data over a network contribute to a longer processing time. On the other hand, in an online processing mode data integration is performed piece-by-piece as soon as a unit of data is available at the central site. An online processing mode presents the partial results to the users earlier. Due to the heterogeneity of data models at the remote sites, a semistructured global view of data is required. The performance of data integration systems depends on an appropriate data model and the appropriate data integration algorithms used. This thesis presents a new algorithm for immediate processing of data collected from remote and autonomous database systems. The algorithm utilizes the idle processing states while the central site waits for completion of data transmission to produce instant partial results. A decomposition strategy included in the algorithm balances of the computations between the central and remote sites to force maximum resource utilization at both sites. The thesis chooses the XML data model for the representation of semistructured data, and presents a new formalization of the XML data model together with a set of algebraic operations. The XML data model is used to provide a virtual global view of semistructured data. The algebraic operators are consistent with operations of relational algebra, such that any existing syntax based query optimization technique developed for the relational model of data can be directly applied. The thesis shows how to optimize online processing by generating one online integration plan for several data increments. Further, the thesis shows how each independent increment expression can be processed in a parallel mode on a multi core processor system. The dynamic scheduling system proposed in the thesis is able to defer or terminate a plan such that materialization updates and unnecessary computations are minimized. The thesis shows that processing data chunks of fragmented XML documents allows for data integration in a shorter period of time. Finally, the thesis provides a clear formalization of the semistructured data model, a set of algorithms with high-level descriptions, and running examples. These formal backgrounds show that the proposed algorithms are implementable

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF
    corecore