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Abstract

Data integration systems play an important role in the development of distributed

multi-database systems. Data integration collects data from heterogeneous and

distributed sources, and provides a global view of data to the users. Systems need

to process user’s applications in the shortest possible time. The virtualization

approach to data integration systems ensures that the answers to user requests

are the most up-to-date ones. In contrast, the materialization approach reduces

data transmission time at the expense of data consistency between the central

and remote sites. The virtualization approach to data integration systems can be

applied in either batch or online mode. Batch processing requires all data to be

available at a central site before processing is started. Delays in transmission of

data over a network contribute to a longer processing time. On the other hand,

in an online processing mode data integration is performed piece-by-piece as soon

as a unit of data is available at the central site. An online processing mode

presents the partial results to the users earlier. Due to the heterogeneity of data

models at the remote sites, a semistructured global view of data is required. The

performance of data integration systems depends on an appropriate data model

and the appropriate data integration algorithms used.

This thesis presents a new algorithm for immediate processing of data collected

from remote and autonomous database systems. The algorithm utilizes the idle

processing states while the central site waits for completion of data transmission

to produce instant partial results. A decomposition strategy included in the algo-

rithm balances of the computations between the central and remote sites to force

maximum resource utilization at both sites. The thesis chooses the XML data

model for the representation of semistructured data, and presents a new formal-

ization of the XML data model together with a set of algebraic operations. The

XML data model is used to provide a virtual global view of semistructured data.

The algebraic operators are consistent with operations of relational algebra, such

that any existing syntax based query optimization technique developed for the re-

lational model of data can be directly applied. The thesis shows how to optimize

v



online processing by generating one online integration plan for several data incre-

ments. Further, the thesis shows how each independent increment expression can

be processed in a parallel mode on a multi core processor system. The dynamic

scheduling system proposed in the thesis is able to defer or terminate a plan such

that materialization updates and unnecessary computations are minimized. The

thesis shows that processing data chunks of fragmented XML documents allows

for data integration in a shorter period of time.

Finally, the thesis provides a clear formalization of the semistructured data

model, a set of algorithms with high-level descriptions, and running examples.

These formal backgrounds show that the proposed algorithms are implementable.
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Chapter 1

Introduction

1.1 Motivation

In modern data processing, there are many reasons why database systems are

distributed over a network. First, data grows so fast that the volume of data

is too large, and it is too expensive to provide computing hardware to manage

the database. The second reason is to provide the user with better access by

placing the database at the nearest location. Distributed database systems may

start from a centralized database system which is then fragmented into several

database systems for whatever reason. They are usually developed using homoge-

neous database systems, and with a well defined database schema. On the other

hand, distributed database systems may start from independent database systems

which are connected over a network in order to get a bigger picture of data. They

are usually heterogeneous, since the external database sites connected over the

network can be developed independently accordingly to their own characteristics.

Distributed database systems are scalable, such that a new database node can be

added to the network whenever it is needed.

Distributed database systems allow raw data to be scattered over the network,

and sometimes with an undefined global schema. Despite the fact that being

distributed creates some benefits, processing data over a network faces some ob-

stacles. Data processing requires transmission costs which are unpredictable, the

number of external sites are growing, and various data structures are used. As a

consequence, an additional effort is required if a bigger picture of data is desirable.

A data integration system gathers data from different sources in order to pro-

vide answers to user queries. Data integration systems are classified into two dif-

ferent approaches, the materialization approach and the virtualization approach. A

materialization approach data integration system collects data from multiple data

sources and makes a copy of the data at the central site. Then, user queries are

computed against materialized data at the central site. To maintain consistency

1



1.1. Motivation 2

of the data sources, a materialized data must be refreshed from time to time either

via an immediate or a delayed update. In an immediate update, any change to the

data source is instantly applied to its corresponding materialized data. The data

source plays an important role in order to keep materialized data up-to-date. On

the other hand, an update to the materialized data is performed at a scheduled

time or when it is desired. A delayed update may cause inconsistency between

materialized data and the data sources.

In a virtualization approach data integration system, the central site provides

a virtual global view of data over network. User queries to the central site are

decomposed and sent to the external sites for computation. Then, the external

sites transmit the results to the central site for further processing. In this approach,

the up-to-date data in distributed database systems can be obtained. The biggest

challenge of the virtualization approach to data integration is to provide data to

user within a reasonable processing time.

Processing of a user request may be performed either in a batch or an online

processing mode. In a batch processing mode, computation is performed on a

collection of input data. Batch processing requires that all data be available at

the central site before computation can be started. Since data integration systems

involve large data, batch processing of user queries is frustrating and requires a

longer time to get results.

Meanwhile, online processing allows data integration to be performed as soon

as a unit of data is available at the central site. Online integration is a process

of continuous consolidation of data transmitted over a network with the data

already available at the central site of a distributed multi-database system. Online

integration applies online processing where a unit of increment data is instantly

processed without having the entire set of data available. Then, the result of

the incremental data processing is combined with the current state to get a new

state of processing. Online data integration takes advantage of online processing

by utilizing of waiting time for data transmission, starts processing earlier, and

therefore reduce processing time.

Another challenge of a data integration system is unification of heterogeneous

data models. The global view of external database sites has to be good enough

to give a uniform model of heterogeneous data in a distributed multi-database

system. In the last decade, semistructured data has been used as a model for

information exchange. The semistructured data model represents complex struc-

tures, is expandable, and is human-machine readable. XML has been widely used

for representing semistructured data.



1.2. The Problem Statement 3

This chapter presents an introduction to the topic. Section 1.1 describes the

motivation of the thesis. The research problem is stated in 1.2, then the thesis is

outlined in Section 1.3.

1.2 The Problem Statement

In this thesis, we assume the virtualization approach to a data integration system

where the external database sites are highly autonomous. The virtualization ap-

proach to data integration requires a global view of heterogeneous data which is

inherently based on the concept of the relational model. Data integration based

on the relational model is not suitable for semistructured data. Apart from that,

using a batch processing mode in a data integration system requires a longer time

to get the first results of the computation.

It is proposed that online data integration powered with a suitable data model

and algebra can provide improved performance of a data integration system. The

central question to be answered is how to develop an efficient data integration

system with a global view of semistructured data.

To answer these problems, we decompose them into smaller sub problems as

follows:

1. The system must provide a global view of semistructured data for online data

integration. It can be solved by providing answers to the following problems:

(a) How to design a formalization of the XML model for online processing.

(b) How can a set of XML algebraic operators and rules for semistructured

data be designed such that it is consistent with the relational algebra.

2. The system must provide online data integration to process user queries.

Answers to the following problems lead to a solution:

(a) How to provide a good query decomposition strategy to balance pro-

cessing between the central site and the external sites.

(b) How to design an online algorithm which allows processing of incremen-

tal data.

(c) How to generate suitable execution plans depending on the circum-

stances of data increments.

(d) How can a scheduling system provide a good strategy to execute all

plans generated.
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(e) How to efficiently process large size documents in the data integration

system.

The purpose of this thesis is to address the problems stated above in the fol-

lowing ways:

1. In order to provide a global view of semistructured data for online process-

ing, an approach to the formalization of an XML data model is presented.

This approach is based on an extension of Regular Tree Grammar which

allows one to build a structure where an element may be used in several lev-

els of a document. The Extended Tree Grammar allows easy manipulation

of the XML document’s structure, such as document extraction, concatena-

tion, and element removal. The features of Extended Tree Grammar play

an important role when operations in a data integration expression are per-

formed. Moreover, in processing large size XML documents, the Extended

Tree Grammar supports the fragmentation operation of XML documents, as

well as the defragmentation operation.

2. A new approach to the definition of an XML algebra for online processing

is presented. XML algebra operators which are consistent with relational

algebra are introduced. Operations on Extended Tree Grammar which allow

modification of the XML document structure are presented. The operators

of XML algebra process data containers. A data container is a set of XML

documents, and is equivalent to a table in the relational model. The system

includes the following basic operators: projection, selection, join, antijoin

and union. The XML algebraic operators and their properties have a special

emphasis which allows incremental processing of a data integration expres-

sion.

3. A query decomposition strategy is presened which considers the characteris-

tics of all resources in a multi-network database system, including the remote

sites, the central site, and the network. The approach balances query pro-

cessing between the central and remote sites to improve the performance

of processing. A global query expression is broken into sub-expressions and

finds a set of sub-expressions whose overall processing requires the lowest

cost. A cost function is introduced, as well as a set of algorithms, in order

to achieve optimal query decomposition.

4. The problem of efficient data integration is tackled by exploiting algebraic

properties of our operators. This permits the study of equivalence of data
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integration expressions, and the production of a set of transformation rules

which allows the processing of data integration in an online mode, where

a unit of data increment is computed without waiting for the entire data

to be available at the central site. The transformation rules produce an

increment expression which combines the result of processing a unit of data

increment with the previous result of data integration to obtain a new state

of computation. The increment expression allows data integration to start

its computation as soon as a unit of data arrives at the central site.

5. Transformation of the increment expressions into an online integration plan is

shown by mapping every simple algebraic expression into corresponding step.

The transformation starts from the inner-most XML algebraic operation.

The online integration plan includes operations to update the materialized

results of computation, and is generated for every data container involved in

a data integration expression.

6. A dynamic scheduling for online data integration is described based on the

data behavior to tackle inefficiency of static scheduling of online integration

plan. This approach is to minimize the number of data involved in a single

operation by giving a higher priority to operations which potentially reduce

the number of result data. Moreover, a scheduling algorithm is presented

based on the sliding window model, and employs the statistic of data incre-

ment in the sliding window to determine the next online integration plan to

be executed. This approach also minimize operations to update the materi-

alized results which require expensive IO costs by deferring or terminating a

plan.

7. The dynamic scheduling system is extended by processing of multiple data

increments. The algebraic properties allow us to transform a data integration

expression into a single increment expression for multiple data increments,

and then produce one online integration plan. This approach reduces the

operations to update the materialized result of computation and therefore

increases the system performance.

8. The inefficiency of processing data integration on large size XML documents

is tackled by processing them as fragmented XML documents. The XML

data model in this thesis allows for the representation of incomplete XML

documents. It is proposed to use one bounded and one rover data container

to replace a data container in the data integration expression. This approach
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adjusts the size of data increments to trigger their processing without waiting

for the entire complete XML document to become available at the central

site, therefore reducing waiting time to start processing a data increment. An

additional algebraic operation for enabling computation of XML fragments

is also presented. The algebraic properties allow the online processing of in-

complete XML documents to achieve better performance of data integration

on large XML documents.

1.3 Outline

The thesis document is organized as follows: Chapter 1 summarizes the motivation

and problem statements. It also describes a brief idea on how to tackle the problem,

and lists the thesis contributions.

Chapter 2 describes some works which are related to this thesis. It describes

the most popular XML data models and XML algebras. Then, some existing

incremental processing systems and algorithms are described. This is followed by

a discussion of existing research in the stream processing on XML fragments. It

includes a critical review of related works.

In Chapter 3 an XML data model and XML algebra are proposed to support

online data integration system. Extended Tree Grammar is introduced as the

data model of XML documents, and the operators to manipulate the structure of

such documents are described. The XML algebraic operators which support online

data integration systems are discussed, and the XML algebra properties which are

important in the incremental processing system are described.

Chapter 4 describes the core of the thesis: online data integration systems.

The processing of user queries from when they are received by the central site

until results are sent back to user are discussed. A dynamic decomposition strat-

egy is designed to balance processing between the central and remote sites. Then,

the transformation of a data integration expression into an increment expression

is described, followed by generation of an online integration plan. The dynamic

scheduling system to achieve better performance on various data increment en-

vironments is also described. This chapter includes the algorithms and sufficient

running examples in order to give a better explanation.

Next, in Chapter 5 the online data integration system is extended to work on

concurrent data increments. A detail approach on re-optimization is described

which reduces the high cost IO operations, and which processes multiple data

increments at the same time. Modified algorithms of the online integration system
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are described such that they are ready for processing concurrent data increments.

Chapter 6 extends the system to enable the processing of XML fragments. It

describes the data model of a fragmented XML document and its components. It

also includes the principles and assumptions made in order to process the fragments

in a online integration system. Some Extended Tree Grammar’s operators are

appended to manipulate the structure of an XML document, as well as some XML

algebraic operators.

Chapter 7 summarizes the study, draws conclusions, and lists some future av-

enues of research.



Chapter 2

Related Works

In this chapter a survey of some previous works which are related to this thesis

are presented. In Section 2.1 some XML data models and algebras are reviewed,

and existing approaches to formulate a data model and an XML algebra specif-

ically for online integration of semistructured data are investigated. Section 2.2

describes several existing data integration systems. Then existing incremental

query processing algorithms and data integration systems are reviewed in Section

2.3. Dynamic scheduling systems are discussed in Section 2.4, while in Section

2.5 some existing techniques to perform integration on XML fragments and XML

stream data are discussed.

2.1 XML Data Model and Algebra

In the last decade, XML has became a ubiquitous standard for the representa-

tion of data, and hence the need for data integration of XML or semistructured

data has emerged. Researchers have put a lot of their efforts into finding an ap-

propriate formalization of a data model and algebra for the data integration of

semistructured data. Generally, a schema is used to describe the structure of

documents, and further to provide data constraints. Schema for an XML docu-

ment can be classified into three groups based on their tree languages: local tree

grammar (DTDs), single-type tree grammar (W3C XML-Schema) and regular tree

grammar (RELAX Core, XDuce, TREX, RELAX NG) [38, 75, 78].

The evolution of a schema language for XML documents affected the query evo-

lutions, and as a result various XML algebras have emerged. In general, an XML

algebra is categorized into tree-based algebra and tuple-based algebra. YAT[24],

XTasy[93], XAT[107], SAL[7] are examples of tuple-based algebras. On the other

hand, TAX[57] and XAnswer[71] are classified as XML tree-based algebras. Mean-

while, DUMAX[20] provides fuse node-based and tree-based features.

8
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2.1.1 XML Algebra (XAL)

In XAL (XML Algebra) [37], an XML document is modeled as a rooted connected

directed cyclic or acyclic graph G = (V,E,O, root), where V (vertices) represents

elements or simple values, E is a set of directed edges to connect parent and child

elements, O is a list contains edges which share the same parent and root ∈ V .

Algebraic operators in XAL are classified into three groups of operator:

1. Extraction operators, which are used to retrieve relevant data from XML doc-

uments and to return a collection of vertices from an input XML document.

It consists of projection, selection, unorder, distinct, sort, join, cartesian

product, union, difference, and intersection operators.

2. Meta-operators, which provide a mechanism to express collections which ap-

pear more than once. The operators are used to express repetition at the

input or operator level. Operators included in this group are map, and Kleene

Star operators.

3. Construction operators, which are used to build an output XML document

from data which are extracted from an input XML document. Construction

operators include create vertex, create edge, and copy examples operators.

XAL operators are very similar to those of relational algebra but some operator

definitions are not clear [17]. XAL is claimed to be more flexible than relational

algebra, since the extraction operators work on collections with different types of

elements [37].

2.1.2 XAnswer

XAnswer [71] defines its algebraic operations on a relational-like data structure.

This algebra is based on some elements of XAT [108] and Galax [34]. Its algebraic

operations are defined over ordered sets of tuples. XAnswer uses a data structure

called Envelope (〈he|be|re〉) where he represents header, be contains body and re

is the result. A tuple in XAnswer is either a set or a sequence of single values [70].

XAnswer provides unary operators (function execution, selection, projection,

sort, index, nest, unnest, duplicate) and binary operators (union, cross product,

left-outer-join). XAnwer proposed some different operators to the relational al-

gebraic operators. First, union operation in XAnswer does not remove duplicate

tuples. Then, XAnswer introduces a new left-outer-join operator instead of ex-

pressing left-outer-join using selection, cross product and union operators.
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XAnswer has the disadvantage of tuple-based algebras when transforming an

XML document structure into tuples and vice versa by employing nest and unnest

operators. Unlike other tuple-based algebras, nest and unnest operators in XAn-

swer are not complementary.

2.1.3 Tree Algebra for XML (TAX)

TAX (Tree algebra for XML) [57] is an XML algebra which represents a document

in an ordered labeled tree. Every XML element is represented as a node which

has:

1. A tag attribute which is a single-valued attribute to indicate the type of

element;

2. A content attribute which represents atomic value and can be any of atomic

types;

3. Several pedigree attributes to carry the information of element’s predeces-

sor. They are very useful for data manipulation and comparison.

TAX provides unary and binary operators (Selection, Projection, Product,

Grouping, Aggregation, Renaming, Reordering, Copy and Paste, Value Updates,

Node Deletion, Node Insertion) and some set operators (intersection,difference).

TAX is a set-at-a-time algebra whose operators operate on one or more sets of

XML documents and produce a set of XML documents as results [80, 82].

TAX defines a pattern tree to identify the subset of nodes of interest in any

tree in a collection of tree, and to manipulate trees directly. A pattern tree can

be used to bind a number of variables to represent multiple conditions in a single

expression.

Despite the fact that most of TAX operators are compatible with the relational

algebra, an extension of TAX includes two join operators [80] which are designed

for different purposes. ValueJoin looks like an ordinary join operation which

performs through application of a nested loop where a node value at the first set of

XML documents matches with a node value at the second set of XML documents.

StructuralJoin is an operation to connect two XML documents vertically, such

that the second XML document becomes a sub-tree of the other. In this case, it

is reasonable that TAX operates on an ordered set of XML document.

TAX has pros and cons [17, 93]. Its set of algebraic operators has clear seman-

tics, and includes grouping and node deletion operators. On the other hand, the
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concept of a tree pattern represents different concepts from the classical relational

algebra. Carlo [93] criticizes that TAX optimization properties are not clear.

The idea of a tree pattern invites many researches to find its best performance

in matching, reordering, expressiveness and optimization [45]. The importance

of having a better algorithm to support tree pattern is shown by a number of

tree pattern algorithms, such as: Generalized Tree Pattern [21, 22, 23], Annotated

Tree Pattern [81, 83], Global Query Pattern Tree [105], and Twig Pattern [64, 102].

2.1.4 Discussion

The data model is an important factor because it determines the way we design

a set of algebraic operators which are used to manipulate XML documents and

their structures. Most existing XML data models can be classified into either a

graph or a tree data model. A tree data model has better data structure than the

graph for processing XML documents because both XML documents and memory

have the same structures, a tree structure. The online data integration requires

an XML data model which allows manipulation of XML documents in tree-based

operations to obtain a better system performance.

On the other hand, data integration for a relational database has been estab-

lished in a last decade. It incorporates numerous performance tuning algorithms

which have been well proven. In order to utilize the performance tuning algo-

rithms for the relational algebra, the online integration system requires a set of

algebraic operations which are consistent with the relational algebra. Unfortu-

nately, existing XML models whose algebraic operations are consistent with the

relational algebra require expensive operation costs to convert the XML document

tree structures into tuples and vice versa.

Furthermore, the existing XML algebras presented earlier have insufficient

properties such that they can be used for online data integration systems. There-

fore, the existing XML data models and their algebraic operations are used here

as underlying support to propose an XML data model along with its algebraic

operations to support online data integration system.

2.2 Data Integration System

The goal of a data integration system is to offer a uniform access to a set of

autonomous and heterogeneous data sources. It deals with the task of combining
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the contents of different information sources into global data. Data integration

systems are generally equipped with a mediator at the central site and wrappers

at the remote sites. A mediator has a role to provide a general view of data, to

receive a user query, to send sub-queries to the wrappers, and then to integrate the

sub-query results to produce a final answer to the user. Meanwhile, the wrappers

have a responsibility to map the general view into the data sources.

Data integration systems can be classified based on how data access is con-

trolled as follows [77, 91]:

1. In a materialization approach, data from participating remote sites are trans-

formed into a local repository at the central site to be queried later. In this

case, we have to discover all schema of the data sources at the remote sites.

The global view of the network database is provided by a mediator. More-

over, wrappers have a role to transform the data sources into to a common

data model. Then, the central site combines data received from the remote

sites. In a data integration system, the user queries are answered by retrieval

to the materialized database at the central site. This approach is widely used

for Data Warehousing or Business Intelligence systems [60, 77, 90, 98, 103]

2. In a virtualization approach, information is accessed on-demand. Mediators

have enough information about the availability of data sources and their

wrappers. When a user query arrives at the central site, the mediator de-

composes the user query into several sub-queries and sends them to the

corresponding remote sites. In the next step, wrappers have a responsibility

to send the results of the computation to the central site for further process-

ing. In this approach, the central site does not store integrated information

at a local repository [8, 27, 28, 65, 95].

A typical data integration solution needs to explore the following aspects [25]:

1. Query system: Since data integration systems work in a network database

system, they require a query system which focuses on querying disparate

data.

2. Number of external data sources: As the number of external databases

increases, a more complex strategy is needed to obtain a better computation

balance between the central site and external sites.

3. Data source heterogeneity: External data sources are often developed

with various database systems, data models, and data structures. Data in-

tegration systems have to provide a method to transform the heterogeneous
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structure of data sources into a uniform structure. They must have an alge-

braic model that operates on the designated uniform structure.

4. External site autonomy: The external sites often belong to disparate

administrative entities, therefore the central site has limited access to data

sources. The level of coordination between the central site and the external

site must be maintained such that the central site has a correct global view

of external sites.

Data integration systems based on the relational model have been widely re-

searched for many years, which has led to numerous techniques to gather data

sources from network database systems [46, 66, 67]. Achievements in the relational

model integration are elaborated when XML becomes a standard for information

interchange, but cannot be directly applied since their data structures are different.

One research direction in data integration is to provide an efficient query pro-

cessing in a dynamic, scalable and heterogeneous network database environment

[5, 15, 44, 55, 76]. Materialized views are often used to provide efficient decision-

support queries [47, 50, 96, 104], but maintaining them is not an easy task. To

obtain better performance, incremental processing is employed to maintain mate-

rialized views [11, 30].

