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Abstract

There is now widespread acceptance of Web services
and service-oriented architectures. But despite the
agreement on key Web services standards there re-
main many challenges. Programming environments
based on WSDL support go some way to facilitat-
ing Web service development. However Web services
fundamentally rely on XML and Schema, not on con-
temporary programming language type systems such
as those of Java or .NET. Moreover, Web services are
based on a messaging paradigm and hence bring for-
ward the traditional problems of messaging systems
including concurrency control and message correla-
tion. It is easy to write simple synchronous Web ser-
vices using traditional programming languages; how-
ever more realistic scenarios are surprisingly difficult
to implement. To alleviate these issues we propose a
programming language which directly supports Web
service development. The language leverages XQuery
for native XML processing, supports implicit message
correlation and has high level join calculus-style con-
currency control. We illustrate the features of the
language through a motivating example.

1 Introduction

With the increasing use of software applications for
the daily conduct of business, the need to link these
applications with minimal effort and in short time-
frames is becoming ever more evident. Concomi-
tant with the development of this need and greatly
motivated by it, Service-oriented Computing (SoC)
is emerging as a promising paradigm for enabling
the flexible interconnection of autonomously devel-
oped and operated applications within and across
organisational boundaries (Alonso, Casati, Kuno &
Machiraju 2003).

SoC is a distributed application integration
paradigm in which the functionality of existing appli-
cations (the services that they provide) is described
in a way that facilitates its use in the development of
applications which integrate this functionality. The
resulting integrated applications can themselves be
exposed as services, leading to networks of interacting
services known as service compositions or composite
services (Casati & Shan 2001, Benatallah, Sheng &
Dumas 2003). The technology behind the SoC trend
is mainly based on standards such as SOAP, WSDL,
WS-Security, and BPEL4WS (BPEL for short). This
technology enables businesses to describe the services
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that they offer (generally in an XML-based form), to
publish these descriptions online, to find other ser-
vices based on their descriptions, and to build appli-
cations using these services.

Composing Web services is a form of
megaprogramming (or “programming in the
large”) (Wiederhold, Wegner & Ceri. 1992). Two
schools of thought have emerged with respect to
megaprogramming: one advocating the use of
existing programming languages with conserva-
tive (or no) extensions and another advocating
the use of new languages specifically designed for
this purpose (i.e. “megaprogramming languages”).
Process Definition for Java (JSR207) (Java Com-
munity Process 2003) is an example of the former
approach whereas the Business Process Execution
Language (BPEL) (Andrews, Curbera, Dholakia,
Goland, Klein, Leymann, Liu, Roller, Smith, Thatte,
Trickovic & Weerawarana 2003) represents the
latter approach. JSR207 uses metadata tags to
annotate Java programs with service composition
elements. This trivially leads to a language with
which programmers are familiar, but which does not
necessarily lift the level of abstraction enough to deal
with the complexities of Web service composition.

By comparison, BPEL can be seen as a program-
ming language specifically designed for Web service
composition. BPEL code is automatically generated
by design-level tools and developers never need to
delve into this code to perform fine-grained changes.
However, in many situations fine-grained changes are
required and such changes are not easy to incor-
porate given a language such as BPEL which pro-
vides minimal features for fine-grained programming
(e.g. data manipulation operations) and which, in
addition, does not follow a conventional program-
ming language syntax. Conscious of this issue,
some authors of the BPEL specification have defined
BPELJ (Blow, Goland, Kloppmann, Leymann, Pfau,
Roller & Rowley 2004): a hybrid between BPEL
and Java. Like BPEL, BPELJ can be seen as a
programming language designed for service compo-
sition. However, BPELJ extends BPEL with con-
structs borrowed from an existing programming lan-
guage. Note that the emergence of initiatives such as
BPELJ does not imply that standards such as BPEL
are unnecessary. However, such standards should be
used at a higher-level in the software development
cycle, to describe behavioural aspects of service in-
terfaces (i.e. “abstract processes”) or coarse-grained
processes which are executed in process brokers.

Our approach can be placed alongside BPELJ in
terms of scope, but it adopts a different perspec-
tive. We advocate a completely new language (and
thus avoid the problems inherent with conservative
language extensions), but we pragmatically combine
novel features for Web service development (and ser-
vice composition in particular) with conventional pro-
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gramming language features and syntax.
The contribution of this paper is a number of

programming language features aimed at supporting
Web services development. These include:

• A stratified integration of XQuery’s flexible eval-
uation semantics with imperative language con-
structs.

• An application of join calculus-style concurrency
to Web service messaging, and an embodiment
of this concurrency style as a programming lan-
guage construct.

• An approach to message correlation that pro-
vides direct support for both point-to-point and
one-to-many Web service conversations.

The paper is structured as follows. In the next sec-
tion we motivate the proposal and provide a working
example. In Section 3 we describe the specific fea-
tures, show examples of their use, and discuss some
design choices. Section 4 discusses the innovative as-
pects of our approach with respect to previous work,
and Section 5 outlines ongoing and future work.

2 Motivation

SoC brings along a number of specific requirements
over previous paradigms (e.g. object and component-
oriented) which unavoidably need to be taken into
account by any Service-oriented Architecture (SOA):

Explicit boundaries: As services are expected to
be developed by autonomous teams, designing
SOAs is an inherently collaborative process in-
volving multiple stakeholders from different or-
ganisational units. This raises the issue that cer-
tain organisational units may opt not to reveal
the internal business logic of their services to oth-
ers, making it difficult (yet indispensable) to en-
sure global consistency.

Coarse granularity: Services are highly coarse-
grained, at least more so than objects and com-
ponents (Szyperski 2003). Often, a service maps
directly to a business object or activity (e.g. a
purchase order or a flight booking service). It fol-
lows that the design of services (and in particular
composite ones) is a complex activity. It involves
reconciling disparate aspects such as the involved
providers and consumers, their interfaces, inter-
actions, and collaboration agreements, their in-
ternal business processes, data, and (legacy) ap-
plications.

Process awareness: As services often correspond
to business functionality exported by an organi-
sational unit, they are likely to be part of long-
running interactions driven by explicit process
models (Aalst 2003). Hence, SOA should take
into account the business processes as part of
which services operate and interact. In particu-
lar, collections of services may engage in complex
conversations with a dynamically changing set of
partners, and a large number of events that may
occur in a variety of orders.

The nature of these requirements and their intri-
cate interdependencies introduce a certain degree of
complexity in the design and implementation of Web
services. While efforts are underway to tackle some
of this complexity at the design and middleware layer
(e.g. through standards such as BPEL), we argue
that there is also a need for programming support.

In particular, the high degree of potential concur-
rency introduced by the “process-aware” nature of
Web services calls for the introduction of appropriate
abstractions into the languages used to develop and
compose Web services.

The brokered procurement scenario depicted in
Figure 1 provides a simplified but nonetheless real-
istic example motivating the need for programming
language support for Web service development. This
scenario involves a collaboration between three types
of entities: buyer, broker, and seller. Each entity is
represented by a Web service which sends and receives
messages to/from the other entities. Following Alonso
et al. (Alonso et al. 2003), we describe the involved
interactions and their control-flow dependencies using
an UML activity diagram in which each activity cor-
responds to a “send” or a “receive” task. Note that
internal tasks (e.g. invoking a function provided by an
internal application) are not shown in this diagram.

An instance of this procurement scenario starts
when a buyer requests an offer from a broker. The
broker then contacts a number of sellers, which can
“bid” for obtaining an order. After receiving three
bids or after a timeout1, the broker either makes an
offer to the buyer or terminates the process (if no
bids are available). If the buyer accepts the offer,
it sends an order to the broker who (only then) re-
veals the identity of the (winning) seller to the buyer
and forwards the order to the seller. The buyer is
then responsible for sending the shipment and pay-
ment information to the seller who waits for both of
these items before sending a shipment notice.

In mainstream programming languages such as
Java and C#, implementing this scenario requires
the developer to hand-code some subtle and error-
prone concurrency and message correlation aspects.
In particular, the broker service involves a complex
synchronisation point (wait for first three bids or for
a timeout) which is difficult to implement using con-
ventional thread synchronisation primitives.