Another research direction is to provide schema mapping between mediated

and data sources [18, 58, 74, 84, 87, 106]. DIXSE [89] provides a data integra-

tion system to integrate heterogeneous data sources. It supports a semantic level

integration, which takes several DTDs of the data sources and generate a semi-

automatic conceptual schema. Almarimi [1] proposed a data integration framework

which is able to resolve structural and semantic conflicts for distributed heteroge-

neous XML data. It provides a global XML schema as a homogeneous view of the

heterogeneous data sources. Dong [26] proposed a probabilistic semantic mapping

for uncertainty mapping.

Some researchers have proposed data integration system based on the similarity

of data source’s content and/or structure [6, 19, 33, 68, 85]. Viyanon [98] proposed

an integration technique based on content and structure by detecting the similarity

of subtrees. An XML data integration system based on an identification of nodes

coming from different sources has been proposed in [86].

Data integration systems for semistructured data require a model and algebra

that allow for an efficient processing of semistructured structures. The current

author has proposed a tree-based XML algebra generalizing the relational algebra

[48].
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Figure 2.1: Nimble architecture (after [27, 28])

2.2.1 Logic-based XML Data Integration

Logic-based XML data integration was introduced by May [77] with an assumption

that data sources at the remote sites do not change often. This data integration

system employs a graph-based data model (XTreeGraph) to represent the over-

lapping of XML trees and XPathLog as a data manipulation and data integration

language [77].

XTreeGraph is used as an internal data model not to represent an XML doc-

ument, but its edge-labeled graph which represents a forest of overlapping XML

trees to fit with data integration requirements. In this model, XML documents

are defined as views, and subtrees may belong to several tree views [77].

This integration technique is classified as a semi-materializing approach, since

not all objects are being copied and materialized at the local, integrated database.

For some XML subtrees which are not structurally updated in the integration

process, the system will preserve them at the original data sources and create a

reference via links to them. Further, the system is willing to reuse the largest

possible substructures of the original sources. User queries which are sent to the

system are then forwarded to the references at runtime. This method will save

memory and time to copy data, and ensures that user queries get the most up-to-

date results.

2.2.2 Nimble XML Data Integration System

Nimble is a commercial data integration system which handles semistructured data

and was designed based on the integration engine of XML-QL. It employs a set

of mediated schemas in a global-as-view like approach [27]. Figure 2.1 shows the

Nimble data integration system architecture.
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Nimble provides a multi layer of access and multiple target sources. Its compiler

translates and breaks a user query which is received at the integration engine into

an appropriate query language [28]. Nimble tries to accommodate all types of

queries and executes each of them according to the destination sources. Instead of

employing a transformation procedure to convert data from the destination sources

into a common data model, Nimble provides a universal algebra that supports

operation on relational and semistructured data models.

2.3 Incremental Data Integration

In general, computation of a data integration system can be started whenever all

data are available at the central site. Online integration is a process of continu-

ous consolidation of data transmitted over wide area networks with data already

available at a central site of a network database system [41]. It applies online

processing, which means that theoretically infinite sequences of input data are

processed in a piece-by-piece mode without having the entire set of data available

from the very beginning [3, 35, 88, 100].

The continuity of the process requires the activation of a data integration pro-

cedure each time a new portion of data is received at a central site [41]. Online

data integration systems do not delay the processing of incoming data until all

transmissions from the remote sites are completed. Instead, the transmitted pack-

ets of data are integrated with the partial results as soon as they arrive at a central

site. Such an approach reduces time spent by a user in waiting for the first result

from a running application, and it allows for an early termination of an application

when the initial results are inconsistent with expectations.

An efficient implementation of online algorithms is based on the principle of

incremental and/or decremental processing of data, where the current state of

processing is combined with the increments and/or decrements of incoming data

in order to obtain a new state of processing.

An important advantage of online integration is its ability to utilize unused

computational resources at a central site while data is transmitted over a network.

Foster [36] concluded that freely available distributed data sets and fast wide-area

networks will promote online data integration as an important research area of

distributed computing. The performance of online data integration depends on

the advanced online algorithms used for consolidation of data, and the efficient

optimization of online integration plans. Getta [39], proposed an optimization of

task processing schedules where a task submitted at a central site is decomposed
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Figure 2.2: Tukwila query processor (after [55])

into a number of individual tasks for processing at the remote sites. He proposed a

number of static optimization techniques for data integration plans in a relational

algebra expression.

The research on online integration can be traced back to the work on query

processing in a network or federated database systems [41, 94]. Unpredictable

behavior of the data transmissions in wide area networks and strong autonomy

of the remote database systems makes the estimation of query processing time

difficult and imprecise. A query processing plan could be optimal only when it

matches a certain circumstance, but falls to its worst on others. Therefore, a

reactive execution plan is needed in order to adapt to network circumstance and

remote site availability.

According to Ives [55], the following techniques can be employed in order to

get a good performance of online integration on semistructured data:

1. equip the system with a pipelined execution for streaming XML data;

2. using adaptive operators for processing over various data transfer rates; and

3. query re-optimization.

Ives proposed Tukwila [55] which presents an adaptive optimization query pro-

cessor, as shown in Figure 2.2. Sayed [29] proposed a system to maintain ma-

terialized XQuery view by performing incremental update to gain better access

to data sources. Fegaras [30] and Bonifati [11] proposed systems for incremental

maintenance of the XML view. Salem in [91] proposed an integration system for

near real-time requirements and realized data which utilizes Active XML.
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2.3.1 Incremental Maintenance of Materialized XML Views

One of the biggest challenges in a materialization approach to data integration

is maintaining a materialized database with up-to-date data sources. Whenever

an update occurs at a data source, the corresponding materialized view at the

integration database must be updated such that the user query to the integration

database gets the most up-to-date data. Maintaining materialized views by execu-

tion of the corresponding views over updated data sources requires re-computation

cost which is too expensive. Incremental processing to maintain a materialized

XML view provides freshness of views of data with less operation costs [2, 30].

Abiteboul [2] proposed an algorithm which produces a set of queries when the

source has different states. Then, the queries are executed over the XML view to

obtain the most up-to-date results. The system is based on a graph data model,

and a query language Lorel. The algorithm is scalable and has a simple query ex-

ecution strategy, but in some situations the incremental maintenance performance

can be as good as full re-computation of XML view.

Fegaras [30] generates a view XQuery expression e′ which is a right-inverse of a

view XQuery expression e such that e(e′(V )) = V where V is a state of view. Then,

a composition F (V ) is generated such that F (V ) = e(u(e′(V ))) and u represent

update to the source data. In the next step, F (V ) is transformed into a set of

XQuery updates (XUF) which modify an XML view V to reach a new state of

XML view.

2.3.2 Incremental Recomputations in Materialized Data

Integration

Computation of materialized view, materialized data integration and MapReduce

share a similar process. They take data from heterogeneous data sources, perform

some transformation techniques, and store the results back to a database system.

A materialized view uses a user-defined view definition to perform the transfor-

mation. Meanwhile, a materialized data integration employs the ETL process

(Extract, Transform and Load), and MapReduce employs a user-defined map and

reduce functions [60, 61].

Although these algorithms are similar, there is an important difference in the

technique used to get a new state of results whenever the data sources are updated.

A materialized view employs a user function to enable incremental computation

such that an incoming update is computed and merged to the current results

without re-computation of the data sources from scratch. However, incremental
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Figure 2.3: Incremental query processing on Big Data streams (after [31])

computation is not supported in materialized data integration and MapReduce,

and therefore re-computation must be performed to get the most up-to-date results

[60, 61].

Jörg [60] proposed an incremental processing approach to materialized data in-

tegration and MapReduce using incremental techniques in the maintenance view.

Incremental processing on materialized data integration is based on algebraic dif-

ferencing of ETL jobs using recursive applications of standard delta rules [43] to

the original algebra expression. Furthermore, it uses Magic Sets to reduce the

CPU cost as cleansing overhead of ETL incremental processing.

2.3.3 Incremental Query Processing on Big Data Streams

Recently, Fegaras [31] proposed an incremental query processing for a large-scale

database called MRQL Streaming. This incremental processing works on Big Data

streams by transforming any SQL-like query into an incremental distributed stream

processing engine (DPSE) program to produce accurate results, not approximate

answers. Analysis tools based on batch processing may be expensive to compute

Big Data that grows rapidly.

In MRQL Streaming, a dataset is defined as a set of hierarchical data like XML

or JSON. A streaming query is expressed as q(S) where Si ∈ S and Si : i = 0, . . . , n

is a streaming data source. Si contains an initial dataset and is followed by a

continuous incremental stream ∆Si in time interval ∆t.

For a monoid homomorphic query h(S), incremental processing is performed

by combining the result query at time t with the results of a query on ∆Si, such

that h(S ]∆S) = h(S)
⊗

h(∆S).
⊗

is a merge function which is implemented as

a partitioned join. Meanwhile, a non-monoid homomorphic query q(S) is trans-

formed such that all non-monoid homomorphic parts are pulled out and a monoid

homomorphic query h is constructed, q(S) = a(h(S)).
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In the case of a streaming dataset which contains insertions and deletions,

Fegaras [31] creates a decremental batch ∆S ′i such that the dataset becomes Si ]
∆Si −∆S ′i at time t+ ∆t. In this research, ∆S ′i is required to be available in the

stream (∆Si ⊆ Si). This means that the decremental updates have to be placed

at the end of the stream in order to ensure that the system generates the correct

results.

2.4 Dynamic Query Scheduling Systems

In order to compute a user request, a query execution engine transforms a user

query into an ordered physical algebraic operation called query execution plan.

A static scheduling system allows sequential processing of a QEP, starting from

the first algebraic operation until all operations are executed. A static scheduling

system is good for simple QEPs, which do not require massive I/O access, and has

minimal idle CPU cycles. In a single processor system, optimization of query pro-

cessing can be obtained by modification of QEP executions such that the problem

of a static scheduling system can be overcome.

Query scrambling is a popular dynamic scheduling strategy in a network database

system. It modifies the query plan whenever unexpected delay, at initial delay,

burst arrival, and/or slow delivery, occurs at any data source. The dynamic

scheduling strategy proposed in [4, 97] optimizes query execution by reducing

idle time. Ives [55, 56] proposed overlapping multiple I/O operations from dif-

ferent data sources and pipelined execution to utilize idle time and achieve faster

computation.

An efficient dynamic scheduling system must be supported by a monitoring

system which will continuously collect behaviour of the query engine in order to

find the optimal execution time. Gounaris [42] proposed self-monitoring query

operators to obtain completion time and number of results. The information is

useful to refine the cost model and to decide the next query plan to execute in

order to obtain optimal performance.

Bouganim [14] proposed an integration system which includes delay in the ex-

ecution strategy by monitoring the arrival rate and available memory. Meanwhile,

Getta [40] proposed a combination of query scrambling and reduction technique

for integration system.
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2.5 Processing on Incomplete XML Documents

Incomplete semistructure data refers to a case where some parts of an XML docu-

ment are not available at the central site before integration starts. Incompleteness

of a document can be as follows [59]:

1. Structural incompleteness, where some parts of the structure of a docu-

ment have not been received at the central site. Structural incompleteness

always leads to intractability of query answering.

2. Labeling and data value incompleteness, where the structure of a docu-

ment is available at the central site although some labellings and data values

are not.

A set of XML fragments which are available at the central site forms incomplete

documents. In some cases, incomplete documents have enough properties to allow

computation without having the rest fragments arrive at the central site.

XML fragmentation is often used to increase the performance of query pro-

cessing by cutting queries into smaller sub-queries to operate concurrently on

fragments, then the results of sub-queries are combined to obtain the final results.

2.5.1 Fragmentation Techniques

XML fragmentation is divided into two major techniques, ad-hoc and structured

fragmentation [79]. Ad-hoc fragmentation is a technique where arbitrarily nodes

are removed from the origin of the XML document. On the other hand, structured

fragmentation is a technique based on the defined schema. XML fragments in

structured fragmentation are usually generated by application of a set of algebraic

operations [16].

Constraint-based fragmentation can be classified as ad-hoc one, where the

fragmentation is obtained according to specific properties of the fragments. Boni-

fati [10] proposed the SimpleX algorithm to create XML vertical fragmentation

with a structural constraint on size, tree-width, and tree-depth. SimpleX has a

set of top-down heuristics which start from the root of XML documents and cut

the sub-tree whenever it satisfies the constraint of size, tree-width and tree-depth.

Conversely, Jin [59] proposed a cost-based fragmentation where the upper size limit

of an XML fragment becomes an important parameter.

Hole-filler, introduced by Bose [13], is an ad-hoc fragmentation technique

which has attracted many researchers. In the hole-filler model, a complete XML
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document can be pruned arbitrarily into a number of XML fragments. Every XML

fragment is associated with a unique filler ID and has a set of holes which repre-

sent empty places where other fragments could be connected to form a complete

document. The structure of the original XML document and how it is fragmented

is presented in a simple recursive DTD named Tag Structure [13].

Lee [92] proposed XML fragment labeling (XFL) to improve hole-filler

with Dewey order encoding as a labeling system for XML fragments. XFL enables

processing of dynamic stream size and is equipped with XPath step reduction for

query processing optimation.

Structured fragmentation, on the other hand, takes advantage of fragmentation

in the relational model. Most of the techniques are related to the problem of how

to break a large amount of XML databases into a number of physical storages.

Braganholo [16] classifies XML fragmentation techniques as: horizontal, vertical,

and hybrid fragmentation. Horizontal fragmentation divides a set of XML doc-

uments into some sets of XML documents according to their matching criteria.

Horizontal fragmentation is constructed by application of selection over a set of

XML documents, therefore their schema remains the same. By contrast, in the

vertical fragmentation, an XML document in a source database is cut into some

smaller XML fragments by application of the projection operation, then XML doc-

uments which have the same schema are located at a set. As a result, the XML

fragments have different schema than its origin document. Hybrid fragmentation

is a composition of horizontal and vertical fragmentation [16]. Ma [72] proposed

similar fragmentation techniques, but using an object database approach to define

horizontal, vertical and split fragmentations.

Birhani [9] proposed two fragmentation models, query based and structure-and-

size based fragmentation. In a query based fragmentation, a vertical fragmentation

is based on bond energy and graphical based algorithm where an XML document

is projected according to groups of its elements. Meanwhile, structured-and-size-

based fragmentation is proposed to partition XML documents according to the

limitation of the device which will use the data. However, these two algorithms

are not formally defined in his paper.

2.5.2 Query Processing on XML Stream Data

XML stream data is a form of data source which continuously arrive at the system.

They are typically small, unordered and may be unbounded. Evaluation on XML

stream data is challenging because it requires an algorithm which processes the
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stream in one scan and returns the partial result. Most of query processing tech-

niques on XML stream data are based on XQuery and XPath streaming evaluation

[101].

TurboXPath [62] is one of the XML streaming evaluations on XPath. It is based

on tree-pattern query and employs an array data structure to record evaluation

status [101]. TurboXPath produces a sequence of XML fragment tuples which

are constructed by computation of all candidate answers using a nested-loop join

algorithm. TurboXPath performance falls to its worst case for processing query

on recursive XML documents.

Processing XML stream data using XQuery evaluation utilizes XQuery which

is more expressive than XPath. Some XML stream processing which are based

on XQuery evaluation refer to a fragmented XML stream in the concept of hole-

filler [69, 12, 13, 99, 52]. In addition to hole-filler model, Fegaras and Bose in

[32, 13] proposed a query algebra for XQuery which works for XML stream data.

The query is based on the nested relational algebra and consists of extraction,

selection, merge, join, reduce, nest, and unnest operators. This query algebra is

designed to perform pipelining of the algebraic operators in main memory.

Huo [54] proposed XFPro, a framework and algorithm to compute XPath

queries on a stream of XML fragments. XFPro utilizes hole-filler to model XML

fragment and employs a set of transformations to convert an XPath query ex-

pression on a complete XML document into an optimized query plan. Huo [53]

enhanced the hole-filler method by utilization of query statistics. It has two

query statistics, path frequency tree is used to increase utilization of fragment, and

Markov tables are used in order to increase query performance. He also presented

a cost model for fragmented XML stream processing [53].

Meanwhile, Koch [63] proposed XML Stream Attribute Grammars (XSAGs)

for scalable query processing on XML streams. An XSAG is based on an extended

regular tree grammar which is annotated with attribute functions to specify the

output to be produced from the input stream. In this context, XSAG allows actual

data transformation from an input stream, instead of just document filtering. An

XSAG is translated into a deterministic pushdown transducer (DPDT) which en-

sures that the size of memory used remains proportional to the depth of an XML

document, and therefore guarantees that queries to an input XML stream can be

evaluated in linear time.
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However, XSAG does not consider the element’s attribute of XML document

in its definition, and hence evaluation on XML streams is mainly based on the

matching value of node elements. Furthermore, binary operations on XML streams

are not described in [63], whereas having binary operations is an important feature

in data integration systems.

The related works discussed in this chapter provide important underlying jus-

tification to design an appropriate XML data model along with its algebraic op-

erations, and to propose an online algorithm for data integration system which is

suitable for scalable XML documents in a multi-database network system.



Chapter 3

XML Data Model and Algebra

In this chapter an XML data model and algebra is presented as an underlying

architecture for an online integration system. Section 3.1 describes some XML

documents which will be used as examples to give clearer explanations. Section 3.2

describes an XML data model, and Section 3.3 describes operations on Extended

Tree Grammar. In Section 3.4 XML algebra operators are introduced, based on the

XML data model designed, and in Section 3.5 XML algebra rules and properties

to support online processing are described. Section 3.6 presents a brief comparison

between the proposed XML algebra and relational algebra.

3.1 XML Document Working Examples

The following XML documents (Figures 3.1 through 3.3) are presented in order

to provide a better explanation on how the XML data model and XML algebra

operators are designed. The XML document in Figure 3.1 contains information

about books. Every book has a title, a set of author’s email address in the

authors element, an alternative element either subject or genre, and zero or more

editor’s email addresses. A book element has at least an author email address since

a book must be written by at least one author. Meanwhile, the XML document

in Figure 3.2 contains data about authors which includes an author name and

his/her email address. The editor data in Figure 3.3 includes a name and an

email address element.

In a data integration system, we assume that XML documents to be processed

reside at different sites such that a global uniform schema cannot be provided. For

example, in the book document, an editor’s email is stored in an element named

ed email, but in the editor document, it is stored in an element named email.

It is assumed that yhe node elements in XML documents do not contain mixed

content, and we consider that an XML document may use duplicate element names

within the document. For example, after processing an algebraic operation against

24
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<book>

<title>XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

<book>

<title>Harry Potter and the Philosopher’s Stone</title>

<authors>

<aut_email>jk@yahoo.com</aut_email>

</authors>

<genre>Fantasy</genre>

</book>

Figure 3.1: Two instances of book XML document

author and editor documents, we may have two email elements in the result

document. In the relational model, a new field name is assigned to each instance

of the duplicate elements such that the table contains unique field names.

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

<author>

<name>Ben Johnson</name>

<email>ben@yahoo.com</email>

</author>

<author>

<name>J.K. Rowling</name>

<email>jk@yahoo.com</email>

</author>

Figure 3.2: Three instances of author XML document
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<editor>

<name>Ross Marrie</name>

<email>ross@gmail.com</email>

</editor>

Figure 3.3: An editor XML document

3.2 XML Data Model for Online Processing

An online data integration system for semistructured data requires a data model

which allows utilization of the performance tuning algorithms in the relational

model. The data model has to eliminate the expensive cost of nest and unnest

operations to transform the document tree structures into tuples and vice versa.

Among all the existing data models for XML documents, the tree based data

model meets the needs of having easy operations to modify the structure of XML

documents. Furthermore, the theory of regular tree grammar has been used in

various aspects of XML schema language and XML document query processing.

We use the concept of regular tree grammar introduced in [63, 78] to define

a data model for XML documents. A data model for XML documents which

contain only elements without any attribute can be formally defined by a Regular

Tree Grammar (RTG) [51].

Definition 1. Let N be a set of non-terminal symbols, and ε be an empty symbol.

A regular expression r over non-terminal symbols N ∪ {ε} is defined as follows:

1. ε is a regular expression.

2. for each X∈N, X is a regular expression.

3. if r and s are regular expressions, then r|s, r s, r+, r∗, r?, and (r) are regular

expressions.

Definition 2. Let r be a regular expression over N ∪ {ε}. A Regular Tree Grammar

is a context free grammar defined as a 4-tuple G = (N, T, S, P ), where N is a finite

set of non-terminal symbols, T is a finite set of terminal symbols, and S∈N is a

start symbol. P is a set of production rules in the form of X→t(r) where X∈N,

t∈T.

A production rule with r = ε can be written as X→t(ε), and is equivalent to

a production rule X→t as t(ε)≡t. Examples 3.1, 3.2 and 3.3 show Regular Tree

Grammars for XML documents of BOOK, AUTHOR and EDITOR, respectively.
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Example 3.1. A Regular Tree Grammar for BOOK data.

N={S,TITLE,AUTHORS,AUT EMAIL,SUBJECT,GENRE,ED EMAIL}
T={book,title,authors,aut email,subject,genre,ed email}
P={S→book(TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?),TITLE→title,

AUTHORS→authors(AUT EMAIL+),SUBJECT→subject,GENRE→genre,

ED EMAIL→ed email,AUT EMAIL→aut email}

�

Example 3.2. A Regular Tree Grammar for AUTHOR data.

N={S,NAME,EMAIL}
T={author,name,email}
P={S→author(NAME EMAIL),NAME→name,EMAIL→email}

�

Example 3.3. A Regular Tree Grammar for EDITOR data.

N={S,NAME,EMAIL}
T={editor,name,email}
P={S→editor(NAME EMAIL),NAME→name,EMAIL→email}

�

An XML model based on Regular Tree Grammar allows us to create a structure

for XML tree documents with ”infinite arity”, where a particular element may be

used in multiple levels of an XML document. Example 3.4 shows a grammar for

an XML document with infinite arities to represent a multi-level marketing data

where a member can have some other members as his downline.

Example 3.4. A Regular Tree Grammar for multi-level marketing data.