3 Language features

The language’s feature set has been designed in re-
sponse to the three requirements outlined in Sec-
tion 2: explicit boundaries, coarse granularity and
process awareness. Explicit boundaries are supported
by encouraging the programmer to work at the service
level of abstraction. The service is the largest unit
of implementation, and only behaviour-less interfaces
are shared between services. We intend this lack of
a small-scale reuse feature, such as objects, to pro-
mote service composition and granular services. Our
concurrency and message correlation features make
it easy to program service interactions by supporting
the process-aware nature of services. Furthermore,
we view XML data and messaging as fundamental to
Web services, and the language includes features for
XML data manipulation.

In this section we sketch the main features of the
language and relate them to the buyer-broker-shipper
scenario.

3.1 XML data manipulation

To exploit programmer’s familiarity, the language
integrates usual imperative constructs (sequence,
conditional statements, and loops) and adopts
XQuery (Boad, Chamberlin, Fernández, Florescu,
Robie & Siméon 2003) as the language for writing
expressions. The imperative subset of the language

1This type of “n-out-of-m” synchronisation cannot be easily
expressed in UML Activity Diagrams so we denote it with annota-
tions in the relevant tasks.
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Figure 1: Global choreography for the brokered procurement scenario

(for commands) and the functional subset (for expres-
sions) are strictly stratified. In other words, XQuery
expressions can only appear at the bottom of the ab-
stract syntax tree. This stratification simplifies the
execution semantics of the language and prevents cer-
tain forms of counter-intuitive program behaviour.
Indeed, XQuery gives the implementer a lot of free-
dom in the choice of evaluation order to permit opti-
misation (i.e. an XQuery implementation can adopt
lazy, eager, or any other type of evaluation strategy).
If it was possible to access the imperative features
of the language from an XQuery expression, in par-
ticular the messaging features introduced later, the
sequences of messages that may be sent would either
be unpredictable, or the language would be obliged
to define a detailed execution semantics for XQuery
and forsake possible optimisations.

Underlying the choice of XQuery as an expres-
sion sub-language, is the assumption that XML In-
foset is the fundamental data model of Web services,
and hence, a language for Web services development
should explicitly support consuming and synthesis-
ing XML data. Note that the XQuery data model
is a superset of the XPath data model and the Post-
Schema Validation Infoset (PSVI). The proposed lan-
guage therefore adopts this model. In addition, when
elements of the XQuery data model must be realised
as XML (for example, when some data synthesised
with XQuery is sent in a SOAP message body) the
XQuery’s serialization semantics is used.

As a side benefit of adopting XML, our language
implementation (currently under development) is able
to reuse third party XQuery implementations. On the

other hand, a possibly undesirable side effect of this
design choice is that some constructs are duplicated
in the XQuery and in the imperative subsets of the
language. For example, there is an imperative if-then-
else construct, and there is a functional if-then-else
construct from XQuery. This situation is analogous
to C, C# and Java’s if-then-else conditional for state-
ments and conditional ? : operator for expressions,
except that in our language, the same keywords are
used for both the imperative and the functional con-
ditional constructs. A similar remark applies to “for”
loops.

3.2 Messaging

Our language adopts operations, interfaces, and ser-
vices from WSDL with some modifications. Our dec-
larations for these elements take much of their syn-
tactic flavour from XQuery.

Operations consist of incoming and outgoing mes-
sages, however only in and in-out message exchange
patterns (MEPs) (Gudgin, Lewis & Schlimmer 2004)
are supported. Cardinality information is not en-
coded, so in-out could map to a WSDL in-out or
in-multi-out MEP– how many messages are sent de-
pend on the imperative implementation of an opera-
tion. Out MEPs are not encoded because we do not
have any high-level feature for service composition
that would use this.

Like WSDL, interfaces are collections of opera-
tions, and services implement interfaces. To illustrate
a service, interface and operation declaration, here is
a fragment of the broker described in the example in
Section 2:



declare interface Broker {
declare operation Request
in ($item, action = ’urn:broker:buy’)
out ($seller, $amount, action =

’urn:broker:buyResponse’)
...

}

declare interface Seller {
declare operation RequestBid
in ($item, action = ’urn:seller:solicitBid’)
out ($amount)

...
}

declare service MyBroker implements Broker {
(: Broker operations implementations :)
...

}

Here, Broker is an interface that would be shared
between clients and providers. Request is an in-out
operation. item, seller, and amount refer to the body
of SOAP messages. SOAP actions are specified using
special keyword arguments. MyBroker is a service
that undertakes to support the Broker interface by
providing an implementation for Request.

Unlike WSDL, our model of interfaces does not in-
clude interface inheritance. We take the view that any
relationship between interfaces, including whether
two interfaces are ultimately provided by the same
service, is immaterial. Our language instead works
by the programmer asserting that an endpoint will
support a particular interface, with runtime faults if
that is not the case. There is no concept of service
or interface polymorphism. Although services may
implement multiple interfaces, services are always re-
ferred to via interfaces. This is in keeping with the
view that one implementation of an interface should
be substitutable with another.

For example, the implementation of Request sends
a message to sellers by asserting that some endpoint
supports the Seller interface, and then sending a mes-
sage to the RequestBid operation of the service at
that endpoint:

(Seller at $seller).RequestBid(...)

3.3 Concurrency

The language supports join-calculus style concur-
rency, whereby operations can be ‘joined’ in join pat-
terns. Join patterns are written much like a multi-
headed method, where the body of the method does
not execute until all heads have been invoked. Of
course, the heads in our join patterns correspond to
operations and not method headers, and join patterns
guard statements which execute when incoming mes-
sages are available on all operations. For example, in
the scenario described in Section 2, the seller must re-
ceive delivery information and payment information
before it sends a shipment notice. This can be written
by joining a pair of messages:

Delivery($d) & Payment($p) {
(: send shipment notice :)

}

This service matches up messages sent to the
Delivery and Payment operations of the seller.
When a message to Delivery and a message to
Payment are both available, the bodies of the mes-
sages are bound to d and p respectively and the state-
ment is activated. If messages to Delivery are re-
ceived without corresponding messages to Payment
(or vice-versa) the excess messages are queued until
a matching message is available.

Services can also send messages to operations that
do not appear in an interface. Using these internal

operations is a common idiom for encoding state in
languages with join calculus-style concurrency. In the
example outlined in Section 2, the broker acts on bids
from sellers until a certain number are received. To
stop a rogue seller submitting spurious bids in an at-
tempt to exclude legitimate bids, we can use a private
message to only entertain one reply per-seller:

for $seller in $known-sellers
...
do {

(Seller at $seller).RequestBid($item,
reply-to = BidResponse, ...);

OnceOnly()
}

BidResponse($bid-amount) & OnceOnly() {
BidReceived($seller, $bid-amount)

}

Here, after the broker sends a message to a partic-
ular seller’s RequestBid operation, the broker pro-
duces a message to its private OnceOnly opera-
tion. When the seller replies with a message to
BidResponse, the pending OnceOnly message is con-
sumed. If the seller subsequently sends messages to
BidResponse the broker will not act on them because
there will be no matching OnceOnly.

Collecting bids also uses private messages to main-
tain state. To reiterate the business rules for col-
lecting bids, the broker reports the best bid of bids
received during a certain time, up to some number
of bids received (whichever comes first). If no bids
are received in the time period, a fault is gener-
ated. The broker models this state with four pri-
vate operations. Two of the operations, NoBids
and BiddingF inished, are simple flags like OnceOnly
above. The third operation, NumBids, counts the
number of bids received in the body of the message;
the fourth, BestBid, maintains the best bid received
so far:

do {
NoBids(); (: initial message to NoBids :)
... (: sleep :)
BiddingFinished() (: send a timeout message :)

}

BidReceived($seller, $bid-amount) & NoBids() {
BestBid($seller, $bid-amount);
NumBids(1)

}

BidReceived($new-seller, $new-amount) &
BestBid($best-seller, $best-amount) &
NumBids($n) {
(: compare bids and produce a new BestBid message :)
...

if $n = 3 then
BiddingFinished()

else
NumBids($n+1)

}

BestBid($best-seller, $best-amount)
& BiddingFinished() {

(: report offer to client :)
}

NoBids() & BiddingFinished() {
(: timed out before getting bids from

sellers - generate fault :)
}

This idiom may seem unusual to programmers
used to using mutable variables, however the ad-
vantage of using internal messages instead of muta-
ble variables is that it is easy to write services that



are correct under concurrent messages. In the ex-
ample above, because BestBid is consumed atomi-
cally in conjunction with either a BidReceived or a
BiddingF inished, no bids will be lost. In Java or C#
explicit locks would be required to prevent a race con-
dition between comparing a received bid to the best
bid and updating the best bid.