N={S,MEMBER}
T={mlm,member}
P={S→mlm(MEMBER),MEMBER→member(MEMBER),MEMBER→member}

�

Definition 3. Let G = (N, T, S, P ) be a Regular Tree Grammar. A string is a

sequence of elements from T and N, and denoted as (T ∪N)*.
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Definition 4. Let G = (N, T, S, P ) be a Regular Tree Grammar, v and w be

strings. Let r, s be regular expressions over N ∪ {∅} in v. w is derivable from v,

denoted as v ⇒G w if w can be constructed by application of any production rule

in G to a string v. Before application of a production rule, all regular expression

operators (|, ∗,+, ?) in v are translated such that v contains no operators, as the

following:

1. (r|s)→r or s

2. r∗ → ε or r or r r or . . . or r r. . . r

3. r+→r r*

4. r?→ ε or r

Notation ⇒G∗ is used to represent multiple derivations of production rules in G.

Definition 5. Let G = (N, T, S, P ) be a Regular Tree Grammar.

1. w ∈ (T ∪N)* is a sentence form of G if there is a derivation S⇒G ∗w in G.

2. w ∈T* is a sentence of G if there is a derivation S⇒G ∗w in G. A sentence

is a string over terminal symbols which is derived from a start symbol.

3. The language of G, denoted L(G), is the set {w ∈ T∗ | S⇒G ∗ w}

Example 3.5. Derivation of a Regular Tree Grammar for book structure as in

Example 3.1.

S⇒book(TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?)

⇒book(title AUTHORS SUBJECT ED EMAIL)

⇒book(title authors(AUT EMAIL+) SUBJECT ED EMAIL)

⇒book(title authors(aut email AUT EMAIL) SUBJECT ED EMAIL)

⇒book(title authors(aut email aut email) SUBJECT ED EMAIL)

⇒book(title authors(aut email aut email) subject ED EMAIL)

⇒book(title authors(aut email aut email) subject ed email)

Further, we can derive a different sentence from RTG in Example 3.1 such as:

book(title authors(aut email) genre) �

Definition 6. Let G=(N,T,S,P) be a Regular Tree Grammar, m be a sentence in

L(G), and t ∈ T be a terminal symbol. n is a subtree of m if there exists a terminal

symbol t such that m = t(n).
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Definition 7. Let G be a Regular Tree Grammar, m be a sentence in L(G), n be

a subtree of m, and t∈T is a terminal symbol. An attribute-free XML document

with a structure m, denoted as x(m) is defined as a result of transformation (text

substitution) of m such that:

1. when m has a subtree n, m = t(n): t(n)→<t>n</t>

2. when n=ε, m = t(ε) = t: t→<t>#PCDATA</t>

where #PCDATA (Parsed Character Data) are characters which can be parsed by the

XML parser, and ε ∈#PCDATA.

Example 3.6. Transformation of a sentence of Regular Tree Grammar in Example

3.1: m= book(title authors(aut email aut email) subject ed email).

Transformation is performed in pre-order traversal, starting from the left most

terminal symbol of the sentence to the right. The transformation is shown step by

step as follows:

a. The first symbol to transform is a book terminal symbol. Transformation of
book terminal symbol is as follows:
book(title authors(aut email aut email) subject ed email)→

<book>

title authors(aut_email aut_email) subject ed_email

</book>

b. The next terminal symbol to transform is title. The transformation of
title terminal symbol is as follows:
title authors(aut email aut email) subject ed email →

<book>

<title>XML Bible</title>

authors(aut_email aut_email) subject ed_email

</book>

c. Then, transformation of authors terminal symbol is as follows:
authors(aut email aut email) subject ed email →

<book>

<title>XML Bible</title>

<authors>

aut_email aut_email

</authors>

subject ed_email

</book>
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d. Transformation of the first aut email terminal symbol is as follows:
aut email aut email →

<book>

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

aut_email

</authors>

subject ed_email

</book>

e. Transformation of the second aut email terminal symbol is:
aut email →

<book>

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

subject ed_email

</book>

f. Transformation of subject terminal symbol is as follows:
subject ed email →

<book>

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Database</subject>

ed_email

</book>

g. Transformation of ed email terminal symbol is as follows:
ed email →

<book>

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Database</subject>

<ed_email>ross@gmail.com</ed_email>

</book>
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�

Online processing of semi-structured data requires every XML document to

have a unique immutable identifier. For this purpose, an XML document is en-

capsulated by an additional parent element with an attribute to store the identity.

The XML documents in Figure 3.1, 3.2 and 3.3 are modified to include identifiers

as in Figures 3.4, 3.5 and 3.6.

<xml id="B01">

<book isbn="9872347765" lang="EN">

<title>XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

</xml>

<xml id="B02">

<book isbn="9788700631625" lang="EN">

<title>Harry Potter and the Philosopher’s Stone</title>

<authors>

<aut_email>jk@yahoo.com</aut_email>

</authors>

<genre>Fantasy</genre>

</book>

</xml>

Figure 3.4: XML documents for book data with unique IDs

Regular Tree Grammar defined in [78] does not include attribute definitions.

Then, our idea is to extend the definition of regular tree grammar with an attribute

definition.

Definition 8. Let r be a regular expression over non-terminal symbols N ∪ {ε}.
An Extended Tree Grammar (ETG) is a 5-tuple G = (N, T,A, S, P ), where N is

a finite set of non-terminal symbols, T is a finite set of terminal symbols, A is a

finite set of attribute symbols, and S∈N is a start symbol. P is a set of production

rules in a form of X→t[A’](r) where X∈N, t∈T, A’⊆A, and attributes may

show up in any order. P includes exactly one production rule for start symbol

S→xml[id](r).

The RTG for the BOOK document in Example 3.1 is extended into an ETG to
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<xml id="A01">

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

<xml>

<xml id="A02">

<author>

<name>Ben Johnson</name>

<email>ben@yahoo.com</email>

</author>

<xml>

<xml id="A03">

<author>

<name>J.K. Rowling</name>

<email>jk@yahoo.com</email>

</author>

</xml>

Figure 3.5: XML documents for author data with unique IDs

<xml id="E01">

<editor>

<name>Ross Marrie</name>

<email>ross@gmail.com</email>

</editor>

<xml>

Figure 3.6: An XML document for editor data with a unique ID

include id, isbn and lang attribute symbols (see Example 3.7). The production

rule for the start symbol must be modified such that it represents a document is

started with an xml element with a unique id attribute. Then, for the XML docu-

ment in Figure 3.4, the production rule of the start symbol is S→xml[id](BOOK).

Further, since the document in Figure 3.4 has two additional attributes for

book element (ISBN and language), the production rule for the BOOK element

is modified into BOOK→book[isbn lang](TITLE AUTHORS SUBJECT ED EMAIL?).

The complete ETG for XML documents book, author, and editor are shown in

Example 3.7, 3.8, 3.9.

Example 3.7. An Extended Tree Grammar for BOOK data.

N={S,BOOK,TITLE,AUTHORS,AUT EMAIL,SUBJECT,GENRE,ED EMAIL}
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T={xml,book,title,authors,aut email,subject,genre,ed email}
A={id,isbn,lang}
P={S→xml[id](BOOK),BOOK→book[isbn lang](TITLE AUTHORS (SUBJECT|GENRE)

ED EMAIL?),TITLE→title,AUTHORS→authors(AUT EMAIL+),SUBJECT→subject,

GENRE→genre,AUT EMAIL→aut email,ED EMAIL→ed email}

�

Example 3.8. An Extended Tree Grammar for an AUTHOR data.

N={S,AUTHOR,NAME,EMAIL}
T={xml,author,name,email}
A={id}
P={S→xml[id](AUTHOR),AUTHOR→author(NAME EMAIL),

NAME→name,EMAIL→email}

�

Example 3.9. An Extended Tree Grammar for an EDITOR data.

N={S,EDITOR,NAME,EMAIL}
T={xml,editor,name,email}
A={id}
P={S→xml[id](EDITOR),EDITOR→editor(NAME EMAIL),

NAME→name,EMAIL→email}

�

Example 3.10. Derivation of a sentence in ETG of book document G=(N,T,A,S,P)

Based on an ETG in Example 3.7, we are able to derive a sentence as follows:

S⇒xml[id](BOOK)

⇒xml[id](book[isbn lang](TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?))

⇒xml[id](book[isbn lang](title AUTHORS SUBJECT ED EMAIL))

⇒xml[id](book[isbn lang](title authors(AUT EMAIL+) SUBJECT ED EMAIL))

⇒xml[id](book[isbn lang](title authors(aut email AUT EMAIL) SUBJECT ED EMAIL))

⇒xml[id](book[isbn lang](title authors(aut email aut email) SUBJECT ED EMAIL))

⇒xml[id](book[isbn lang](title authors(aut email aut email) subject ED EMAIL))

⇒xml[id](book[isbn lang](title authors(aut email aut email) subject ed email))

Moreover, we obtain a different sentence from ETG in Example 3.7 such that it has

one aut email element, a genre instead of a subject element and no ed email

element as the following:

xml[id](book(title[isbn lang] authors(aut email) genre)). �
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The sentence created in Example 3.10 is then transformed into an instance of the

XML document.

Definition 9. Let G=(N,T,A,S,P) be an Extended Tree Grammar, m be a sentence

in L(G), and t ∈ T be a terminal symbol. n is a subtree of m if there exists a

terminal symbol t such that m=t[A’](n).

A sentence of an ETG is defined as follows:

Definition 10. Let G=(N,T,A,S,P) be an Extended Tree Grammar.

1. w ∈ (T ∪N ∪ A)* is a sentence form of G if there is a derivation S⇒G ∗ w
in G.

2. w ∈ (T ∪ A)* is a sentence of G if there is a derivation S⇒G ∗ w in G.

A sentence is a string over terminal symbols and attribute symbols which is

derived from a start symbol.

3. The language of G, denoted L(G), is the set {w ∈ (T ∪ A)∗ | S⇒G ∗ w}

Based on the created ETG, an XML document can be re-defined as in Definition

11 to cover instantiation of an attribute.

Definition 11. Let G=(N,T,A,S,P) be an Extended Tree Grammar, m be a sen-

tence in G, and n be a subtree of m. Let t ∈ T be a terminal symbol, and

a1, . . . an ∈ A be attribute symbols. An XML document with a structure m is

denoted as x(m) and is defined as a result of transformation (text substitution) of

m such that:

1. when m has a subtree n, then m=t(n):

t[a1, . . . , an](n)→<t a1="#PCDATA" . . . an="#PCDATA">n</t>

2. when n=ε, then m=t(ε)=t:

t[a1, . . . , an]→<t a1="#PCDATA" . . . an="#PCDATA">#PCDATA</t>

x(m) is assigned to a unique immutable identity which is stored in an id attribute

of element xml.

Example 3.11. Transformation of a sentence of ETG in Example 3.7:

xml[id](book[isbn lang](title authors(aut email aut email) subject ed email)).

Transformation is performed in pre-order traversal, starting from the left most

terminal symbol to the right, and is shown step by step as follows:

a. First, transformation of xml[id] terminal symbol from a sentence: xml[id](book
[isbn lang](title authors(aut email aut email) subject ed email))→
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<xml id="B01">

book(title authors(aut_email aut_email) subject ed_email)

</xml>

b. Next, transformation of book[isbn lang] terminal symbol from: book[isbn
lang] (title authors(aut email aut email) subject ed email)→

<xml id="B01">

<book isbn="9872347765" lang="EN">

title authors(aut_email aut_email) subject ed_email

</book>

</xml>

c. Then, transformation of title terminal symbol from:
title authors(aut email aut email) subject ed email →

<xml id="B01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

authors(aut_email aut_email) subject ed_email

</book>

</xml>

d. Transformation of authors terminal symbol is as follows:
authors(aut email aut email) subject →

<xml id="B01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<authors>

aut_email aut_email

</authors>

subject ed_email

</book>

</xml>

e. Transformation of the first aut email terminal symbol is as follows:
aut email aut email →

<xml id="B01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

aut_email

</authors>

subject ed_email

</book>

</xml>
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f. Transformation of the second aut email terminal symbol is as follows:
aut email →

<xml id="B01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

subject ed_email

</book>

</xml>

g. Transformation of subject terminal symbol is as follows:
subject ed email →

<xml id="B01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Database</subject>

ed_email

</book>

</xml>

h. Transformation of ed email terminal symbol is as follows:
ed email →

<xml id="B01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Database</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

</xml>

�
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3.3 Operations on Extended Tree Grammars

In a real situation, we may want to perform operations on the structure of a

document. Modification of XML structures can be obtained by a merge operation

on two ETGs, or a projection operation on an ETG.

3.3.1 Merge of Extended Tree Grammars

An operation to merge two ETGs into an ETG is needed when we intend to

combine structures of any two documents into a single structure. The merge

operation of two ETGs is defined as follows:

Definition 12. Let G = (NG, TG, AG, SG, PG) and H = (NH , TH , AH , SH , PH) be

ETGs, Y ⊆ NG, Z ⊆ NH , and NG∩NH = ∅. Let r be a regular expression over Y ,

and s be a regular expression over Z. Let S→xml[id](r) be a production rule for

start symbol in G, and S→xml[id](s) be a production rule for start symbol in H.

Merge of ETGs is denoted as F=G+H and is an operation that combines G and

H, such that F = (N, T,A, S, P ) is an ETG where N = NG ∪NH , T = TG ∪ TH ,

A = AG ∪ AH , and P = PG ∪ PH . Production rule for a start symbol in F is

S→xml[id](r s).

Example 3.12. A result of merge ETGs in Example 3.7 and 3.8.

Let G be an ETG for book documents (Example 3.7) and H be an ETG for

author documents (Example 3.8). Merge operation on G and H (G+H) produces

the following ETG:

N={S,BOOK,TITLE,AUTHORS,AUT EMAIL,SUBJECT,GENRE,ED EMAIL,AUTHOR,NAME,EMAIL}
T={xml,book,title,authors,aut email,subject,genre,ed email,author,name,email}
A={id,isbn,lang}
P={S→xml[id](BOOK AUTHOR),

BOOK→book[isbn lang](TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?),

TITLE→title,AUTHORS→authors(AUT EMAIL+),SUBJECT→subject,GENRE→genre,

AUT EMAIL→aut email,ED EMAIL→ed email,

AUTHOR→author(NAME EMAIL),NAME→name,EMAIL→email}

�

The merger of two ETGs from autonomous external sources may face three

different issues regarding unification of the symbols. The first issue is when there

are duplicate symbols with the same meaning from two ETGs. In order to keep the

ETG size compact, we take one of these duplicate symbols, which is quite simple.
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Duplicate terminal symbols with the same meaning can be found as a result of

a merge operation on two ETGs, Example 3.12 and 3.9. Both ETGs have name

and email elements, and both names and both emails have the same meanings.

Example 3.13 shows an ETG result after a merge operation on the documents’

ETG.

The second issue is when there are duplicate symbols from two ETGs which

have different meanings. To solve this problem, we use a naming resolution algo-

rithm in order to keep all symbols and refer to their original meaning when a new

ETG is produced as a result. Naming resolution is not covered in this thesis.

The last issue is when there are two different symbols which have the same

meaning. In this case, we keep both symbols and treat them as different symbols,

for example, the aut email and email symbols in Example 3.12.

Furthermore, Figure 3.7 shows an XML document as a result of merging a

book document in Figure 3.4, an author document in Figure 3.5, and an editor

document in Figure 3.6. In contrast to the terminal symbols, we cannot combine

non-terminal symbols. Then, the duplicate non-terminal symbols must be renamed

such that they preserve their paths from their original structures.

Corollary 3.1. Let G = (N, T,A, S, P ) be an Extended Tree Grammar, and N =

{X1, X2, ..., Xn}. Let H = (N ′, T, A, S, P ) be an Extended Tree Grammar, N ′ =

(N − {Xi})∪ {Xi
′}, and N ′ is obtained through a systematic renaming Xi → Xi

′.

Then the language of G is the same as the language of H, L(G)=L(H).

Example 3.13. An ETG result of merger book, author and editor structures.

Merger of those three ETGs is done by merging book and author ETGs first as

in Example 3.12, and then merging the result with editor ETG. Since the ETG

in Example 3.12 and the ETG for editor in Example 3.9 have the same non-

terminal symbol, we apply renaming for non-terminal symbols NAME and EMAIL in

ETG for editor data, such that NAME becomes NAME2 and EMAIL becomes EMAIL2.

Renaming of NAME→ NAME2 applies renaming of production rule NAME→ name into

NAME2→ name. Renaming of EMAIL→ EMAIL2 applies renaming of production rule

EMAIL→ email into EMAIL2→ email. After the renaming process, we perform a

merge operation on the two ETGs, such that the following ETG comes as a result:

N={S,BOOK,TITLE,AUTHORS,AUT EMAIL,SUBJECT,GENRE,ED EMAIL,AUTHOR,EDITOR,

NAME,EMAIL,NAME2,EMAIL2}
T={xml,book,title,authors,aut email,subject,genre,ed email,author,editor,

name, email}
A={id,isbn,lang}
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P={S→xml[id](BOOK AUTHOR EDITOR),

BOOK→book[isbn lang](TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?),

TITLE→title,AUTHORS→authors(AUT EMAIL+),

SUBJECT→subject,GENRE→genre,AUT EMAIL→aut email,ED EMAIL→ed email,

AUTHOR→author(NAME EMAIL),EDITOR→editor(NAME2 EMAIL2),

NAME→name,EMAIL→email,NAME2→name,EMAIL2→email}

�

<xml id="001">

<book isbn="9872347765" lang="EN">

<title>XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

<editor>

<name>Ross Marrie</name>

<email>ross@gmail.com</email>

</editor>

</xml>

Figure 3.7: An example of a more complex XML document

Based on the ETG defined in Example 3.13 we are able to generate the following

sentences:

xml[id](book[isbn lang](title authors(aut email aut email) subject ed email))

xml[id](book[isbn lang](title authors(aut email) subject))

xml[id](author(name email))

xml[id](editor(name email))

Merge of two ETGs is required to perform join operation later on.

3.3.2 The Projection of an Extended Tree Grammar

The projection of an ETG is used to modify the structure of an XML document

by removal of some elements from its original structure. Using an example of
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XML document in Figure 3.7, a number of removal operations can be applied to

manipulate its structure, such as:

1. Removing a particular element, for example removal of all email elements.

2. Removing an element in a specific path, for example removal of the email

element under the author subtree.

3. Removing a subtree, for example removal of a subtree rooted at the author

element.

4. Retrieving a subtree, for example retrieval of a subtree rooted at the author

element.

Definition 13. Let G = (N, T,A, S, P ) be an ETG, and N = {X1, . . . , Xn, Y1, . . . , Yn}
be a set of non-terminal symbols. Let Z ⊂ N = {Y1, . . . , Yn}, Xi 6= S, Xi =

N − {Xi} and A1, . . . , An ⊆ A. Let r(. . . , Xi, . . .) be a regular expression over a

non-terminal symbol Xi and other non-terminal symbols in N. Let G has of the

following production rules:

X1 → t1[A1](r(. . . , Xi, . . .)),

Xi → ti[Ai](s1(Z)),

Xi → ti[Aj](s2(Z)),

. . . ,

Xi → ti[Am](sn(Z))

where si(Z) is a regular expression over Z. Projection of G on N − {Xi}, denoted

as πXi
(G), and is defined as modification of G through removal of a non-terminal

symbol Xi at right hand side of a production rule X1 → t1[A1](r(. . . , Xi, . . .)) such

that it becomes:

X1 → t1[A1](r(. . . , s1(Z),. . .)),

X1 → t1[A1](r(. . . , s2(Z),. . .)),

. . . ,

X1 → t1[A1](r(. . . , sn(Z),. . . )).

Example 3.14. Projection of an Extended Tree Grammar.

The result of a projection operation to remove a non-terminal symbol AUTHORS

from an ETG in Example 3.13 is as follows:

N={S,BOOK,TITLE,AUT EMAIL,SUBJECT,GENRE,ED EMAIL,AUTHOR,EDITOR,NAME,EMAIL,

NAME2,EMAIL2}
T={xml,book,title,aut email,subject,genre,ed email,author,editor,name,email}
A={id,isbn,lang}
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P={S→xml[id](BOOK AUTHOR EDITOR),

BOOK→book[isbn lang](TITLE AUT EMAIL+ (SUBJECT|GENRE) ED EMAIL?),

TITLE→title,AUT EMAIL→aut email,SUBJECT→subject,GENRE→genre,

ED EMAIL→ed email,AUTHOR→author(NAME EMAIL),EDITOR→editor(NAME2 EMAIL2),

NAME→name,EMAIL→email,NAME2→name,EMAIL2→email}

�

The document in Figure 3.7 can be transformed into new documents which are

subsets of the original document. Figure 3.8 illustrates transformation rules of an

XML document tree.

Figure 3.8: Transformation rules (a) removal of a level (b) removal of a sub-tree
(c) extraction of a sub-tree

Definition 14. Let H = (NH , TH , AH , SH , PH) and G = (NG, TG, AG, SG, PG) be

ETGs. Let X be a set of non-terminal symbols, X⊆ NG, and ¬∃Y ∈ X : Y ∈ NH .

H is a sub-grammar of G, denoted as H v G if NH ⊆ NG, TH ⊆ TG, AH ⊆ AG

and H can be obtained from G by multiple applications of projection on X.

Example 3.15. Transformation of an ETG to remove a single element

Transformation of an ETG to remove the authors element in Example 3.13 is per-

formed by multiple applications of projection over the ETG, and can be achieved

using the following steps:

1. Find all production rules which contain a non-terminal symbol AUTHORS at

its right hand side. It returns a production rule:

BOOK→book(TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?)

2. Find a production rule for a non-terminal symbol AUTHORS.

AUTHORS→author(AUT EMAIL+)
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3. Obtain a non-terminal symbol string from the right hand side of the produc-

tion rule (AUT EMAIL+).

4. Replace the non-terminal symbol AUTHORS from the production rule

BOOK→book(TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL), such that it be-

comes

BOOK→book(TITLE AUT EMAIL+ (SUBJECT|GENRE) ED EMAIL?)