Join calculus-style concurrency primitives are a
good choice for implementing Web services, compared
to the concurrency primitives in Java/C# such as
locks and mutexes, because join patterns are declara-
tive, message oriented, and resolve contention locally:

Declarative: Join patterns are high-level and
declarative, making it easy to model state ma-
chines in services. This makes concurrency as-
pects of a program simpler to understand. The
meaning of code using locks can be occluded by
complicated (concurrent!) imperative code.

Message-oriented: Locks are built around atomic
access to a shared memory, whereas join patterns
take concurrent messages as primitive. This
message-orientation parallels message-oriented
Web services.

Local: Join patterns resolve contention locally,
where messages are bound to patterns. Because
the code generated by the compiler to implement
join patterns must use the primitive shared mem-
ory mechanisms, and these do not scale across
slow and unreliable networks such as the inter-
net, this locality property makes join patterns
easy to implement.

3.4 Message correlation

Relating different messages into sets is fundamental to
realising service conversations. Message correlation is
what separates the messages related to one instance
of an activity (say, the purchase of a particular item)
from messages related to another instance of an activ-
ity. Sets of messages can be correlated via identifiers
in the message headers. Whether messages contain
correlation identifiers is not specified in WSDL, and
we carry this into our language: Interface declara-
tions do not mention correlation identifiers, and the
programmer can associate correlation identifiers with
messages in a fairly ad-hoc way.

Particular correlation identifiers can be bound to
variables. By binding many correlation identifiers
within a single lexical scope, the programmer can im-
plement interactions that depend on different, concur-
rent conversations. This supports situations where a
Web service conducts multiple, related conversations,
but it is not possible or appropriate to share a corre-
lation identifier.

For example, in the scenario outlined in Section 2,
the broker will initiate conversations with many sell-
ers on the client’s behalf. The correlation identifier
the broker shares with the client should not be reused
in the (concurrent) conversations with the sellers be-
cause it would not uniquely identify them. Instead,
we bind two kinds of correlation identifiers in nested
lexical scopes using the with statement. The nested
lexical scopes imply the correlation identifiers exist
in a 1 : n relationship (in this example, one broker
interacts with multiple sellers):

with cb as ClientBroker {
Request($item, in cb) {
for $seller in $known-sellers
with bs as BrokerSeller {

do {
(Seller at $seller).RequestBid($item,

reply-to = ..., in bs)
...

}
...

Correlation identifiers are bound lazily as messages
are received or sent. In the above example when a
message is received in Request (part of the interface
of the Broker service) the correlation identifier in the
message is extracted and bound to cb. The broker
then sends messages to sellers. Because bs is unbound
when the broker sends the message to RequestBid,
a correlation identifier is created and bound as the
message is sent.

ClientBroker and BrokerSeller (declaration not
shown) specify the location of correlation identifiers
in the SOAP header; these use a subset of XPath
that contains enough information for the service to
synthesize new identifiers when the service needs to
initiate a set of correlated messages.

4 Related work

We now survey related work in our language’s key
feature areas of XML data integration, Web service
standards support, concurrency, and message corre-
lation.

4.1 XML Data

Our approach of embracing the XQuery data model
is in contrast to practice with Java and C#, which
define mappings from XML Schema to native Java or
Common Type System types. The benefit of translat-
ing XML data to native objects is to provide the pro-
grammer with a homogeneous environment. However
these mappings can be quite subtle, making it diffi-
cult to predict what XML will be synthesised from a
particular object. These subtleties can mean Web ser-
vices are simple to use in a homogeneous implemen-
tation environment where native types can effectively
be shared (even if this is via an XML Schema rep-
resentation), but create barriers to interoperation in
a heterogeneous environment where different choices
are made in doing the mapping. This dependency on
implementation environments is contrary to the basic
premise of Web services.

Xen (Meijer, Schulte & Bierman 2003a, Meijer,
Schulte & Bierman 2003b, Bierman, Meijer & Schulte
2004) and its successor Cω (Microsoft Research 2004)
take a ‘superset’ approach by supporting XML data
and objects with simplified XML types and mod-
est extensions to object types. Making XML data
first-class avoids the problem of the opaque mapping
mechanism, and the programmer has a literal view
of the XML data instead. The disadvantage of this
approach is added complexity of having two disjoint
data models (XML data and objects) however lan-
guage features smooth the transition. For example,
Xen supports XPath-like expressions over objects and
accessing elements of XML data the same way as
fields of an object.

Our approach is to reject objects and concentrate
on XML data. In this respect, our approach is simi-
lar to that of XL (Florescu, Grünhagen & Kossmann
2002, Florescu, Grünhagen & Kossmann 2003), which
also leverages XQuery. However, our integration is
more austere, with no extensions to XQuery and an
emphasis on querying and synthesising XML data, in-
stead of a model of updating XML data ‘in place’ as
in XL’s UPDATE clause.

4.2 Web service standards

Our language features are designed to be compati-
ble with emerging Web service standards, particularly



SOAP 1.2 (Gudgin, Hadley, Mendelsohn, Moreau
& Nielsen 2003) and WSDL 2 (Chinnici, Gudgin,
Moreau, Schlimmer & Weerawarana 2004, Gudgin
et al. 2004). In some areas our language supports
a subset of a standard. For example, interface def-
initions written in our language are not as descrip-
tive as interface definitions written in WSDL. Sev-
eral options may be considered to integrate the pro-
posed programming language within infrastructures
supporting WSDL. For example, from an interface
definition in our language, it is conceivable to out-
put a partial WSDL interface definition that the pro-
grammer can then specialize. Another option would
be to support metadata annotations in our language
that programmers can use to add details necessary
to generate full WSDL interface definitions. On the
other hand, it is conceivable to generate stubs in our
programming language from WSDL interface defini-
tions. The same remarks apply to BPEL abstract
processes which can be seen as WSDL interfaces aug-
mented with behavioural aspects. The integration of
our language features with Web services standards is
discussed further in Section 5.

4.3 Concurrency

The approach to concurrency that we adopt is based
on join calculus (Fournet & Gonthier 1996). It differs
substantially from the approach followed by proposed
standards for Web service composition such as BPEL.
Indeed, BPEL (as well as other related proposals) in-
tegrates constructs inspired from process algebra (se-
quence, parallel blocks, conditional blocks, and block-
based loops) and other control-flow constructs such as
guarded transitions and block-based exception han-
dling. This mix of features can be explained by the
fact that BPEL inherits its design from business pro-
cess modelling and workflow languages, where the ba-
sic building block is the task and emphasis is placed
on capturing interdependencies between tasks. In our
proposed programming language on the other hand,
emphasis is on message production and consumption
which we take as the fundamental building blocks for
service interactions.

Join calculus concurrency features can be found
in several proposed programming languages. Our
compiler targets a modern virtual machine, and
Join Java (Itzstein & Kearney 2002) and Polyphonic
C# (Benton, Cardelli & Fournet 2002) demonstrate
that join patterns are implementable in this setting.
However neither Join Java and Polyphonic C# im-
plement pattern matching, required for our correla-
tion feature (see Section 5). In general, Web service
message passing, as opposed to local method calls,
make different implementation techniques appropri-
ate in our situation.

4.4 Message correlation

The XL language (Florescu et al. 2002, Florescu
et al. 2003) has explicit support for message correla-
tion in conversations. The most important difference
between the support we have designed for message
correlation, and the support in XL, is that our design
flexibly supports multiple, different correlation iden-
tifiers (and hence conversations) concurrently. The
auction example in XL (Florescu et al. 2002, §5) en-
lists all participants with a single correlation identifier
per-auction. As we have highlighted in Section 3.4,
this is sometimes undesirable or impossible.

Specifically, the tradeoffs between XL and our pro-
gramming language with respect to message correla-
tion can be summarised as follows.