A projection operation on ETG to remove a non-terminal symbol AUTHORS results

in the following ETG:

N={S,BOOK,TITLE,AUT EMAIL,SUBJECT,GENRE,ED EMAIL,AUTHOR,EDITOR,NAME,EMAIL,

NAME2,EMAIL2}
T={xml,book,title,aut email,subject,genre,ed email,author,editor,name,email}
A={id,isbn,lang}
P={S→xml[id](BOOK),

BOOK→book[isbn lang](TITLE AUT EMAIL+ (SUBJECT|GENRE) ED EMAIL),

TITLE→title,AUT EMAIL→aut email,

SUBJECT→subject,GENRE→genre,ED EMAIL→ed email,

AUTHOR→author(NAME EMAIL),EDITOR→editor(NAME EMAIL),

NAME→name,EMAIL→email,NAME2→name,EMAIL2→email}

�

Example 3.16. Removal of a sub-tree rooted a particular non-terminal symbol.

Transformation of an ETG to remove a subtree rooted at AUTHOR under S is per-

formed by the following steps:

1. Find a production rule for a non-terminal symbol S:

S→xml[id](BOOK AUTHOR EDITOR).

2. Remove non-terminal symbol AUTHOR on the right hand side of the production

rule such that it becomes S→xml[id](BOOK EDITOR).

3. Application of multiple removals of a non-terminal symbol on the right hand

site of the production rule of AUTHOR allows us to delete non-terminal symbols

as well as production rules in the subtree if needed.

After removal of a subtree rooted at element authors, the ETG of the BOOK doc-

ument becomes:

N={S,BOOK,TITLE,AUTHORS,AUT EMAIL,SUBJECT,GENRE,ED EMAIL,EDITOR,NAME2,EMAIL2}
T={xml,book,title,authors,aut email,subject,genre,ed email,editor,name,email}
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A={id,lang}
P={S→xml[id](BOOK EDITOR),

BOOK→book[isbn lang](TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?),

TITLE→title,AUTHORS→authors(AUT EMAIL+),

SUBJECT→subject,GENRE→genre,AUT EMAIL→aut email,ED EMAIL→ed email,

EDITOR→editor(NAME2 EMAIL2),NAME2→name,EMAIL2→email}

�

Example 3.17. Extraction of a sub-tree rooted at a non-terminal symbol.

Extraction of a subtree rooted at AUTHOR which is below a start symbol S can be

performed in two ways:

1. By modification of a production rule of a non-terminal symbol S into S→
xml[id](AUTHOR). It is faster when the size of the extracted sub-tree is

much smaller than the entire document, but in this way we cannot remove

non-terminal symbols and production rules which are not needed.

2. By multiple removals of a level from the top most level until only the ex-

tracted sub-tree remains. It is faster when the extracted sub-tree covers

most parts of the original document. Extraction in this way will remove

unassigned non-terminal symbols and production rules.

After extraction of a sub-tree rooted at AUTHOR, the ETG becomes as follows:

N={S,AUTHOR,NAME,EMAIL}
T={xml,author,name,email}
A={id}
P={S→xml[id](AUTHOR),

AUTHOR→author(NAME EMAIL),

NAME→name,EMAIL→email}

�

The ETG in Example 3.15-3.17 are sub-grammars of the ETG in Example 3.13,

because they can be obtained through application of one of the transformation

rules.

3.4 XML Algebra for Online Processing

The semistructured data integration system requires elementary operations on

the containers with semistructured data. A set of algebraic operations on the

XML documents presented in this section allows for incremental processing of

semistructured data against the entire XML document.
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3.4.1 Data Container and Schema

We use the concept of a data container which is a collection of XML documents,

to enable processing of XML documents. In the relational model, a simple data

container can be conceptually implemented as a relational table. It has a schema,

which requires to all data in the table to follow the schema. In a semistructured

data environment we have more freedom to define the structure of the document

rather than in a relational model. The concept of schema gives us the opportunity

to have instance documents with various structures as long as they are consistent

with the defined schema.

Definition 15. A single schema data container D({G}) is defined as {x(m) : ∃m
m ∈ L(G)} where G = (N, T,A, S, P ) be an ETG, m be a sentence in L(G), and

x(m) be an XML document.

In a distributed multi-database system, having a global schema for all external

sites is not feasible as remote sites are autonomous. Then, it may happen that we

required to combine two data containers with different schemas. To be consistent

with the definition of a single schema data container, we have to generate a single

result schema such that it covers both schemas from all the data containers. It

can be obtained by merging two ETG into a new ETG. Example 3.18 shows how a

new ETG can be produced when two single schema data containers are combined.

Example 3.18. A merged Extended Tree Grammars.

For example, we combine two data containers where each has a single schema.

The first data container requires an author data to have a name and at least

one email data. Meanwhile, the other data container requires an author to have

FirstName, LastName and at least one email data. The ETG of the single schema

data containers can be shown as follows:

N={S,AUTHOR,NAME,EMAIL}
T={xml,author,name,email}
P={S→xml(AUTHOR),AUTHOR→author(NAME,EMAIL+),

NAME→name,EMAIL→email}

N={S,AUTHOR,FIRSTNAME,LASTNAME,EMAIL}
T={xml,author,firstname,lastname,email}
P={S→xml(AUTHOR),AUTHOR→author(FIRSTNAME,LASTNAME,EMAIL+),

FIRSTNAME→firstname,LASTNAME→lastname,EMAIL→email}

Then, result of merging ETGs is as follows:
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N={S,AUTHOR,NAME,FIRSTNAME,LASTNAME,EMAIL}
T={xml,author,name,firstname,lastname,email}
P={S→xml(AUTHOR),AUTHOR→author((NAME|(FIRSTNAME,LASTNAME)),EMAIL+),

NAME→name,FIRSTNAME→firstname,LASTNAME→lastname,EMAIL→email}

�

In general, we are able to combine two single data containers even if they have

totally different schemas. Some potential problems may arise when we combine

two ETGs into a ETG, such as:

1. Two non-terminal symbols represent the same meaning, for example al-

though NAME and FULLNAME are different non-terminal symbols, they may

have the same meaning. Then, we must have a naming definition and map-

ping such that there is enough information on which symbols have similar

meaning.

2. A non-terminal symbol represents a different meaning in each ETG. For

example, the non-terminal symbol TITLE in book document has different

meaning to title in author data. To overcome this problem, we need to

rename the non-terminal symbols or apply indexing to the terminal symbols.

3. A non-terminal symbol has more than one production rule, and each of

them points to a different terminal symbol (for example: X→ t1(r(N))) and

X→ t2(r(N)))). Non-terminal symbol indexing or renaming can be a feasible

solution to this issue.

Mapping and naming resolution for non-terminal symbols can be a painful

solution when dealing with complex operations. Therefore, it may not be a good

decision to force the unification of ETGs when combining documents from data

containers.

Another possible solution is to collect all ETGs which come along with XML

documents from both data containers. This means that a data container result

may have a set of schemas rather than a single schema, which can avoid the

problem with symbol mapping and naming resolution described earlier. Then, to

be consistent, a data container is redefined in Definition 16.

Definition 16. Let G be a set of ETGs. A data container D(G) is defined as

{x(m) : ∃G∃m G ∈ G ∧m ∈ L(G)} where G=(N,T,A,S,P) be a ETG and x(m)

be an XML document. G is a schema of a data container.
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Example 3.19. A data container with a set of ETGs as its schema.

For example, we place two XML documents in a data container D(G). An XML

document is consistent with an ETG G as follows:

N={S,AUTHOR,NAME,EMAIL}
T={xml,author,name,email}
P={S→xml(AUTHOR),AUTHOR→author(NAME,EMAIL+),

NAME→name,EMAIL→email}

And the other XML document is consistent with an ETG H as follows:

N={S,AUTHOR,FIRSTNAME,LASTNAME,EMAIL}
T={xml,author,firstname,lastname,email}
P={S→xml(AUTHOR),AUTHOR→author(FIRSTNAME,LASTNAME,EMAIL+),

FIRSTNAME→firstname,LASTNAME→lastname,EMAIL→email}

Data container D(G) has a schema G such that G = {G}+ {H}. �

The schema of a data container plays an important role when computation of

operations are being executed. The schema allows us to verify whether a particular

structure can be found in a set of documents without checking every instance of

the document, and gives a better performance in the computation of large size

data containers.

3.4.2 XML Algebra Operations

The operators of XML algebra operate on the data containers, ETGs, paths, and

a number of condition functions. All operations return a data container which

automatically generates a new identifier for every XML document result. The

system includes a set of basic operators: {projection (π), selection (σ), join (./),

antijoin (∼), and union (∪)}. The operators are conceptually consistent with the

basic operators of relational algebra.

3.4.2.1 Projection operation

The projection operation on a data container can be described from a projection

operation on an XML document, and can then be expanded. Definition 19 defines

the projection operation on a single XML document. Whereas, Example 3.23

represents a projection on a single XML document.

Definition 17. Let G = (N, T,A, S, P ) be an ETG, m ∈ (T ∪ A)∗ be a sentence

of G. m′ ∈ (T ′ ∪ A′)∗ is a sub-sentence of m, denoted as m′ v m, and is defined

as result of removal t ∈ T and a ∈ A from m such that T ′ ⊂ T and A′ ⊆ A.
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Example 3.20. Sub-sentences of a sentence m=xml[id](book[isbn lang](title

authors(aut email aut email) subject ed email))

Let G be an ETG, and m be a sentence of G. The first sub-sentence example

can be obtained by the removal of ed email terminal symbol from m such that:

m′ =xml[id](book[isbn lang](title authors(aut email aut email) subject))

The next sub-sentence example is by removal of the book terminal symbol from m,

which will automatically remove its attributes. After the removal of book element

we obtain:

m′ =xml[id]((title authors(aut email aut email) subject ed email))

Brackets which follow book element can be eliminated such that it becomes:

m′ =xml[id](title authors(aut email aut email) subject ed email) �

In the case of a sub-sentencem′ =xml[id](book [isbn lang](title authors

(aut email aut email) subject)) in Example 3.20, both m and m′ are sen-

tences of G. But, it is important to notice that even though m′ v m, this does

not mean that m′ is always a sentence of G. The second sub-sentence example

m′ =xml[id](title authors(aut email aut email) subject ed email) does

not satisfty G, therefore it is not a sentence of G.

On the other hand, when an ETG H is a sub-grammar of an ETG G, a sentence

n ∈H is likely be a sub-sentence of any sentence m ∈G. But, having HvG, we

cannot conclude that n v m.

Example 3.21. Relation between sub-sentence and sub-grammar

Let G be an ETG as in Figure 3.7, H be an ETG and H = G. m be a sentence

of G, n be a sentence of H.

Let m=xml[id](book[isbn lang](title authors(aut email) subject)).

Let n=xml[id](book[isbn lang](title authors(aut email) subject

ed email)).

Although H is a sub-grammar of G (HvG), n is not a sub-sentence of m (n 6v
m). �

Definition 18. Let G = (N, T,A, S, P ) be an ETG, Y ∈ N be a non terminal

symbol, m be a sentence in L(G), and x(m) be an XML document. Let Y =

N − {Y }. Projection of x(m) on Y is denoted as x(m)[Y ] = x(m′) where G′ =

(N ′, T ′, A′, S ′, P ′), G′ v G, m′ = m[Y ], m′ v m, m′ is a sentence in L(G′), and

Y 6∈ N ′. m[Y ] is performed by removal of terminal symbol which corresponds to

projection of G on Y . To remove a single element in an XML document, projection

operation is perfomed in two steps:
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1. Transformation of a sentence m into m′

2. Transformation m′ into an XML document x(m′) in the same sequence of

transformation m into x(m).

A new id attribute value is assigned to x(m′) to represent a unique immutable

identity.

Example 3.22. Projection (π) operation on an XML document to remove one

element

Let x(m) be an XML document as shown in Figure 3.4, wherem=xml[id](book[isbn

lang](title authors(aut email aut email) subject ed email)). Let G be

an ETG as shown in Example 3.7, Y∈N be non-terminal symbol AUTHORS. Projec-

tion of x(m) on Y is performed as follows:

1. First, projection of G on Y results on removal a production rule:

AUTHORS→ authors(AUT EMAIL+) and replacement of a production rule:

BOOK→ book(TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?) with:

BOOK→ book(TITLE AUT EMAIL+ (SUBJECT|GENRE) ED EMAIL?).

Transformation of a sentence m is performed by removal of a terminal symbol

authors in book. Then, m′=xml[id](book[isbn lang](title aut email

aut email subject ed email)).

2. The next step is to transform m′ into an instance of the XML document. It

is performed step by step as in Example 3.11 except step (d) as follows:

(a) First, transformation of the xml[id] terminal symbol from a sentence:
xml[id](book[isbn lang](title aut email aut email subject

ed email))→

<xml id="A01">

book[isbn lang](title authors(aut_email aut_email) subject

ed_email)

</xml>

(b) Next, transformation of the book[isbn lang] terminal symbol as follows:
book[isbn lang](title aut email aut email subject ed email)→

<xml id="A01">

<book isbn="9872347765" lang="EN">

title authors(aut_email aut_email) subject ed_email

</book>

</xml>

(c) Then, transformation of the title terminal symbol as follows:
title aut email aut email subject ed email →
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<xml id="A01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

aut_email aut_email subject ed_email

</book>

</xml>

(d) Transformation of the first aut email terminal symbol from:
aut email aut email subject ed email →

<xml id="A01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<aut_email>andy@yahoo.com</aut_email>

aut_email subject ed_email

</book>

</xml>

(e) Transformation of the second aut email terminal symbol as follows:
aut email subject ed email →

<xml id="A01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

subject ed_email

</book>

</xml>

(f) Transformation of the subject terminal symbol as follows:
subject ed email →

<xml id="A01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

<subject>Database</subject>

ed_email

</book>

</xml>

(g) Transformation of the ed email terminal symbol as follows:
ed email →

<xml id="A01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

<subject>Database</subject>
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<ed_email>ross@gmail.com</ed_email>

</book>

</xml>

�

Definition 19. Let G = (N, T,A, S, P ), H = (N ′, T ′, A′, S ′, P ′) be ETGs, and

H v G. Let m be a sentence in L(G), and x(m) be an XML document with a

structure defined by G. Let M = N − N ′ = {M1,M2, . . . ,Mn} be a set of non-

terminal symbols removed from G. Projection of x(m) on a sub-grammar H is a

unary operator denoted by x(m)[H] = ((x(m)[M1])[M2])...[Mn], Where x(m)[Mi]

is projection of x(m) on Mi where i = 1, . . . , n. A new id attribute value is

assigned to x(m′) to represent a unique immutable identity.

Example 3.23. Projection (π) operation of an XML document on an ETG

Let x(m) be an XML document as shown in Figure 3.4 with an ETG G as shown

in Example 3.7. Let HvG be an ETG as follows:

N={S,BOOK,TITLE,SUBJECT}
T={xml,book,title,subject}
A={id,isbn,lang}
P={S→xml[id](BOOK),BOOK→book[isbn lang](TITLE SUBJECT),

TITLE→title,SUBJECT→subject}

The projection of XML document x(m) on H is performed by the following steps:

1. First we check whether HvG. If HvG then we apply ETG projection on

H to the XML document x(m). Otherwise, no document is returned as a

result.

2. Obtain a set of non-terminal symbols which are removed from G. M =

N −N ′ = {AUT EMAIL,AUTHORS,GENRE,ED EMAIL}

3. Perform the projection of x(m) on every non-terminal symbol in M . After

projection on a single element, we get an XML document with a new ETG.

Then we perform the next non-terminal symbol based on the new ETG.

Another option is to remove all non-terminal symbols without creating an

XML document for every single removal. This can be performed by removal

from the deepest level, therefore no ETG modification is required for every

symbol removal.
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4. We may notice that the non-terminal symbol SUBJECT is an alternative to

GENRE. If the sentence m contains genre which is a derivation of GENRE, then

the document does not satisfy H, and therefore should not be taken as a

result.

5. With the structure of document x(m): m=xml[id](book[isbn lang](title

authors(aut email aut email) subject ed email)), we apply the following

steps:

a. First, we remove the aut email symbol in the authors element

b. Then, we remove the authors symbol in the book element

c. Last, we remove the ed email symbol in the book element

After the projection operation, the structure of the result document is defined by a

sentence m′ =xml[id](book[isbn lang](title subject)). Then, based on the new

sentence m′, we instantiate an XML document by transformation of m′ as in Example

3.11 except for steps (d), (e), (f) and (h) as follows:

1. First, transformation of the xml[id] terminal symbol from a sentence: xml[id](book
[isbn lang](title subject))→

<xml id="A01">

book[isbn lang](title subject)

</xml>

2. Next, we transform the book[isbn lang] terminal symbol such that: book[isbn
lang](title subject)→

<xml id="A01">

<book isbn="9872347765" lang="EN">

title authors(aut_email aut_email) subject ed_email

</book>

</xml>

3. Then, transformation of the title terminal symbol from:
title subject →

<xml id="A01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

subject

</book>

</xml>

4. Transformation of the subject terminal symbol from:
subject ed email →
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<xml id="A01">

<book isbn="9872347765" lang="EN">

<title>XML Bible</title>

<subject>Database</subject>

</book>

</xml>

�

Since a data container is a set of XML documents, then projection on a data

container can be performed by iterative projections on each data container mem-

ber. Projection operation on a data container is defined as in Definition 20.

Definition 20. Let D(G) be a data container of XML documents, and xi(mi) ∈
D(G). Projection on D(G) is a unary operator denoted by πH(D(G)) = {y(m′) :

∃x(m) ∈ D(G), y(m′) = x(m)[H]}.

Example 3.24. Projection (π) operation over a data container

Let D(G) be a data container where G is a single set of ETG, as in Example 3.13.

D(G) contains a single XML document BOOK as in Figure 3.7. Let H be an ETG as

in Example 3.17 and H ∈ H. The projection operation πH(D(G)) produces a result

of a data container Dr(H). Since D(G) contains a single document, then the result

data container has at most one XML document. The new XML document x(m′)

is assigned with a new id attribute as a unique immutable identity as indicated

in Figure 3.9. �

<xml id="R01">

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

</xml>

Figure 3.9: Result of the projection operation (π) on a data container D(G)

The projection on a single XML document (πH(x(m))) has an operation to

check the inclusion of H in an ETG of x(m). Since a data container D(G) has

a set of ETGs as its schema, we can increase the performance of the projection

operation by first finding which ETG has a sub-grammar match with an ETG H.

Some documents can be pre-eliminated.
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3.4.2.2 Selection operation

Since a data container is defined as a set of XML documents, then selection on

a data container can be performed by iterative selections on each data container

member. The selection operation on a data container is defined in Definition 22.

Definition 21. Let p be a path expression, and v be a string value. Let θ be

an operator in a set of comparison operator {=, <>,<,>,<=, >=}. A condition

expression is denoted as ϕ, and is defined as a propositional formula that consists

of proposition(s) in the form of (p θ p) or (p θ v), and the logical operators ∧
(and), ∨ (or) and ¬ (negation).

Definition 22. Let D(G) be a data container of XML documents, and x(m) ∈
D(G). Selection on D(G) is a unary operator denoted by σϕ(D(G)) = {x(m) :

f(x(m), ϕ) = true}, where f(x(m), ϕ)) ∈ {true, false} and ϕ is a condition ex-

pression. The value of attribute id in resulting documents x(m) is replaced with

new values. The result is a data container with schema H ⊆ G.

Example 3.25. Selection (σ) operation on a data container

Let D(G) be a data container where G is a single set of ETG, as in Example 3.13.

D(G) contains a single XML document BOOK as in Figure 3.7. Let ϕ be a condi-

tion expression /author/name="Andy Cole". The selection operation σϕ(D(G))

produces a data container D(H) = D(G) since D(G) only contains one document

and it satisfies the condition (ϕ). The resulting XML document is assigned a new

id attribute as a unique immutable identity, as shown in Figure 3.10. �

Binary operations deal with two database containers as their arguments. In

the definitions below, D(G) and D(H) denote data containers of XML documents,

G = (NG, TG, AG, SG, PG) ∈ G and H = (NH , TH , AH , SH , PH) ∈ H. D(F) is a

resulting data container.

To provide a better understanding, we assume a data container D(G) contains

two BOOK XML documents as in Figure 3.4, and data container D(H) contains

three AUTHOR XML documents, as in Figure 3.5.

3.4.2.3 Union operation

In the relational model, the union operation operates on two relational tables which

have the same number of attributes and data types (schema). In this work, the

union operator allows an operation on data containers with different schemas, and

the data container result has a collection of ETGs from both input data containers

as its schema.
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<xml id="S01">

<book isbn="9872347765" lang="EN">

<title>XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

<editor>

<name>Ross Marrie</name>

<email>ross@gmail.com</email>

</editor>

</xml>

Figure 3.10: Result of the selection operation (σ) on a data container D(G)

The union operation over data containers is defined in Definition 23.

Definition 23. Let D(G), D(H) be data containers. Union operator is defined

as D(G) ∪ D(H) = {x(m) : x(m) ∈ D(G) or x(m) ∈ D(H)}. The resulting data

container has a schema F = G∪H. XML document x(m) ∈ D(F) will be assigned

to a new id attribute value which represents a unique identity.

A union operation takes all documents from both data containers and places

the documents in a data container as a result. After a union operation, the result-

ing data container has a schema which is the unification of both data containers’

schemas.

Example 3.26. Union (∪) operation over two data containers

The union operation (D(G) ∪ D(H)) results in a data container with a schema

F = G ∪ H, and XML documents as in Figure 3.11. �

3.4.2.4 Join operation

The next binary operation is the join operation. Firstly, we describe a join opera-

tion on two XML documents, then we expand it to operate on two data containers.

The join operation on two XML documents is defined in Definition 24.
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<xml id="U01">

<book isbn="9872347765" lang="EN">

<title>XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

</xml>

<xml id="U02">

<book isbn="9788700631625" lang="EN">

<title>Harry Potter and the Philosopher’s Stone</title>

<authors>

<aut_email>jk@yahoo.com</aut_email>

</authors>

<genre>Fantasy</genre>

</book>

</xml>

<xml id="U03">

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

</xml>

<xml id="U04">

<author>

<name>Ben Johnson</name>

<email>ben@yahoo.com</email>

</author>

<xml>

<xml id="U05">

<author>

<name>J.K. Rowling</name>

<email>jk@yahoo.com</email>

</author>

</xml>

Figure 3.11: XML documents in a resulting data container of union operation (∪)
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Definition 24. Let x(m) be an XML document which is consistent with an ETG

G, and y(n) be an XML document which is consistent with an ETG H. Let

m=xml[id](m′) and n=xml[id](n′). The join operation on two XML documents

is defined as x(m) •ϕ y(n) = z(o) : o = xml[id](m′ n′) and f((x(m), y(n)), ϕ) =

true, where ϕ is a condition expression and f is an evaluation function such that

f((x(m), y(n)), ϕ) ∈ {true, false}. An XML document z(o) is obtained through

transformation of the sentence o which refers to transformation of m and n. z(o)

is assigned to a new id attribute value to represent a unique immutable identity.

If f((x(m), y(n)), ϕ) is false then the join operation (•) cannot be computed.

Example 3.27. Join (•) operation over two XML documents

Let x(m) be an XML document as in Figure 3.4 (with id=”B01”) and y(n) be an

XML document as in the first document of Figure 3.5 (with id=”A01”). Let ϕ

be a condition expression book//aut email=author/email. The join operation

x(m) •ϕ y(n) results in an XML document as shown in Figure 3.12. �

<xml id="J01">

<book isbn="9872347765" lang="EN">

<title>XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

<xml>

Figure 3.12: An XML document as the result of a join operation over two XML
documents

A join operation over two XML documents can be performed as follows:

1. Get two XML documents x(m) and y(n).

2. Verify whether a condition expression ϕ is satisfied for both XML documents.

3. If yes, then apply a merger of ETGs to x(m) and y(n), then return the

resulting document with a new unique id attribute value.



3.4. XML Algebra for Online Processing 57

4. Otherwise, return nothing.

Next, we expand the join operation over two data containers as in Definition 25.

Definition 25. Let D(G), D(H) be data containers. The join operation is defined

as D(G) ./ϕ D(H) = {z(o) : ∃x(m) ∈ D(G), y(n) ∈ D(H), z(o) = x(m) •ϕ y(n)}.
The schema of result data container is F = {G + H : ∃x(m) ∈ D(G), y(n) ∈
D(H),G is ETG of x(m),H is ETG of y(n), and x(m) •ϕ y(n) satisfies condition

expression}.

Example 3.28. The join (./) operation over two data containers

A join operation D(G) ./ϕ D(H), where x(m) ∈ D(G), y(n) ∈ D(H), and ϕ =

x(m)//aut email=y(n)//email results in a data container D(F), where F is a

single set ETG {F=(N,T,A,S,P)} as follows:

N={S,BOOK,TITLE,AUTHORS,AUT EMAIL,SUBJECT,GENRE,ED EMAIL,AUTHOR,NAME,EMAIL}
T={xml,book,title,authors,aut email,subject,genre,ed email,author,name,email}
A={id,isbn,lang}
P={S→xml[id](BOOK AUTHOR),

BOOK→book[isbn lang](TITLE AUTHORS (SUBJECT|GENRE) ED EMAIL?),

TITLE→title,AUTHORS→authors(AUT EMAIL+),SUBJECT→subject,GENRE→genre,

AUT EMAIL→aut email,ED EMAIL→ed email,AUTHOR→author(NAME EMAIL),

NAME→name,EMAIL→email}

Then, the operation produces a data container which consists of three XML doc-

uments, as shown in Figure 3.13 �

3.4.2.5 Antijoin operation

The antijoin operation over data containers is defined in Definition 26.

Definition 26. Let D(G), D(H) be data containers, x(m) and y(n) be XML doc-

uments. The Antijoin operator is defined as D(G) ∼ϕ D(H) = {x(m) : x(m) ∈
D(G) and ∀y(n) ∈ D(H)¬∃(x(m) •ϕ y(n))}, where ϕ is a condition expression.

The resulting data container has a schema F ⊆ G. A new id attribute value is

assigned to every XML document result to represent a unique immutable identity.

Example 3.29. Antijoin (∼) operation on data containers

The antijoin operation D(G) ∼ϕ D(H) where x(m) ∈ D(G), y(n) ∈ D(H), and

ϕ = x(m)//aut email=y(n)//email results an empty data containerD(F). Then

the schema of the result data container is F = ∅. �
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<xml id="J01">

<book>

<title lang="EN">XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

<author>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</author>

</xml>

<xml id="J02"

<book>

<title lang="EN">XML</title>

<authors>

<aut_email>andy@yahoo.com</aut_email>

<aut_email>ben@yahoo.com</aut_email>

</authors>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</book>

<author>

<name>Ben Johnson</name>

<email>ben@yahoo.com</email>

</author>

</xml>

<xml id="J03">

<book isbn="9788700631625" lang="EN">

<title>Harry Potter and the Philosopher’s Stone</title>

<authors>

<aut_email>jk@yahoo.com</aut_email>

</authors>

<genre>Fantasy</genre>

</book>

<author>

<name>J.K. Rowling</name>

<email>jk@yahoo.com</email>

</author>

</xml>

Figure 3.13: A data container with three XML documents as the result of a join
operation (D(G) ./ϕ D(H))
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3.5 XML Algebra Properties

XML algebra operators possess common associativity and distributivity proper-

ties as in the relational algebra model. Distributivity properties over the union

operation of XML algebra and their proofs are as follows:

1. Projection: πF (D(G) ∪D(H)) = πF (D(G)) ∪ πF (D(H));

Proof. Let x ∈ (D(G) ∪D(H)).

If x ∈ (D(G) ∪D(H)) then x is either in D(G) or in D(H).

x ∈ D(G) or x ∈ D(H)

πF (D(G) ∪D(H))⇒ πF (D(G)) ∪ πF (D(H))

2. Selection: σϕ(D(G) ∪D(H)) = σϕ(D(G)) ∪ σϕ(D(H));

Proof. Let x ∈ (D(G) ∪D(H)).

If x ∈ (D(G) ∪D(H)) then x is either in D(G) or in D(H).

x ∈ D(G) or x ∈ D(H)

σϕ(D(G) ∪D(H))⇒ σϕ(D(G)) ∪ σϕ(D(H))

3. Union: (D(G)∪D(H))∪D(K) = D(G)∪ (D(H)∪D(K)) = D(G)∪D(H)∪
D(K) = (D(G) ∪D(K)) ∪ (D(H) ∪D(K))

Proof. Let x ∈ (D(G) ∪D(H)) ∪D(K).

If x ∈ (D(G)∪D(H))∪D(K) then x is either in (D(G)∪D(H)) or in D(K).

x ∈ (D(G) ∪D(H)) or x ∈ D(K)

x ∈ D(G) or x ∈ D(H) or x ∈ D(K)

Therefore:

(D(G) ∪D(H)) ∪D(K)⇒ D(G) ∪D(H) ∪D(K) (3.1)

If x ∈ (D(G)∪D(H))∪D(K) then x is either in (D(G)∪D(H)) or in D(K).

x ∈ (D(G) ∪D(H)) or x ∈ D(K)

x ∈ D(G) or x ∈ D(H) or x ∈ D(K)

x ∈ D(G) or x ∈ (D(H)) ∪D(K))

Therefore:

(D(G) ∪D(H)) ∪D(K)⇒ D(G) ∪ (D(H) ∪D(K)) (3.2)



3.5. XML Algebra Properties 60

If x ∈ (D(G)∪D(H))∪D(K) then x is either in (D(G)∪D(H)) or in D(K).

x ∈ (D(G) ∪D(H)) or x ∈ D(K)

x ∈ D(G) or x ∈ D(H) or x ∈ D(K)

x ∈ D(G) or x ∈ D(K) or x ∈ D(H) or x ∈ D(K)

x ∈ D(G) or x ∈ D(K) or x ∈ (D(H)) ∪D(K))

x ∈ (D(G) ∪ x ∈ D(K)) or x ∈ (D(H)) ∪D(K))

Therefore:

(D(G) ∪D(H)) ∪D(K)⇒ (D(G) ∪D(K)) ∪ (D(H) ∪D(K)) (3.3)

From (3.1), (3.2) and (3.3):

(D(G)∪D(H))∪D(K) = D(G)∪ (D(H)∪D(K)) = D(G)∪D(H)∪D(K) =

(D(G) ∪D(K)) ∪ (D(H) ∪D(K));

4. Join: (D(G) ∪D(H)) ./ϕ D(K) = (D(G) ./ϕ D(K)) ∪ (D(H) ./ϕ D(K));

Proof. Let x ∈ (D(G) ∪D(H)) ./ϕ D(K). If x ∈ (D(G) ∪D(H)) ./ϕ D(K),

then x is either in (D(G) or D(H)) and in D(K)

(x ∈ D(G) or x ∈ D(H)) and x ∈ D(K)

(x ∈ D(G) and x ∈ D(K)) or (x ∈ D(H) and x ∈ D(K))

x ∈ (D(G) and D(K)) or x ∈ (D(H) and D(K))

x ∈ (D(G) ./ϕ D(K)) ∪ (D(H) ./ϕ D(K))

Therefore,

(D(G) ∪D(H)) ./ϕ D(K) = (D(G) ./ϕ D(K)) ∪ (D(H) ./ϕ D(K))

5. Antijoin: (D(G) ∪D(H)) ∼ϕ D(K) = (D(G) ∼ϕ D(K)) ∪ (D(H) ∼ϕ D(K))

Proof. Let x ∈ (D(G) ∪D(H)) ∼ϕ D(K). If x ∈ (D(G) ∪D(H)) ∼ϕ D(K),

then x is in (D(G) or D(H)), but not in D(K)

(x ∈ D(G) or x ∈ D(H)) and x 6∈ D(K)

(x ∈ D(G) and x 6∈ D(K)) or (x ∈ D(H) and x 6∈ D(K))

x ∈ (D(G) ∼ϕ D(K)) ∪ (D(H) ∼ϕ D(K))

Therefore,

(D(G) ∪D(H)) ∼ϕ D(K) = (D(G) ∼ϕ D(K)) ∪ (D(H) ∼ϕ D(K))

6. Antijoin(2): D(G) ∼ϕ (D(H) ∪D(K)) = (D(G) ∼ϕ D(H)) ∼ϕ D(K).
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Proof. Let x ∈ D(G) ∼ϕ (D(H) ∪D(K)). If x ∈ D(G) ∼ϕ (D(H) ∪D(K)),

then x is in D(G), but neither in D(H) nor D(K)

x ∈ D(G) and x 6∈ (D(H) or D(K))

x ∈ D(G) and x 6∈ D(H) and x 6∈ D(K)

(x ∈ D(G) and x 6∈ D(H)) and x 6∈ D(K)

x ∈ (D(G) ∼ϕ D(H)) and x 6∈ D(K)

x ∈ (D(G) ∼ϕ D(H)) ∼ϕ D(K)

Therefore,

D(G) ∼ϕ (D(H) ∪D(K)) = (D(G) ∼ϕ D(H)) ∼ϕ D(K)

When data containers D(G), D(H), and D(K) share common paths to satisfy

a propositional condition of operations, then the distributivity of the antijoin

operation over join, union and antijoin can be determined as follows:

7. (D(G) ∼ϕ D(H)) ./ϕ D(K) = ((D(G) ./ϕ D(K)) ∼ϕ (D(H) ./ϕ D(K));

Proof. Let x ∈ (D(G) ∼ϕ D(H)) ./ϕ D(K).

If x ∈ (D(G) ∼ϕ D(H)) ./ϕ D(K), then x is in D(G) and not in D(H), and

x is in D(K)

(x ∈ D(G) and x 6∈ D(H)) and x ∈ D(K)

x ∈ D(G) and x ∈ D(K) and x 6∈ D(H)

(x ∈ D(G) and x ∈ D(K)) and x 6∈ D(H)

x ∈ (D(G) and D(K)) and x 6∈ D(H)

x ∈ (D(G) ./ϕ D(K))) ∼ϕ D(H)

Therefore,

(D(G) ∼ϕ D(H))) ./ϕ D(K) = (D(G) ./ϕ D(K)) ∼ϕ (D(H) ./ϕ D(K))

8. D(G) ./ϕ (D(H) ∼ϕ D(K)) = (D(G) ./ϕ D(H)) ∼ϕ D(K);

Proof. Let x ∈ (D(G) ./ϕ (D(H) ∼ϕ D(K))).

If x ∈ (D(G) ./ϕ (D(H) ∼ϕ D(K))), then x is in D(G) and in (D(H) ∼ϕ
D(K))

x ∈ D(G) and (x ∈ D(H) and x 6∈ D(K))

x ∈ D(G) and x ∈ D(H) and x 6∈ D(K)

(x ∈ D(G) and x ∈ D(H)) and x 6∈ D(K)

x ∈ (D(G) and D(H)) and x 6∈ D(K)

x ∈ (D(G) ./ϕ D(H)) ∼ϕ D(K)

Therefore,

D(G) ./ϕ (D(H) ∼ϕ D(H)) = (D(G) ./ϕ D(H)) ∼ϕ D(K)
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9. (D(G) ∼ϕ D(H)) ∪D(K) = (D(G) ∪D(K)) ∼ϕ (D(H) ∼ϕ D(K));

Proof. Let D(G) ∈ (D(G) ∼ϕ D(H)) ∪D(K).

If x ∈ (D(G) ∼ϕ D(H)) ∪ D(K), then x is in (D(G) ∼ϕ D(H)) or x is in

D(K)

(x ∈ D(G) and x 6∈ D(H)) or x ∈ D(K)

(x ∈ D(G) or x ∈ D(K)) and (x 6∈ D(H) or x ∈ D(K))

x ∈ (D(G) or D(K)) and ¬(x ∈ D(H) and x 6∈ D(K))

(D(G) ∪D(K)) ∼ϕ (D(H) ∼ϕ D(K))

Therefore,

(D(G) ∼ϕ D(H)) ∪D(K) = (D(G) ∪D(K)) ∼ϕ (D(H) ∼ϕ D(K));

10. D(G) ∪ (D(H) ∼ϕ D(K)) = (D(G) ∪D(H)) ∼ϕ (D(K) ∼ϕ D(G));

Proof. Let x ∈ (D(G) ∪ (D(H) ∼ϕ D(K))).

If x ∈ (D(G)∪(D(H) ∼ϕ D(K))), then x is in D(G) or x in (D(H) ∼ϕ D(K))

x ∈ D(G) or (x ∈ D(H) and x 6∈ D(K))

(x ∈ D(G) or x ∈ D(H)) and (x ∈ D(G) or x 6∈ D(K))

x ∈ (D(G) or D(H)) and ¬(x 6∈ D(G) and x ∈ D(K))

x ∈ (D(G) or D(H)) and ¬(x ∈ D(K) and x 6∈ D(G))

x ∈ (D(G) or D(H)) and ¬(x ∈ D(K) and x 6∈ D(G))

Therefore,

D(G) ∪ (D(H) ∼ϕ D(K)) = (D(G) ∪D(H)) ∼ϕ (D(K) ∼ϕ D(G));

11. (D(G) ∼ϕ D(H)) ∼ϕ D(K) = D(G) ∼ϕ D(H) ∼ϕ D(K);

Proof. Let x ∈ (D(G) ∼ϕ D(H)) ∼ϕ D(K).

If x ∈ (D(G) ∼ϕ D(H)) ∼ϕ D(K), then x is in (D(G) ∼ϕ D(H)) and x is

not in D(K)

x ∈ D(G) and x 6∈ D(H) and x 6∈ D(K)

Therefore,

(D(G) ∼ϕ D(H)) ∼ϕ D(K) = D(G) ∼ϕ D(H) ∼ϕ D(K);

12. D(G) ∼ϕ (D(H) ∼ϕ D(K)) = (D(G) ∼ϕ D(H)) ∪ (D(G) ./ϕ D(K))

Proof. Let x ∈ (D(G) ∼ϕ (D(H) ∼ϕ D(K))).

If x ∈ (D(G) ∼ϕ (D(H) ∼ϕ D(K))), then x is inD(G) and x not in (D(H) ∼ϕ
D(K))
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x ∈ D(G) and not (x ∈ D(H) and x 6∈ D(K))

x ∈ D(G) and (x 6∈ D(H) or x ∈ D(K))

(x ∈ D(G) and x 6∈ D(H)) or (x ∈ D(G) and x ∈ D(K))

Therefore,

D(G) ∼ϕ (D(H) ∼ϕ D(K)) = (D(G) ∼ϕ D(H)) ∪ (D(G) nϕ D(K));

The properties listed above play an important role in enabling incremental pro-

cessing in an online data integration system.

3.6 XML Algebra vs Relational Algebra

The XML algebra described earlier has an important property when compared

with relational algebra. If we simplify a data container to have a single set of

ETG as its schema, we restrict all ETGs to contain production rules with a simple

sequence of elements, and we simplify each document in a data container such that

it represents a row in a relational table, and then the system of operations reduces

to relational algebra.

Example 3.30. Consistency of XML algebra to relational algebra

Let D({G}) be a data container with a single set schema, G=(N,T,A,S,P). The

ETG is as follows:

N={S,ISBN,TITLE AUT EMAIL,SUBJECT,ED EMAIL}
T={xml,isbn,title,aut email,subject,ed email}
A={id}
P={S→xml[id](ISBN,TITLE AUT EMAIL SUBJECT ED EMAIL),

ISBN→isbn,TITLE→title,AUT EMAIL→aut email,

SUBJECT→subject,ED EMAIL→ed email}

The above ETG defines the structure of a book document with one level depth.

Based on the ETG, we are able to generate a book XML document, as in Figure

3.14

Let D(H) be a data container with a single set schema, H=(N,T,A,S,P). The

ETG is as follows:

N={S,NAME,EMAIL}
T={xml,name,email}
A={id}
P={S→xml[id](NAME,EMAIL),NAME→name,EMAIL→email}
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<xml id="B01">

<isbn>9872347765</isbn>

<title>XML</title>

<aut_email>andy@yahoo.com</aut_email>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

</xml>

Figure 3.14: A book XML document with a simple structure

The above ETG describes the structure of an author document with one level

depth. Based on the above ETG, we can generate an XML document as in Figure

3.15

<xml id="A01">

<name>Andy Cole</title>

<email>andy@yahoo.com</aut_email>

</xml>

<xml id="A02">

<name>Ben Johnson</name>

<email>ben@yahoo.com</email>

</xml>

Figure 3.15: Two author XML documents with a simple structure

The same ETG for the author document can be used to define the editor docu-

ment. Then, we can generate an XML document, as in Figure 3.16

<xml id="E01">

<name>Ross Marrie</name>

<email>ross@gmail.com</email>

</xml>

Figure 3.16: An editor XML document with a simple structure

The four documents in Figure 3.14 and 3.15 represent rows in the relational

tables, where the xml element and its id attribute represents the row id in a

relational table, whereas a pair of opening and closing tags represents a field name.

Let D(G) be a data container with a single XML document (Figure 3.14); Fig-

ure 3.15 shows two XML documents in a data container D(H). Figure 3.16 shows

an XML document in a data container D(K), where K={H}. Data containers are

a collection of XML documents, therefore they represent tables in the relational

model as shown in Figure 3.17.
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Figure 3.17: (a) Book table which is compatible with data container D(G), (b)
author table which corresponds to data container D(H), and (c) editor table
which is compatible with data container D(K)

�

Next, XML algebra operations is performed over data containers D(G) and

D(H) as follows:

1. Consider a selection operation σϕ(D(H)), where ϕ=//name="Andy Cole".

The operation returns a data container with schema F , where F = H. D(F)

contains an XML document:

<xml id="S01">

<name>Andy Cole</title>

<email>andy@yahoo.com</aut_email>

</xml>

The result is consistent with the selection operation in relational algebra

which returns a new table with a corresponding row result and with a new

row id.

The difference is that when the selection operation returns no data, relational

algebra produces a table with a structure with no rows in it. In contrast,
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selection in XML algebra returns a data container with no XML document,

and has an empty set of ETG as its schema, D(F) where F = ∅.

2. Consider a projection operation πH(D(G)), where H is an ETG as follows:

N={S,TITLE,SUBJECT}
T={xml,title,subject}
A={id,isbn,lang}
P={S→xml[id](TITLE SUBJECT),

TITLE→title,SUBJECT→subject}

The projection operation produces a data container of XML documents

D(F), where F = {H}. The XML document results have a new struc-

ture, as defined in H. Meanwhile, the projection operation on the relational

model produces a table with a new structure as in the projection argument.

It concludes that the result of the projection operation in our XML algebra

is consistent with that in relational algebra.

Similar to the selection operation, when the projection operation in XML

algebra returns no document, a data container with an empty set of ETGs

is returned, such that D(F) where F = ∅.

3. Union operation over D(H) and D(K) produces a data container D(F).

Since H = K, then the resulting data container is D(F), where F = H = K.

D(F) contains three XML documents with the same structure, namely two

author documents and one editor document.

In relational algebra, equivalent results are obtained when a union operation

is performed on author and editor tables. Since they have identical struc-

tures, we obtain a new table with a single structure which contains three

rows.

The XML algebra has an advantage that a union operation can be performed

on two data containers with different schemas. In other words, the union op-

eration in XML algebra allows unification of XML documents with different

structures in a data container result. Then, the schema of the data container

result is obtained by unification of all schemas from both data containers.

4. Consider a join operationD(G) ./ϕ D(H), where ϕ=”//aut email=//email”,

//aut email is a path in x(m) ∈ D(G) and //email is a path in y(n) ∈
D(H). In XML algebra, computation of the join operation is performed
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such that the data container result has a schema {G+H:G∈ G,H ∈ H}. The

merge operation G+H results in an ETG F as follows:

N={S,ISBN,TITLE AUT EMAIL,SUBJECT,ED EMAIL,NAME,EMAIL}
T={xml,isbn,title,aut email,subject,ed email,name,email}
A={id}
P={S→xml[id](ISBN,TITLE AUT EMAIL SUBJECT ED EMAIL NAME EMAIL),

ISBN→isbn,TITLE→title,AUT EMAIL→aut email,

SUBJECT→subject,ED EMAIL→ed email,NAME→name,EMAIL→email}

The data container result consists of an XML document as shown in Figure

3.18.