• In XL the programmer uses annotations, similar
to those used to enlist components in transac-
tions, to specify whether a message should con-
tain a correlation identifier or whether a corre-
lation identifier should be created for an outgo-
ing message. Our scheme of lazily binding cor-
relation identifiers, including on outgoing mes-
sages, makes implementing services simpler be-
cause there is no need for annotations. However
XL supports some annotations that assert par-
ticular correlation identifiers will not be present
and can generate faults automatically. A pro-
grammer working in our language would have to
explicitly code this behaviour if it is desired.

• XL explicitly calls out certain variables as hav-
ing conversation-scope. This is analogous to in-
stance and static variables in a type definition in
Java and C#. In contrast, we appeal to nested
lexical scopes and up-level addressing. Nested
lexical scopes work well with correlation identi-
fiers, related by a service, that exist in 1 : n re-
lationships. The superiority of our approach to
handling 1 : n conversations over that of XL is
illustrated by the example of Section 3.4. The
code snippet in this section cannot be translated
to XL in a simple and direct way. The reason
is that XL’s conversation variables are declared
in flat, one-level statements. It would be pos-
sible to build the kind of nested conversations
shown in Section 3.4 by mutating “service level”
variables in XL. However, this encoding would
require the use of transactional XQuery features,
which does not directly capture the simple nature
of the example. Note that 1 : n conversations
are highly relevant in enterprise application de-
velopment, which is one of the main application
areas of Web services. For example, (Hohpe &
Woolf 2003) identifies 1 : n message correlation
as an important “pattern” of application integra-
tion (called the “Scatter-Gatherer”) and shows
the difficulty of capturing this pattern using con-
temporary programming languages and messag-
ing systems.

• XL supports an explicit conversation timeout
feature. A programmer working in our language
would have to program a timeout explicitly. This
involves modelling a simple state machine (not
timed out/timed out) using internal operations.

5 Conclusion

We have highlighted challenging issues in implement-
ing Web services and, acknowledging that service de-
velopment can not be driven purely by high-level
models, illustrated several novel programming lan-
guage features that support the implementation of
Web services. We have argued that these features im-
prove over previous related proposals in the key areas
of XML data, concurrency and message correlation.

Future directions We are implementing a com-
piler for our language design. The compiler currently
only supports a subset of the features outlined here.
The compiler produces binary components that run
on the the .NET CLR. These components can be de-
ployed as Web services with a minimal host program
written in C#. For low-level Web services protocol
support, the components bind to the Microsoft Web
Services Extensions (WSE) library. The concurrency
feature is implemented in terms of the shared-memory
concurrency primitives of the CLR.

Two interesting implementation aspects yet to
be explored are compiling correlated messages and



garbage collection. To compile correlated messages
we plan to add pattern matching to our join mech-
anism, and desugar correlated messages to use join
patterns and pattern matching. Garbage collection
might be able to be lifted into our environment’s
garbage collector. However the compiler can detect
‘dead’ states in which closures can not activate any
more messages and hence can be garbage collected,
and emit information for a specialised garbage collec-
tor. Note that, by virtue of the locality property of
the join calculus concurrency feature, this is a local
and not a distributed garbage collector.

Some aspects of the language we will investigate
later include the semantics of assignment under con-
current messages, and failures. A simple scheme is
to capture copies of variables from containing scopes
and encourage the programmer to use explicit mes-
sages where shared variables are required. Propagat-
ing failures to clients correctly is potentially complex
and interesting. We plan to use WSDL’s model of
failure propagation as a starting point.

With respect to the integration of the proposed
language with Web services standards such as XML
Schema, WSDL, BPEL and WS-CDL, we intend
to explore several alternatives for generating code
or checking the consistency between services imple-
mented in our language and types, interfaces, and
processes defined in these standards. As discussed
in Section 4, it is conceivable to generate (partial)
WSDL interface definitions from service interfaces de-
fined in our language, or vice-versa. Also, there are
interesting relationships between the message corre-
lation feature and XML Schema types: XML Schema
types define cardinality constraints on data elements
that may subsequently relate to cardinalities in mes-
sage patterns (for example if a program iterates over
several XML elements and sends a message for each
element). Finally, consistency checks may be per-
formed between collections of join patterns on the one
hand, and BPEL abstract process definitions on the
other. Given the complexity of the languages in ques-
tion, and the potentially complex interplay between
their features, we are not overly optimistic of being
able to perform extensive static checks. However dy-
namic checks may be feasible.
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