<xml id="J01">

<isbn>9872347765</isbn>

<title>XML</title>

<aut_email>andy@yahoo.com</aut_email>

<subject>Data</subject>

<ed_email>ross@gmail.com</ed_email>

<name>Andy Cole</name>

<email>andy@yahoo.com</email>

</xml>

Figure 3.18: A book XML document with a simple structure

In relational algebra, a join operation can be performed by a query:

SELECT * from Book, Author WHERE Book.aut email=Author.email

The result of the join operation is shown in Figure 3.19.

Figure 3.19: Join result in the relational algebra

We can see that both results are compatible, therefore a join operation in

XML algebra is consistent with the one in the relational algebra.

5. The last operation is the antijoin operation. An example is D(G) ∼ϕ D(H)

where ϕ=book//aut email=author/email. book//aut email is a path in

x(m) ∈ D(G) and author/email is a path in y(n) ∈ D(H).

In this example, an antijoin operation results in no XML document. There-

fore, the data container result has a schema F = ∅.
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In relational algebra, the operation can be written as: select * FROM Book

WHERE aut email not IN (SELECT email FROM Author) and results an empty

table. The structure of the result table is the same as the structure of book

table.

Let U be a set of all data containers, and V ⊆ S be a set of data containers

such that there exists a transformation t of any D(G) ∈ V into a relational table

R ∈ W . Figure 3.20 shows a transformation function t such that an equivalence

mapping from V to W exists.

Figure 3.20: Equivalent mapping from the XML model to the relational model

Let θ be an operation on two data containers in V , such that θ(D(G), D(H))

produces a data container as its result.

Theorem 1. For all D(G), D(H) ∈ V and any operation θ in XML algebra where

θ(D(G), D(H)) ∈ V , an equivalent operation Θ exists in relational algebra such

that t(θ(D(G), D(H))) = t(D(G)) Θ t(D(H)).

Proof. Let we have the following:

1. G = (NG, TG, AG, SG, PG), H = (NH , TH , AH , SH , PH) be ETGs.

2. m ∈ TG∗ be a sentence of G, and n ∈ TH∗ be a sentence of H.

3. X = TG − {xml} and Y = TH − {xml} be sets of terminal symbols without

a terminal symbol xml. X ∩ Y = ∅.

4. x(m) ∈ D(G), y(n) ∈ D(H) be XML documents which are equivalent to

relational rows, where m =xml[id](m′), n =xml[id](n′).
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5. xml[id] is equivalent to a row id in the relational table.

6. m′ ∈ X∗, n′ ∈ Y ∗ be sets of unique terminal symbols.

7. α be a transformation function of an XML document into a particular row

in a relational table, and is defined as α(x(m)) = {rowID, 〈c = value〉 :

xml[id] → rowID, ∀t ∈ m′ → c, t/text() → value}, where c represents a

column in a relational table. Therefore, α(x(m)) = r.

8. r be a row in a relational table, rowID be a row identity, C = {c1, . . . , cn}
be a set of columns in r, and β be a transformation function of r into an

XML document x(m), and is defined as β(r) = {x(xml[id](m′)) : rowID→
xml[id],∀c ∈ C → t ∈ m′}. Therefore, β(r) = x(m)

Therefore, t(D(G)) = {α(x(m)) : x(m) ∈ D(G)} represents transformation of an

XML data container into a table in a relational model. A table R = {r1, . . . , rn}
is a set of rows where ri = α(xi(m)). Therefore, t(D(G)) = R.

Definition 27. Let c be a column in a relational table, and v be a string value.

Let θ be an operator in a set of comparison operator {=, <>,<,>,<=, >=}.
A condition expression in the relational model is denoted as Φ, and is defined as

a propositional formula that consists of proposition(s) in the form of (c θ c) or

(c θ v), and the logical operators ∧ (and), ∨ (or) and ¬ (negation).

1. The selection operation σϕ(D(G)) = {x(m) : x(m) ∈ D(G) and f(x(m), ϕ) =

true}
Let Σ be a selection operation in the relational model.

t(σϕ(D(G))) =t({x(m) : x(m) ∈ D(G) and f(x(m), ϕ) = true})

={α(x(m)) : x(m) ∈ D(G) and f(x(m), ϕ) = true} (3.4)

Let f(x(m), ϕ) ≡ eval(r, Φ). The selection operation on t(D(G)) in the

domain of W is as follows:

ΣΦ(t(D(G))) =ΣΦ(R)

={r : r ∈ R and eval(r, Φ) = true}

={α(x(m)) : x(m) ∈ D(G) and f(x(m), ϕ) = true} (3.5)

From (3.4) and (3.5), t(σϕ(D(G))) = ΣΦ(t(D(G))). Therefore, we conclude

that σϕ ≡ ΣΦ.
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2. The projection operation πH(D(G)) = {y(m′) : ∃x(m) ∈ D(G), y(m′) =

x(m)[H]}. Let Π be a projection operation in the relational model.

t(πH(D(G))) =t({y(m′) : ∃x(m) ∈ D(G), y(m′) = x(m)[H]})

={α(y(m′)) : ∃x(m) ∈ D(G), y(m′) = x(m)[H]} (3.6)

Let G = {G}, and H v G. Terminal symbol TH ≡ C = {c1, . . . , cn},
x(m)[H] = y(m′), and α(x(m)[H]) ≡ r[c1, . . . , cn]. The projection operation

on t(D(G)) in the domain of W is as follows:

Πc1,...,cn(t(D(G))) =Πc1,...,cn(R)

={r[c1, . . . , cn] : ∃r ∈ R}

={α(x(m)[H]) : ∃x(m) ∈ D(G)}

={α(y(m′)) : ∃x(m) ∈ D(G), y(m′) = x(m)[H]} (3.7)

From (3.6) and (3.7), t(πH(D(G))) = Πc1,...,cn(t(D(G))). Therefore, we con-

clude that πH ≡ Π[c1,...,cn].

3. The join operation D(G) ./ϕ D(H) = {z(o) : ∃x(m) ∈ D(G), y(n) ∈
D(H), z(o) = x(m) •ϕ y(n)}.
Let onΦ be a join operation in the relational model.

t(D(G) ./ϕ D(H)) =

= t({z(o) : ∃x(m) ∈ D(G), y(n) ∈ D(H), z(o) = x(m) •ϕ y(n)})

= {α(z(o)) : ∃x(m) ∈ D(G), y(n) ∈ D(H), z(o) = x(m) •ϕ y(n)}

= t{α(x(m) •ϕ y(n)) : ∃x(m) ∈ D(G), y(n) ∈ D(H)} (3.8)

Let t(D(G)) = R, t(D(H)) = S, ϕ ≡ Φ, and r × s ≡ x(m) •ϕ y(n).

t(D(G)) onΦ t(D(H)) =R onΦ S

={r × s : r ∈ R and s ∈ S and eval((r × s), Φ) = true}

={α(x(m) •ϕ y(n)) : ∃x(m) ∈ D(G), y(n) ∈ D(H)}
(3.9)

From (3.8) and (3.9), t(D(G) ./ϕ D(H)) = (t(D(G)) onΦ t(D(G))). There-

fore, we can conclude that ./ϕ≡onΦ.
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4. The union operation D(G) ∪ D(H) = {x(m) : x(m) ∈ D(G) or x(m) ∈
D(H)}.
Let d be a union operation in the relational model.

t(D(G) ∪D(H)) =t({x(m) : x(m) ∈ D(G) or x(m) ∈ D(H)})

={α(x(m)) : x(m) ∈ D(G) or x(m) ∈ D(H)} (3.10)

Let t(D(G)) = R, t(D(H)) = S.

t(D(G)) d t(D(H)) =R d S

={r : r ∈ R or r ∈ S}

={α(x(m)) : x(m) ∈ D(G) or x(m) ∈ D(H)} (3.11)

From (3.10) and (3.11), t(D(G) ∪D(H)) = (t(D(G)) d t(D(G))). Therefore,

we draw a conclusion that cup ≡ d.

5. The antijoin operationD(G) ∼ϕ D(H) = {x(m) : x(m) ∈ D(G) and ¬∃y(n) ∈
D(H)(x(m) •ϕ y(n))}.
Let .Φ be an antijoin operation in the relational model.

t(D(G) ∼ϕ D(H)) =

= t({x(m) : x(m) ∈ D(G) and ¬∃y(n) ∈ D(H)(x(m) •ϕ y(n))})

= {α(x(m)) : x(m) ∈ D(G) and ¬∃y(n) ∈ D(H)(x(m) •ϕ y(n))} (3.12)

Let t(D(G)) = R, t(D(H)) = S, ϕ ≡ Φ, and r × s ≡ x(m) •ϕ y(n).

t(D(G)) .Φ t(D(H)) =

= R .Φ S

= {r : r ∈ R and ¬∃s ∈ S(r ×Φ s)}

= {α(x(m)) : x(m) ∈ D(G) and ¬∃y(n) ∈ D(H)(x(m) •ϕ y(n))} (3.13)

From (3.12) and (3.13), t(D(G) ∼ϕ D(H)) = (t(D(G)) .Φ t(D(G))). There-

fore, we draw the conclusion that ∼ϕ≡ .Φ.

In conclusion, by using a simple data structure as a schema of data containers

D(G), XML algebra operations return consistent results with relational algebraic
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operations.

In reality some data containers are not equivalent to those in the relational

model, and shown as a set of U-V in Figure 3.20. These data containers may have

the following special characteristics:

1. they have nested structures. In the relational model, nested structures are

accommodated by a nested relational model.

2. their elements may have mixed values (child element, literal value, and/or

attributes)

Accordingly, we investigate whether these special characteristics are acceptable

in the proposed XML algebra:

Let D(G ′), D(H′) be any data containers. Let D(G ′) = {x(m)} where m=xml[id=

"v1"]m’ is the structure of document y(n), and D(H′) = {y(n)} where n=xml[id=

"v2"]n’ is the structure of document x(m). Let xml[id] be the top structure of

document to store document’s identity (val1, val2). Let m’, n’∈ {T∪A}∗ be any

sequence of terminal (T) and attribute (A) symbols which represent the structure

of XML documents without identities, and include XML structures equivalent to

relational tables.

1. The selection operation (σϕ(D(G ′)))
The selection operation does not change the structure of documents (m’).

It operates on every XML document in a data container which satisfies the

condition. The condition expression is based on path expression. The selec-

tion operation on a D(G ′) returns a data container D(G ′) = {x(m)}, where

m=xml[id="val1’"](m’). Therefore with any structure of XML document,

the selection operation is applicable to these data containers.

2. The union operation (D(G ′) ∪D(H′))
Similar to selection, the union operation does not change the structure of

documents. Operation (D(G ′) ∪ D(H′)) returns a data container D(F) =

{x(m), y(n)} where F = G ′ ∪ H′. Therefore with any structure of XML

document, the union operation is applicable.

3. The join operation (D(G ′) ./ϕ D(H′))
D(G ′) ./ϕ D(H′) returns a data container D(F) = {z(o)} if a condition

expression ϕ is satisfied. The result data container has a schema F = {G′+
H ′}. A new XML document has a structure o=xml[id="val3"](m’ n’),

where "val3" is a new identity. As we can see from this result, for any
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structures represented as m’ and n’ including the ones which equivalent to

relational table, the join operation is applicable.

4. The antijoin operation (D(G ′) ∼ϕ D(H′))
D(G ′) ∼ϕ D(H′) returns a data container D(F) = {x(m)} if a condition

expression ϕ is not satisfied. However, x(m) are assigned to a new identity

value, where m=xml[id="val3"](m’). Therefore, the antijoin operation

is applicable to any data containers including data containers which are

equivalent to relational tables.

5. The projection operation (πH(D(G ′)))
πH(D(G ′)) returns a data container D(F) = {x(o)}, where o =xml[id=

"val3"](m"), F ⊆ G ′, and m" is a substring of m’. Then, for any structure

m′, the projection operation is applicable.

Since XML and relational algebras are consistent, the properties of relational

algebra can be applied to the XML algebra as follows:

1. The selection operation is idempotent and commutative:

a. σϕ1σϕ2(D(G) = σϕ2σϕ1(D(G)

2. A selection with complex condition expression can be broken down into:

a. σϕ1∧ϕ2(D(G)) = σϕ1(σϕ2(D(G))) = σϕ2(σϕ1(D(G)))

b. σϕ1∨ϕ2(D(G)) = σϕ1(D(G)) ∪ σϕ2(D(G))

3. The projection operation is idempotent:

a. πK(πH(D(G))) = πK(D(G)), where K v H.

4. The join operation is commutative:

a. D(G) ./ϕ D(H) = D(H) ./ϕ D(G)

5. Distributive properties:

a. σϕ(D(G) ∪D(H)) = σϕ(D(G)) ∪ σϕ(D(H))

b. (D(G) ∪D(H)) ./ϕ D(K) = (D(G) ./ϕ D(K)) ∪ (D(H) ./ϕ D(K))

Consistency with relational algebra is necessary to gain advantages of existing

research results which have been undertaken in relational algebra. Since it has been

established and widely used, there are a number of performance tuning algorithms

for relational algebra that can be applied to the XML algebra outlined in this

chapter.



Chapter 4

Online Data Integration System

Online data integration in a distributed multi-database system is a continuous

consolidation process of the data transmitted over a network with the data already

available at a central site. The intermediate results of online data integration

provide a user with the most up-to-date results of a query being processed by the

system. Online integration applies an online processing where the units of data

increments are instantly processed without having an entire set of data available.

Then, the result of incremental data processing is combined with the current state

to obtain a new processing state.

This chapter presents the core of this thesis: an online data integration system.

An architecture and a framework as the backbone of the online data integration

system is described in Section 4.1. An example of a global query expression is given

in Section 4.2 to give a better understanding as to how the system works. Section

4.3 describes a decomposition strateqy to balance computation between the central

and remote sites. Section 4.4 describes an algorithm to transform a global query

expression into a data integration expression, and in Section 4.4.1 transformation

of a data integration expression into increment expressions is presented. Section

4.4.2 describes an algorithm to generate an online integration plan based on the

increment expressions generated earlier. Section 4.5 covers a dynamic scheduling

system to efficiently manage execution of online integration plans.

4.1 Online Data Integration Architecture

Processing of data integration procedures starts when a user query arrives at a

central site. The central site decomposes the user query into several sub-queries

and sends them to the remote sites for computation. Then, the remote sites send

the computation results back to the central site for further integration processing.

Generally, the central site starts the integration process when all data become

available at the central site.

74
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In an online data integration system, the basic concepts of data integration

systems are preserved, but the integration process at the central site is started as

soon as a unit of data increment arrives at the central site. In this chapter, a unit

of data increment is assumed to be a complete XML document.

We consider an online data integration system which contains a mediator and

a number of wrappers (see Figure 4.1).

Figure 4.1: Architecture of an online integration system

The architecture of the online data integration system consists of the following

parts:

1. Pre-processing.

The pre-processing module includes a mediator, a global schema, a query

decomposition system, and a plan generator. A mediator converts a user

request into a global query expression. Then, the query decomposition algo-

rithm decomposes it into a set of sub-queries. In the plan generator, a series

of transformations are performed to obtain a set of online integration plans.
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2. Query Decomposition.

Query decomposition is one of the important keys to construct an efficient

data integration expression. It employs a mapping of a global view into a

set of source schemas, and a strategy to utilize a global view and distributed

multi-database environment to obtain an optimal decomposition result.

3. Data Sources.

In data integration systems, data sources are likely to be heterogeneous and

somehow were not designed to support integration. The format of data

sources may vary from well-structured data, for example relational databases,

to unstructured data like text files. XML has been chosen as a standard for

data exchange since it allows encoding of both structured and unstructured

data.

4. Wrappers.

Database systems at highly autonomous remote sites are likely have various

data structures. Data integration of the database systems requires a data

transformation process into a designated structure. In ths thesis, wrappers

at the remote sites are employed to transform the various structures into an

XML data model.

5. Dynamic Scheduling System.

The dynamic scheduling system consists of a sliding window, a dependency

table, a data container status list, and an increment queue. It incorporates

an algorithm to manage a sequence of increments from the remote sites

and provides the best way to process them. Every increment in the sliding

window is labeled with a priority label accordingly to their increment type,

and then they are processed based on their priorities.

A mediator-wrapper data integration system consists of a global schema G, a

set of source schemas S, and a mapping between the source and global schemas

M : G → S. A set of source schemas is defined as S = {〈si : xi〉 : i = 1, . . . , n},
where 〈si : xi〉 represents a dataset located at remote site si. A global schema

is an XML view, and is defined as G = {g1, . . . , gn}, where each element gi is a

query over S and can be expressed as gi = e(〈s1 : x1〉, . . . , 〈sn : xn〉). A query for

gi is built on XML algebra over S. Meanwhile, a wrapper has the responsibility

of transforming data structures at the remote sites into an XML model.

The outline of the online data integration process considered in this thesis is

as follows:
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1. A user sends a request formulated over a global schema G to the central site

of the online data integration system. Since G contains a set of XML views,

then the query submitted to the central site is in the form of a high level

query language for XML like XQuery.

2. In the first step of query processing at the central site, a mediator transforms

a user query expressed in XQuery language into a query expressed in XQuery

Core through a series of normalization processes [73].

3. Then, based on a mapping M : G → S, a query in the XQuery Core is

translated into a global query expression over a set of source schemas S and

XML algebraic operations.

4. During this process, a user query can be optimized using the standard tech-

niques of syntax-based optimization, e.g. moving selection operations (σ)

before binary operations, and projection (π) are pushed to the top of a global

query expression.

5. The computation of a global query expression is performed at both the re-

mote sites and the central site depending on their CPU performance and

network characteristics. In general, the remote sites have lower resources

than the central site. Thus, sending complex queries to the remote sites

for computation reduces the performance of an integration system. On the

other hand, sending simple queries to the remote sites yields a large amount

of results to be transmitted to the central site, and requires a higher commu-

nication cost. A better performance is obtained by balancing of the resource

consumptions at the central and remote sites with the communication cost.

6. The decomposition process produces a set of sub-queries {qi : i = 1, . . . , k}
and transforms a global query expression into an equivalent expression

f(q1, . . . , qk) where a set of sub-queries {qi : i = 1, . . . , k} is sent to the

remote sites for processing. The computation results of sub-queries {qi : i =

1, . . . , k} arrive at the central site in the form of data containers {Di(G) :

i = 1, . . . , k}.

To simplify a notation, we use Di instead of a full notation of a data container

which includes its schema Di(G). A data container Di is the computation

result of sub-query qi.

7. An online integration system allows us to compute a unit of increment with-

out requiring all data to be available at the central site. In this chapter, we
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consider a unit of increment as a complete XML document. We transform

a data integration expression into a set of increment expressions to include

processing of a data increment δi against data containers and the current re-

sults. For every data container Di, an increment expression gi is generated.

8. In the next step, we generate an online integration plan di for every increment

expression constructed earlier. di is a set of steps to compute an increment

expression, where every step is an XML algebraic operation over a data

increment (δi) and a data container Dj or a materialization Ma.

9. In the execution phase, every data increment δi at a data container Di is

integrated into the current result of computing by execution of an online

integration plan di prepared earlier. Finally, the central site sends the final

result of computation to the user.

In this thesis, a projection operation is always performed at the end after

integration processing is completed.

In the following sections, every part of the online data integration system is de-

scribed.

4.2 Global Query Expression

Since user queries submitted to the central site use a global schema G, they must

be transformed into a global query expression according to schema mapping M :

G→ S, to allow computation on a set of source schemas S at the remote sites.

Definition 28. Let {〈si : xi〉 : i = 1, . . . , n} be a set of datasets located at the

remote sites. A global query expression e(〈s1 : x1〉, . . . , 〈sn : xn〉) is an expres-

sion built from the XML algebra operations of selection, projection, join, antijoin,

union, and remote datasets.

Example 4.1. A global query expression

Let g1 = e(〈s1 : x1〉), g2 = e(〈s1 : x2〉 ∼ 〈s1 : x3〉), g3 = e(〈s1 : x4〉 ∼ 〈s1 : x5〉), g4 =

e(〈s1 : x6〉), g5 = e(〈s2 : x7〉), g6 = e(〈s3 : x8〉 ./ 〈s3 : x9〉) be XML views in a

global schema G. Let a user query: ”Get all complete book documents including

subject description from book data (g1) where their editors are not book writers

(g2) and their subjects are not in the top 10 lists (g3). In addition, we ask for book

and author data from g4 which are written by any author, but does not exist the

same book and same author in g6”.



4.2. Global Query Expression 79

The user query above can be written as a query in XQuery language as follows:

(for $x in doc("g1.xml")//book,

$y in doc("g2.xml")//editor,

$z in doc("g3.xml")//subject

where $x//ed_email=$y/email and $x/subject=$z

return $x)

union

(for $b in

(for $u in doc("g4.xml")//book,

$v in doc("g5.xml")//author

where $u//aut_email=$v/email

return <result>{$u,$v}</result>)

where empty(doc("g6.xml")//book[title=$b//book/title])

return $b)

In the next step, the user query in the XQuery language is translated into a query

in the XQuery Core language. The query is broken into two sub-queries, namely

the parts before and after the union operator, to simplify the translation process,

. The sub-queries is translated into queries in XQuery Core. Then, a union

operation on the sub-queries is perfomed. The first sub-query is as follows:

for $x in doc("g1.xml")//book,

$y in doc("g2.xml")//editor,

$z in doc("g3.xml")//subject

where $x//ed_email=$y/email and $x/subject=$z

return $x

It is translated into a query in XQuery Core as follows:

for $x in doc(g1.xml) return

for $y in doc(g2.xml) return

for $z in doc(g3.xml) return

if (not(empty(

for $aut_email in $x/authors/aut_email return

for $email in $y/email return

if (eq($aut_email = $email)) then

for $book_sbj in $x/subject return

for $subj in $z return

if(eq($book_sbj=$subj)) then $subj else ()

else ()

))) then

element result {$x, $y}

else ()

It can be expressed in XML algebra as follows:

sub− query 1 = (g1 ./ϕ1 g2) ./ϕ1 g3) (4.1)
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where ϕ1 = "aut email=email" and ϕ2 = "email=email".

The second sub-query is as follows:

(for $b in

(for $u in doc("g4.xml")//book,

$v in doc("g5.xml")//author

where $u//aut_email=$v/email

return <result>{$u,$v}</result>)

where empty(doc("g6.xml")//book[title=$b//book/title])

return $b)

It is translated into a query in XQuery Core as follows:

for $b in (

for $u in doc("g4.xml") return

for $v in doc("g5.xml") return

if (not(empty(

for $aut_email in $u/authors/aut_email return

for $email in $v/email return

if(eq($aut_email=$email)) then $email else ()

))) then

element result {$u, $v}

else ()

) return

for $c in doc("g6.xml") return

if (empty(

for $aut_email in $b/authors/aut_email return

for $email in $c/email return

if (eq($aut_email = $email)) then $email else ()

)) then

element result {$x}

else ()

This sub-query can be expressed in an XML algebra expression as:

sub− query 2 = ((g4 ./ϕ3 g5) ∼ϕ4 g6) (4.2)

where ϕ3 = "aut email=email" and ϕ4 = "aut email=email".

The complete query in XQuery Core is obtained by a union operation over Equa-

tions 4.1 and 4.2, and can be expressed as follows:

user query = ((g1 ./ϕ1 g2) ./ϕ2 g3) ∪ ((g4 ./ϕ3 g5) ∼ϕ4 g6) (4.3)

To simplify notations, we remove the condition expressions in the following sections

without changing the meaning of the operations.
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After the user query is translated into an XML algebra expression, the medi-

ator transforms it into a global query expression based on the schema mappings

provided. Figure 4.2 shows a global query expression tree which is written as

follows:

e =((〈s1 : x1〉 ./ (〈s1 : x2〉 ∼ 〈s1 : x3〉)) ./ (〈s1 : x4〉 ∼ 〈s1 : x5〉))∪

((〈s1 : x6〉 ./ 〈s2 : x7〉) ∼ (〈s3 : x8〉 ./ 〈s3 : x9〉))

Figure 4.2: A global query expression tree for the user query in Example 4.1

The global query expression example is intentionally left as a non-optimized

query for showing the purpose of the online integration process. �

4.3 Decomposition of a Global Query Expression

The computation of a global query expression can be performed by sending simple

requests to the remote sites to retrieve XML documents from all datasets (〈si : xi〉).
Then, the integration process is performed at the central site.

Example 4.2. Processing of a global query expression

Let e = ((〈s1 : x1〉 ./ (〈s1 : x2〉 ∼ 〈s1 : x3〉)) ./ (〈s1 : x4〉 ∼ 〈s1 : x5〉)) ∪ ((〈s1 :

x6〉 ./ 〈s2 : x7〉) ∼ (〈s3 : x8〉 ./ 〈s3 : x9〉)) be a global query expression. Processing

of an expression e is performed by sending simple queries to obtain individual

datasets from the remote sites, as shown in the following:

1. Get a data container x1 from remote site s1

2. Get a data container x2 from remote site s1

3. Get a data container x3 from remote site s1



4.3. Decomposition of a Global Query Expression 82

4. Get a data container x4 from remote site s1

5. Get a data container x5 from remote site s1

6. Get a data container x6 from remote site s1

7. Get a data container x7 from remote site s2

8. Get a data container x8 from remote site s3

9. Get a data container x9 from remote site s3

�

Query decomposition by sending simple requests to the remote sites as in Example

4.2 may have a low performance in the following situations:

1. Datasets x1, x2 and x3 at the remote site s1 contain a large number of XML

documents to be transferred to the central site s1, and

2. Processing of 〈s1 : x2〉 ∼ 〈s1 : x3〉 at the central site results in an empty set

data container.

3. Therefore, the computation of a sub-query ((〈s1 : x1〉 ./ (〈s1 : x2〉 ∼ 〈s1 :

x3〉)) ./ (〈s1 : x4〉 ∼ 〈s1 : x5〉)) returns an empty set of data containers as a

result.

In the above situation, the processing of an expression e requires transmission

costs to send datasets 〈s1 : x1〉, 〈s1 : x2〉, 〈s1 : x3〉, 〈s1 : x4〉, 〈s1 : x5〉 to the central

site. The costs can be reduced if the all computations are performed at the remote

site s1.

The global query expression is decomposed into a number of sub-expressions

such that an optimal query processing is obtained. The query decomposition

process is initiated by the central site, and employs the remote sites to perform

part of the computations and send the results back to the central site for further

computation.

Definition 29. Let {〈si : xi〉 : i = 1, . . . , n} be a set of XML data containers

located at the remote sites. Query decomposition is a process, that transforms a

global query expression e(〈s1 : x1〉, . . . , 〈sn : xn〉) into an equivalent expression

f(q1, . . . , qk). {qi : i = 1, . . . , k} is a set of query expressions where qi = ei(〈si :

xi1〉, . . . , 〈si : xij〉), and {〈si : xi1〉, . . . , 〈si : xij〉} ⊆ {〈s1 : x1〉, . . . , 〈sn : xn〉}.
More than one query expression might be sent to the same remote site. The results
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of processing expression f(q1, . . . , qk) are identical with the results of processing a

global query expression e(〈s1 : x1〉, . . . , 〈sn : xn〉).

Query decomposition is one of the key components in a data integration system.

Therefore, a good query decomposition strategy is required to gain optimal results.

The strategy must consider that the processing over a distributed multi-database

is determined by the remote sites parameters, including network characteristics,

CPU performance and query complexity.

A very simple decomposition strategy allows the remote sites to do most of the

computations if they have good resources. In this strategy, the central site scans

the largest possible sub-queries of a global query expression tree where all of their

terminal nodes (data containers) are located at the same remote site.

Example 4.3. A query decomposition strateqy

Let e(〈s1 : x1〉, . . . , 〈s3 : x9〉) be a global query expression in Example 4.1. A

decomposition strategy to send the largest sub-queries to the remote sites is shown

in Figure 4.3.

Figure 4.3: A decomposition strategy to send the largest sub-queries to the remote
sites

Then, decomposition of a global query expression e(〈s1 : x1〉, . . . , 〈s3 : x9〉) pro-

duces a set of sub-queries as follows:

q1 = e(〈s1 : x1〉, 〈s1 : x2〉, 〈s1 : x3〉, 〈s1 : x4〉, 〈s1 : x5〉)

= ((〈s1 : x1〉 ./ (〈s1 : x2〉 ∼ 〈s1 : x3〉)) ./ (〈s1 : x4〉 ∼ 〈s1 : x5〉))

q2 = e(〈s1 : x6〉) = 〈s1 : x6〉

q3 = e(〈s2 : x7〉) = 〈s2 : x7〉

q4 = (〈s3 : x8〉, 〈s3 : x9〉) = (〈s3 : x8〉 ./ 〈s3 : x9〉).
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A global query expression e(〈s1 : x1〉, . . . , 〈s3 : x9〉) is transformed into an

equivalent expression f(q1, q2, q3, q4) = q1 ∪ ((q2 ./ q3) ∼ q4). Computation of an

expression f(q1, q2, q3, q4) is performed by sending sub-queries q1, q2 to the remote

site s1, sub-query q3 to the remote site s2 and q4 to the remote site s3. Then, the

computation results are sent back to the central site for integration. �

A good decomposition strategy considers all the available resources including

the remote sites, the central site and network characteristics. It balances process-

ing between the central and remote sites in order to improve the performance of

processing a query. A decomposition process is performed in three steps. First,

we transform a global query expression into several large sub-expressions such that

all of their arguments are located at one remote site. Thus, a sub-expression can

be entirely processed at a single remote site.

In the next step, we find a set of smaller sub-expressions which have lower

total costs than the ones generated in the earlier process. The total costs include

cost for processing at the remote sites, cost to transmit the results, and cost for

processing at the central site. In this step, the algorithm searches for an optimal

balance between the amounts of processing at the remote and the central sites.

An optimal query decomposition is a strategy that finds a set of sub-expressions

q1, . . . , qk whose processing at the remote sites and later on processing of data

integration expression f(D1, . . . , Dk) at the central site requires the lowest cost.

In this thesis, the total cost of query processing is formulated as:

TCost(α) = PCost+ CCost (4.4)

TCost(α) represents the total cost of processing sub-expression α, PCost is the

aggregation of individual operation costs in a sub-expression, and CCost represents

the communication costs required to transmit the results to the central site.

For an individual operator, the processing cost is determined by the IO cost

to access data in a persistent storage, and the CPU cost to execute the operation.

Since the IO cost is significantly larger than the CPU cost, then the CPU cost

can be typically ignored. At a remote site, The PCost depends on how actual

documents are read from a physical semistructured database, how many disk blocks

are accessed and the characteristics of secondary storage; at the central site, it is

mainly determined by the IO costs to read and write temporary results.

On the other hand, the communication cost (CCost) becomes an important

factor as the remote sites do not have uniform communication characteristics. The

communication characteristic is mainly determined by the distance between the
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central site and the remote sites, the physical communication media, the size of

document to be transfered, and other aspects related to the network. In spite of

that, an assumption is made that the communication cost is mainly determined by

the size of documents sent to the central site, since it is a predictable component

of the cost and which can be used for an optimization strategy.

The largest sub-expressions are discovered by a systematic labeling of the op-

eration nodes in a syntax tree of a global query expression with the identifiers of

the remote sites as its arguments. Labeling starts from the operations just above

a leaf level in the syntax tree and continues towards the root node. Systematic

labeling can be performed by a post-order traversal of the tree starting from the

root node. It is performed by the following steps:

1. The label of the current node is checked. If the ”site” label is not empty,

then we return its label and the process is finished, which means that the

whole subtree is located at the same remote site.

2. When step no 1 is not satisfied, the left subtree is traversed and its site label

(si) is obtained. These complete steps are performed recursively.

3. After step 2 is done, the right subtree is visited and its remote site information=sj

is obtained. These complete steps are performed recursively.

4. If si = sj then set the ”site” label of the current node with value si. If si 6= sj

then set the label of current node with an empty character (space). In the

case of a node of a unary operator, set the label of current node=si.

At the end of the labeling process, a set of the largest sub-expressions whose child

nodes are all labeled with the same ”site” label is obtained.

Example 4.4. Identification of the largest sub-expressions in a global query ex-

pression

Let e(〈s1 : x1〉, . . . , 〈s3 : x9〉) be a global query expression in Example 4.1. The

largest sub-expressions for the global query expression are shown in Figure 4.4,

and the sub-expression is as follows:

q1 = e(〈s1 : x1〉, 〈s1 : x2〉, 〈s1 : x3〉, 〈s1 : x4〉, 〈s1 : x5〉)

= ((〈s1 : x1〉 ./ (〈s1 : x2〉 ∼ 〈s1 : x3〉)) ./ (〈s1 : x4〉 ∼ 〈s1 : x5〉))

q2 = e(〈s1 : x6〉) = 〈s1 : x6〉

q3 = e(〈s1 : x7〉) = 〈s1 : x7〉

q4 = e(〈s1 : x8〉, 〈s1 : x9〉) = (〈s1 : x8〉 ./ 〈s1 : x9〉).
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Figure 4.4: Identification of sub-expressions in a global query expression tree

�

Next, we find an optimal processing strategy separately for every sub-expression.

Let α(p, q) be a sub-expression with an operation α and the sub-expressions p and

q such that all data containers processed by p and q are located in the same remote

site. Let PCostc(α) be the processing cost of sub-expression α at the central site,

and PCostr(α) be the processing cost of sub-expression α at the remote site.

Then, there exist five possible strategies of processing α(p, q) and its corre-

sponding cost:

1. Both sub-expressions p and q, and operation α are processed at a remote

site and the results of α are transmitted to the central site. In this sit-

uation, we remove communication cost to transfer the result of processing

sub-expression p and q from their total costs. Then, the total cost to compute

sub-expression α(p, q) is:

TCost(1)(α) =TCostr(α) + TCost(p) + TCost(q)− CCost(p)− CCost(q)

=PCostr(α) + CCost(α) + TCost(p) + TCost(q)− CCost(p)−

CCost(q)

2. Both sub-expressions (p, q) are processed at remote sites, and the results are

transmitted to the central site. An operation α is processed at the central

site. Then, the total costs is:

TCost(2)(α) = PCostc(α) + TCost(p) + TCost(q)

3. Sub-expression p is processed at a remote site, meanwhile q and an operation
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α are processed at the central site. The total processing costs is:

TCost(3)(α) =PCostc(α) + TCost(p) + TCost(q)− CCost(q)

4. Sub-expression q is processed at the remote site, meanwhile p and an oper-

ation α is processed at a central site. The total processing costs is:

TCost(4)(α) = PCostc(α) + TCost(p)− CCost(p) + TCost(q).

5. Both sub-expressions p and q are processed at the central site as well as

operation α. Then, the total processing costs is:

TCost(5)(α) = PCostc(α) + TCost(p) + TCost(q)− CCost(p)− CCost(q)

The best query decomposition is obtained by a comparison of total costs of the al-

ternatives listed above, and the variant with the lowest processing costs is selected

for processing of sub-expression α(p, q).

All possible strategies is obtained by three following steps:

1. First, the nodes in a sub-expression are labeled with the positive natural

numbers such that if a node is labeled with n then its child nodes are labeled

with (n ∗ 2) and (n ∗ 2 + 1).

2. Next, all possible labelings of the operation nodes in the sub-expression with

either ”remote” or ”central” is identified, such that if a node is labeled with

”remote” then all its child nodes are labeled with ”remote” as well.

The labeling of the nodes with numbers done in the previous steps allows

for a quick selection of the child nodes. Algorithm 1 demonstrates a sample

implementation of this process. A boolean variable hasSub is used to identify

whether a node contains sub-expression(s) or not. A node with a label n has

at least a sub-expression if there exists any node which is labeled n∗2 or/and

n ∗ 2 + 1 in the current labeling. A function IndexOf(string label,char -),

is employed to obtain the left most dash character ’-’ in the label. The

character ’-’ represents the next node that has not been processed.

3. Finally, the labels generated in the previous steps are used to calculate the

total cost for each variant.

Algorithm 2 is an implementation example for step 3 above.
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Algorithm 1 Generate all combinations
Require: Sub-expression in array of node (N[max])
Ensure: A set of sub-expressions
1: function GenerateAll(N[max])
2: strSeed={’-’,. . . ,’-’}; j=0; Remote=’R’; Central=’C’; strResult[max];
3: if (strSeed[1]=’-’) then
4: stack.push(SetData(N,strSeed, Central, 1));
5: stack.push(SetData(N,strSeed, Remote, 1));
6: end if
7: while (!stack.empty()) do
8: strCombination=stack.pop();
9: thisPos = IndexOf(strCombination, ’-’);

10: if (thisPos>0) then
11: stack.push(SetData(N,strCombination, Central, thisPos));
12: stack.push(SetData(N,strCombination, Remote, thisPos));
13: else
14: strResult[j++]=strCombination;
15: end if
16: end while
17: return strResult;
18: end function

19: function IndexOf(str, ch)
20: for (i=1 to str.length) do
21: if (str[i]=ch) then
22: return i
23: end if
24: return 0
25: end for
26: end function

27: function SetData(N[max], str, value, pos)
28: Remote=’R’; Central=’C’; hasSub=false;
29: if (pos≥ max) then
30: return str;
31: end if
32: if (str[pos]==’-’) then
33: str[pos] = value;
34: end if
35: if (N[pos*2] or N[pos*2+1] exists in N) then
36: hasSub=true;
37: else
38: str[pos] = ” ”;
39: end if
40: if !(value=Central or (value=Remote and !hasSub)) then
41: str = SetData(N,str, Remote, pos*2);
42: str = SetData(N,str, Remote, pos*2 + 1);
43: end if
44: return str;
45: end function
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Algorithm 2 Find a combination with the minimum total cost

Require: A set of combinations Result[r]
Ensure: The best combination

1: function FindBest(Result[x])
2: BestIndex=0; s=””; Central=’C’; Remote=’R’; BestCost=0;
3: for (x=0 to r-1) do
4: s=Result[x];
5: TotalCost=TCost(s,1,2,3);
6: if (TotalCost<BestCost) then
7: BestCost=TotalCost;
8: BestIndex=x;
9: end if

10: end for
11: return Result[BestIndex];
12: end function

13: function TCost(s, α, p, q)
14: TLeft = 0;TRight = 0;
15: if (s[p]<>” ”) then
16: TLeft=TCost(s,p,p*2,p*2+1);
17: end if
18: if (s[q]<>” ”) then
19: TRight=TCost(s,q,q*2,q*2+1);
20: end if
21: if (s[a]=”R”) then
22: Total = PCostr(α) + CCost(α) + TLeft − CCost(p) + TRight −

CCost(q);
23: else
24: Total = PCostc(α) + TLeft+ TRight;
25: end if
26: return Total
27: end function

Example 4.5. Decomposition strategy

We consider a global query expression e = ((〈s1 : x1〉 ./ (〈s1 : x2〉 ∼ 〈s1 : x3〉)) ./
(〈s1 : x4〉 ∼ 〈s1 : x5〉)) ∪ ((〈s1 : x6〉 ./ 〈s2 : x7〉) ∼ (〈s3 : x8〉 ./ 〈s3 : x9〉)),
and its syntax tree as shown in Figure 4.5(a). It identifies that all arguments

in the sub-expression (α) are from a single remote site s1. For sub-expression

α(〈s1 : x1〉, . . . , 〈s1 : x5〉) a syntax tree is constructed as shown in Figure 4.5(b),

such that all nodes are labeled with a positive integer and the root node is labeled

with the number ”1”.

In Algorithm 1 we construct an array of characters to represent all possible de-

composition labelings of a sub-expression. To simplify the decomposition process,

we employ an array of characters to store every node’s label. The array starts from
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Figure 4.5: (a) A syntax tree of a global query expression (b) An example of
decomposition strategy to balance query processing between a remote and the
central site.

index 1 which is associated with the root node. The array of labels {R,R,R, ,R}
represents that all nodes are processed at a remote site. Index 4 of the array is

an underscore character ( ) which represents that the left child of node number 2

does not exist in the syntax tree. The result of these algorithms is a set of label-

ing arrays: {R,R,R, ,R}, {C,R,R, ,R}, {C,R,C, ,R}, {C,C,R, ,R}, {C,C,R, ,C},
{C,C,C, ,R}, and {C,C,C, ,C}.

In the next step, the strategies constructed from the previous steps are evalu-

ated to find the best decomposition strategy. THe notation of xi is used to replace

〈si : xi〉 for simplification of notation. For a strategy {C,R,C, ,R} as in Figure

4.5(b), the central site sends sub-expression β(x1, x2, x3) = β(x1, θ(x2, x3)) to the

remote site s1 for computation. The central site receives the results of computing

from remote site s1 and store them in a data container.

The total cost of sub-expression α(β(x1, θ(x2, x3)), γ(x4, x5)) with the strategy

labeled as {C,R,C, ,R} is as follows:

TCost(α) = PCostc(α) + TCost(β) + TCost(γ)− CCost(γ)

where x1, x2, x3, x4, and x5 represent data containers at the remote site s1, and

TCost(β) =PCostr(β) + CCost(β) + TCost(x1) + TCost(θ)− CCost(x1)−

CCost(θ)

TCost(γ) =PCostc(γ) + TCost(x4) + TCost(x5)

TCost(θ) =PCostr(θ) + CCost(θ) + TCost(x2) + TCost(x3)

TCost(x1) =PCostr(x1) + CCost(x1)



4.3. Decomposition of a Global Query Expression 91

TCost(x2) =PCostr(x2) + CCost(x2)

TCost(x3) =PCostr(x3) + CCost(x3)

TCost(x4) =PCostr(x4) + CCost(x4)

TCost(x5) =PCostr(x5) + CCost(x5)

Then, the total cost for processing sub-expression q1 is:

TCost(α) =PCostc(α) + PCostr(β) + PCostr(θ) + PCostc(γ) + PCostr(x1)+

PCostr(x2) + PCostr(x3) + PCostr(x4) + PCostr(x5) + CCost(β)+

CCost(x4) + CCost(x5)

The total cost to retrieve documents from remote datasets x1, x2, x3, x4, x5

includes the CPU cost for selection operations, and communication costs to bring

the documents to the central site. The costs of selection operations can be ignored,

because their transmission costs are typically larger than the CPU cost. Therefore,

the total cost of sub-expression q1(α) can be formulated as:

TCost(α) =PCostc(α) + PCostr(β) + PCostr(θ) + PCostc(γ) + CCost(β)+

CCost(x4) + CCost(x5)

The same decomposition algorithm is applied to sub-expression α(x8, x9).

After the decomposition process, we obtain an equivalent expression f(q1, q2,

q3, q4, q5, q6), where q1, q2, q3, q4, and q6 are sub-expressions as follows:

q1 = e(x1, x2, x3) = x1 ./ (x2 ∼ x3)

q2 = e(x4) = σ(x4)

q3 = e(x5) = σ(x5)

q4 = e(x6) = σ(x6)

q5 = e(x7) = σ(x7)

q6 = e(x8, x9) = x8 ./ x9

�

When the CPU cost is typically ignored, the cost of processing a sub-expression

a(r, s) at a remote site (PCostr(a)) is determined by IO costs to read datasets

from a secondary storage at the remote sites r and s, and the algorithm used to

implement physical algebraic operations. The processing cost for a join operation
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(r ./ s) is:

PCostr(a) = |nr| ∗ |ns|

where |nr| and |ns| are the estimated number of data in r and s respectively. In

a more complex situation, IO costs include the number of blocks accessed, the

estimated average size of data, and the size of the remote sites’ main memory.

Computation results from the remote sites are received at the central site in

the form of data containers. They are expected to fit in the main memory of the

central site. In some cases, computation results are materialized at the central site

in order to avoid re-computation and to reduce computation cost. Operations on

materialized data require IO costs to read data from the secondary storage and

to write the computation results back to the secondary storage, if materialized

updates are required.

The communication cost (CCost) is determined by the amount of data trans-

ferred to the central site. In Example 4.5, CCost(x4) and CCost(x5) represent

communication costs to send documents from x4 and x5 at the remote site s1 to

the central site. Meanwhile, CCost(β) is the cost to transfer results of computing

sub-expression β to the central site. If |n| is an estimated amount of result doc-

uments and s is an estimated average size of a document to be transferred, then

CCost(β) = |n| ∗ s.
At the end of the decomposition process we obtain an equivalent query expres-

sion f(q1, ..., qk) as a result, where f(q1, ..., qk) ≡ e(〈s1 : x1〉, . . . , 〈sn : xn〉), and

qi = ei(x1, . . . , xn).

4.4 Data Integration Expression

The decomposition of a global query expression produces a query expression

f(q1, ..., qk), where sub-queries qi : i = 1, . . . , k are sent to the remote sites for

computation. Then, the result of computations are transfered to the central site

in the form of data containers, and a data integration expression is generated.

Definition 30. Let f(q1, ..., qk) be an equivalent expression as a result of decom-

position of an expression e(〈s1 : x1〉, . . . , 〈sn : xn〉). Let Di be a data container to

collect the result of processing qi at a remote site. A data integration expression

f(D1, ..., Dk) is an expression obtained from f(q1, . . . , qk) by a systematic replace-

ment of the symbols q1, . . . , qk with the names of data containers D1, . . . , Dk.
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Example 4.6. A data integration expression

Let f(q1, q2, q3, q4, q5, q6) be a query expression as a result of decomposition in

Example 4.5, as shown in Figure 4.6 (a).

Figure 4.6: (a) A syntax tree of a global query expression and decomposition strat-
egy to balance central and remote site processing (b) A data integration expression

We send sub-queries q1, q2, q3 and q4 to remote site s1 for computation, a sub-

expression q5 to remote site s2 and q6 to remote site s3. The computation results

of all sub-queries from the remote sites are transferred to the central site, which

collects all data in a set of data containers {Di : i = 1, 2, . . . k} for integration.

Then, a data integration expression f(D1, . . . , D6) is generated. D1 − D6 repre-

sent data containers at the central site to collect results from sub-queries q1 − q6

respectively, such that:

f(D1, . . . , D6) = (D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6) (4.5)

.

Figure 4.6(b) shows a syntax tree of the data integration expression.

�

During a decomposition process, it may happen that some sub-expressions are

identical. This leads to a situation where a data container Di shows up more

than once in a data integration expression. The duplicate sub-expressions can be

treated as a single data container to reduce the number of data which have to be

transfered to the central site.

In the next sub section, we make an assumption that a data container Di is

unique and exists in a single argument in a data integration expression in order

to simplify the idea of creating an increment expression. Meanwhile, a discus-

sion on duplicate sub-expressions will be covered in the processing of concurrent

increments section.
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4.4.1 Increment Expression

In the next step, a data integration expression is transformed into a form which

allows us to compute it step by step when a data increment occurs at a data

container at the central site. Let δij be an increment of a data container Di for

j = 1, . . . , n. Then, a data container is formed as Di = δi1 ∪ δi2 ∪ . . . ∪ δin . In this

thesis a data increment is presented by a union operation, while in some other

models it may have different properties or operations. In this section, we consider

a data increment unit (δij) is a complete XML document, and leave increment of

fragmented documents for the next discussion.

Definition 31. Let {Di : i = 1, . . . , k} be a set of data containers in a data

integration expression f(D1, . . . , Dk). A materialization is denoted as Ma, and

is defined as computation result of a data integration expression Ma = ha(D1,

. . . , Dk) : a = 1, . . . , j. A materialization is usually stored in a secondary storage.

In a special case, Ma can be an identity function of a data container Di.

Example 4.7. Materializations in a data integration expression

Let f(D1, . . . , D6) be a data integration expression as in Figure 4.6 (b). In on-

line data integration, materializations might be needed to increase its performance

without re-computing a particular sub-expression. Four materializations are con-

structed in f(D1, . . . , D6) as follows:

M1 = (D2 ∼ D3)

M2 = (D1 ./ (D2 ∼ D3)) = (D1 ./ M1)

M3 = (D4 ./ D5)

M4 = ((D4 ./ D5) ∼ D6) = (M3 ∼ D6)

A data integration expression tree which includes materializations is shown in

Figure 4.7. �

The intermediate materializations are stored in a mapping table and will be used to

identify the dependencies of an intermediate materialization to any data container

later on.

Definition 32. Let Di be a data container, δi be an increment of Di, and {M1, . . . ,

Mj} be a set of intermediate materializations. An increment expression is denoted

as gi(δi, M1, . . . ,Mj), and is defined as an expression to compute an increment

data (δi) against intermediate materializations. gi has a form of left/right deep
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Figure 4.7: A data integration expression includes materializations

expression such that gi = ωj(. . . (ω2(ω1(δi,M1),M2), . . .),Mj). ωn : n = 1 . . . j

operates on XML operators: join, antijoin, and union.

Example 4.8. A mapping table of intermediate materializations

Data Container Dependent materializations

D1 M1

D2 M1,M2

D3 M2

D4 M3,M4

D5 M3,M4

D6 M4

�

Theorem 2. Any data integration expression f(D1, . . . , Di ∪ δi, . . . , Dk) can be

always transformed into one of the following equivalent expressions:

f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj) (4.6)

f(D1, . . . , Di, . . . , Dk)∼gi(δi,M1, . . . ,Mj) (4.7)

where gi(δi,M1, . . . ,Mj) is an increment expression.

Proof. Theorem 2:

For k = 1, an expression f operates on a unary operator. Then, according to the

proof for a selection operation (see rule 2), we show that f(D1∪δ1) = f(D1)∪g(δ1)

is true. g and f are identical functions.

For k = 2, an expression f is operated on binary operators. Then, according

to the proofs for union, join, and antijoin operations (see rule 3-12), we show that

f(D1, D2∪δ2) = f(D1, D2)∪g(δ2, D1) and f(D1, D2∪δ2) = f(D1, D2) ∼ g(δ2, D1)

are true;
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Assume that an expression with k data containers f(D1, . . . , Di ∪ δi, . . . , Dk)

can be transformed into either an expression in Equation 4.6 or 4.7.

Let f(D1, . . . , Di ∪ δi, . . . , Dk+1) be an extension of f(D1, . . . , Di ∪ δi, . . . , Dk)

with a data container Dk+1 by operation of union (∪), join (./), or antijoin (∼).

Transformation to all possible extensions is as follows:

1. We extend an expression f(D1, . . . , Di ∪ δi, . . . , Dk) with a union operation

(∪) where f(D1, . . . , Di ∪ δi, . . . , Dk) is the first argument and Dk+1 is the

second argument. The expression f(D1, . . . , Di ∪ δi, . . . , Dk) is transformed

as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)∪Dk+1

=(f(D1, . . . , Dk) ∪ g(δi,M1, . . . ,Mj))∪Dk+1,we apply rule 3

=(f(D1, . . . , Dk)∪Dk+1) ∪ (g(δi,M1, . . . ,Mj) ∪Dk+1))

=f(D1, . . . , Dk+1) ∪ g(δi,M1, . . . ,Mj, Dk+1).

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Dk+1) ∪ g(δi,M
′
1, . . . ,M

′
k) (4.8)

2. We extend an expression f(D1, . . . , Di∪δi, . . . , Dk) with a union (∪) operator

where Dk+1 is the first argument and f(D1, . . . , Di∪δi, . . . , Dk) is the second

argument. The expression f is transformed as follows:

=Dk+1∪f(D1, . . . , Di ∪ δi, . . . , Dk)

=Dk+1∪(f(D1, . . . , Dk) ∪ g(δi,M1, . . . ,Mj)),we apply rule 3

=(Dk+1∪f(D1, . . . , Dk)) ∪ (Dk+1 ∪ g(δi,M1, . . . ,Mj))

=f(D1, . . . , Dk+1) ∪ g(δi,M1, . . . ,Mj, Dk+1),

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Dk+1) ∪ g(δi,M
′
1, . . . ,M

′
k) (4.9)

3. We extend an expression f(D1, . . . , Di ∪ δi, . . . , Dk) with a join (./) opera-

tion where f(D1, . . . , Di ∪ δi, . . . , Dk) is the first argument and Dk+1 is the

second argument. The expression f(D1, . . . , Di ∪ δi, . . . , Dk) is transformed
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as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)./Dk+1

=(f(D1, . . . , Dk) ∪ g(δi,M1, . . . ,Mj))./Dk+1,we apply rule 4

=(f(D1, . . . , Dk)./Dk+1) ∪ (g(δi,M1, . . . ,Mj)./Dk+1)

=f(D1, . . . , Dk+1) ∪ g(δi,M1, . . . ,Mj, Dk+1)

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Dk+1) ∪ g(δi,M
′
1, . . . ,M

′
k) (4.10)

4. We extend an expression f(D1, . . . , Di∪δi, . . . , Dk) with a join (./) operator

where Dk+1 is the first argument and f(D1, . . . , Di∪δi, . . . , Dk) is the second

argument. The expression f is transformed as follows:

=Dk+1./f(D1, . . . , Di ∪ δi, . . . , Dk)

=Dk+1./(f(D1, . . . , Dk) ∪ g(δi,M1, . . . ,Mj)),we apply rule 4

=(Dk+1./f(D1, . . . , Dk)) ∪ (Dk+1./g(δi,M1, . . . ,Mj))

=f(D1, . . . , Dk+1) ∪ g(δi,M1, . . . ,Mj, Dk+1).

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Dk+1) ∪ g(δi,M
′
1, . . . ,M

′
k) (4.11)

5. We extend an expression f(D1, . . . , Di∪ δi, . . . , Dk) with an antijoin (∼) op-

erator where f(D1, . . . , Di∪ δi, . . . , Dk) is the first argument and Dk+1 is the

second argument. The expression f(D1, . . . , Di ∪ δi, . . . , Dk) is transformed

as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)∼Dk+1

=(f(D1, . . . , Dk) ∪ g(δi,M1, . . . ,Mj))∼Dk+1,we apply rule 5:

=(f(D1, . . . , Dk)∼Dk+1) ∪ (g(δi,M1, . . . ,Mj)∼Dk+1)

=f(D1, . . . , Dk+1) ∪ g(δi,M1, . . . ,Mj, Dk+1)

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Dk+1) ∪ g(δi,M
′
1, . . . ,M

′
k) (4.12)
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6. We extend an expression f(D1, . . . , Di ∪ δi, . . . , Dk) with an antijoin (∼)

operator where Dk+1 is the first argument and f(D1, . . . , Di ∪ δi, . . . , Dk) is

the second argument. The expression f is transformed as follows:

=Dk+1∼f(D1, . . . , Di ∪ δi, . . . , Dk)

=Dk+1∼(f(D1, . . . , Dk) ∪ g(δi,M1, . . . ,Mj)),we apply rule 6:

=(Dk+1∼f(D1, . . . , Dk)) ∼ g(δi,M1, . . . ,Mj)

=f(D1, . . . , Dk+1) ∼ g(δi,M1, . . . ,Mj) (4.13)

An extension of an increment expression with an operation either join(./), anti-

join(∼), or selection(σ) results an expression in the form of either Equation in 4.6

or 4.7. Therefore, this proves that these rules are complete for join, antijoin and

union operations.

Transformation of a data integration expression into an increment expression

is by application of distributivity properties, and is performed by the following

steps:

1. We replace Di in a data integration expression with (Di ∪ δi).

2. We use XML algebra rules (1-12) explained in section 3.5 to move δi in-

side a data integration expression such that it forms an expression either in

Equation 4.6 or Equation 4.7.

Example 4.9. Transformation of a data integration expression f(D1, . . . , Dk) into

increment expressions.

Let D1, . . . , D6 be data containers in an expression f(D1, . . . , D6) = (D1 ./ (D2 ∼
D3)) ∪ ((D4 ./ D5) ∼ D6) (see Equation 4.5). Let δ1 be an increment of data

container D1, and g1(δi,M1, . . . ,Mj) be an increment expression of D1. Transfor-

mation of f(D1, . . . , D6) into g1 is performed step by step as follows:

= (D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6), replace D1 with (D1 ∪ δ1)

= ((D1 ∪ δ1) ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6), apply rule (4)

= ((D1 ./ (D2 ∼ D3)) ∪ (δ1 ./ (D2 ∼ D3))) ∪ ((D4 ./ D5) ∼ D6), apply rule (3)

= ((D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)) ∪ (δ1 ./ (D2 ∼ D3))

= f(D1, . . . , D6) ∪ (δ1 ./ (D2 ∼ D3))

= f(D1, . . . , D6) ∪ (δ1 ./ M1)
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Then, transformation of f(D1, . . . , D6) with an increment at D1 produces the

result:

δ1 :f(D1, . . . , D6) ∪ (δ1 ./ M1)

where g1 = (δ1 ./ (D2 ∼ D3)) = (δ1 ./ M1) as an increment expression of D1.

An increment expression for a data increment at a data container D2 is obtained

by transformation of a data integration expression step by step as follows:

= (D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6), replace D2 with (D2 ∪ δ2)

= (D1 ./ ((D2 ∪ δ2) ∼ D3)) ∪ ((D4 ./ D5) ∼ D6), apply rule (5)

= (D1 ./ ((D2 ∼ D3) ∪ (δ2 ∼ D3))) ∪ ((D4 ./ D5) ∼ D6), apply rule (8)

= ((D1 ./ (D2 ∼ D3)) ∪ (D1 ./ (δ2 ∼ D3))) ∪ ((D4 ./ D5) ∼ D6), apply rule (3)

= f(D1, . . . , D6) ∪ (D1 ./ (δ2 ∼ D3))

Then, an increment expression g2 = (D1 ./ (δ2 ∼ D3)) is obtained.

Following the same transformation procedures above, we obtain the increment

expressions for the remaining data containers. After all transformations are com-

pleted, we obtain the following expressions:

δ1 : f(D1, . . . , D6) ∪ (δ1 ./ M1);

δ2 : f(D1, . . . , D6) ∪ (D1 ./ (δ2 ∼ D3));

δ3 : f(D1, . . . , D6) ∼ (δ3 ∼ ((D4 ./ D5) ∼ D6)) = f(D1, . . . , D6) ∼ (δ3 ∼M4);

δ4 : f(D1, . . . , D6) ∪ ((δ4 ./ D5) ∼ D6);

δ5 : f(D1, . . . , D6) ∪ ((D4 ./ δ5) ∼ D6);

δ6 : f(D1, . . . , D6) ∼ (δ6 ∼M1)).

Therefore, we obtain increment expressions as follows:

g1 = (δ1 ./ M1); (4.14)

g2 = (D1 ./ (δ2 ∼ D3)); (4.15)

g3 = (δ3 ∼M4); (4.16)

g4 = ((δ4 ./ D5) ∼ D6); (4.17)

g5 = ((D4 ./ δ5) ∼ D6); (4.18)

g6 = (δ6 ∼M1) (4.19)
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Figure 4.8 shows the syntax tree of expressions for online processing of data

increments δ1, δ2, δ3, δ4, δ5 and δ6. The results of an increment expression gi are

combined with the previous final materialization Me = f(D1, D2, D3, D4, D5, D6)

to produce a new state of processing.

Figure 4.8: Increment expressions for the data integration expression in Figure 4.6
(b)

�

At the end of the transformation process we obtain a set of increment ex-

pressions {g1, . . . , gk} and a list of intermediate materializations {M1, . . . ,Mj} to

compute the increment data. Since an intermediate materialization is a result of

computations of a data integration expression Mi = ha(D1, . . . , Dk), an intermedi-

ate materialization update is performed in the same way as processing of the data

increment.

4.4.2 Online Integration Plans

In the next step, we prepare an online integration plan for every increment expres-

sion generated at the earlier stage.

Definition 33. Let Di be a data container, and δi be an increment of Di. Let

gi(δi,M1, . . . ,Mj) be an increment expression for δi where Mi : i = 1 . . . j are

materializations. An online integration plan for Di is denoted as di, and is de-

fined as di : 〈p1; . . . ; pm〉. pj : j = 1, . . . ,m is a sequence of steps where in each
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step a simple XML algebra operation is evaluated. The computation results of the

operations are transferred from step to step until all steps are computed.

The transformation of an increment expression gi into an online integration

plan di is performed by the following procedure:

1. Since gi(δi,M1, . . . ,Mj) = ωj(. . . (ω2(ω1(δi,M1),M2) . . .)Mj), every expres-

sion ωi : i = 1, . . . , j is mapped into a corresponding step from the inner-most

to the outer most XML algebraic operation.

2. Then, a step to update a final materialization (Me) with the last result of

the increment computation is appended (M ′
e = Me ∪ gi or M ′

e = Me ∼ gi).

3. In the next step, a data container Di is updated with (Di ∪ δi).

4. We identify all intermediate materializations Ma = ha(D1, . . . , Dk) which are

affected by the data increment. The identification process utilizes a lookup

table for materialization dependencies generated earlier.

5. Lastly, we perform the same procedures to compute every materialization

Ma : a = 1, . . . , j identified, but without a step to update the data container.

Example 4.10. The transformation of an increment expression into an online

integration plan.

Let g2 be an increment expression generated in Example 4.9. Transformation of

an increment expression g2 = (D1 ./ (δ2 ∼ D3)) into an online integration plan d2

is performed as follows:

1. In the first step, we map an expression (δ2 ∼ D3) into a step ∆1 = (δ2 ∼ D3)

and an expression (D1 ./ ∆1) into a step ∆2 = (D1 ./ ∆1);

2. Then, we append Me = (Me ∼ ∆2) to combine the computation result of

previous step with previous final materialization;

3. Next, we create a step to update the data container D2: D2 = (D2 ∪ δ2);

4. An intermediate materialization M1 is identified from the dependency table

to be affected by the update. M1 is a computation result of a data integration

expression h1(D2, D3) = (D2 ∼ D3), therefore h1(D1, D2) is transformed

into an increment expression gM1 = (δ2 ∼ D3), and a plan to update M1 is

generated as follows: dM1 : ∆M1 = (δ2 ∼ D3);M1 = (M1 ∪ ∆M1). These

processing steps are appended to the steps produced earlier.
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Then, an online integration plan for increment expression g2 is as follows:

p1 : ∆1 = (δ2 ∼ D3);

p2 : ∆2 = D1 ./ ∆1;

p3 : Me = (Me ∼ ∆3);

p4 : D2 = (D2 ∪ δ2);

p5 : ∆M1 = (δ2 ∼ D3);

p6 : M1 = (M1 ∪∆M1).

Since ∆M1 = ∆1, we remove computation of ∆M1 = (δ2 ∼ D3) such that:

d2 :∆1 = (δ2 ∼ D3); ∆2 = D1 ./ ∆1;Me = (Me ∼ ∆2);D2 = (D2 ∪ δ2);

M1 = (M1 ∪∆1).

The same procedures are applied to obtain all online integration plans for the data

integration expression in Equation 4.5. Then, the following online integration plans

are generated:

d1 :∆1 = (δ1 ./ M1);Me = (Me ∪∆1);D1 = (D1 ∪ δ1);M2 = (M2 ∪∆1). (4.20)

d2 :∆1 = (δ2 ∼ D3); ∆2 = (D1 ./ ∆1);Me = (Me ∼ ∆2);D2 = (D2 ∪ δ2);

M1 = (M1 ∪∆1). (4.21)

d3 :∆1 = (δ3 ∼M4);Me = (Me ∼ ∆1);D3 = (D3 ∪ δ3);M1 = (M1 ∼ δ3);

M2 = (M2 ∼ (D1 ∼ δ3)). (4.22)

d4 :D4 = (D4 ∪ δ4); ∆1 = (δ4 ./ D5); ∆2 = (∆1 ∼ D6);Me = (Me ∪∆2);

D4 = (D4 ∪ δ4);M3 = (M3 ∪∆1);M4 = (M4 ∪∆2). (4.23)

d5 :∆1 = (D4 ./ δ5); ∆2 = (∆1 ∼ D6);Me = (Me ∪∆2);D5 = (D5 ∪ δ5);

M3 = (M3 ∪∆1);M4 = (M4 ∪∆2). (4.24)

d6 :∆1 = (δ6 ∼M1);Me = (Me ∼ ∆1);D6 = (D6 ∪ δ6);

M4 = (M4 ∼ δ6). (4.25)

�

In some cases, we can find an equivalent increment expression g′i(δi,M
′
1, . . . , M

′
j)

from gi = (δi,M1, . . . , Mj) by application of distributive, associative, and com-

mutative laws of the XML algebra operators. Both increment expressions gi and

g′i produce the same results of computation. The equivalent increment expression
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allows us to generate an alternative plan and find the best plan by an evaluation of

a cost model for each plan. An algorithm to obtain the best equivalent expression

is not covered in this thesis.

Example 4.11. We consider an increment expression gx = (((δ1 ./ D2) ./ D3) ./

M3). An online integration plan for increment expression gx is as follows:

dx :∆1 = (δ1 ./ D2); ∆2 = (∆1 ./ D3); ∆3 = (∆2 ./ M3);

Me = (Me ∪∆3);D1 = (D1 ∪ δ1);M1 = (M1 ∪∆1).

By an application of associativity rule, an increment expression gx = (((δ1 ./

D2) ./ D3) ./ M3) is equivalent to g′x = (δ1 ./ ((D2 ./ D3) ./ M3)). The expression

can be written as g′x = (δ1 ./ M4), where M4 = ((D2 ./ D3) ./ M3). Furthermore,

the transformation of (δ1 ./ M4) creates an online integration plan as follows:

dx
′ :∆′1 = (δ1 ./ M4);Me = (Me ∪∆′1);D1 = (D1 ∪ δ1); ∆′2 = δ1 ./ D2;

M1 = (M1 ∪∆′2).

Although an increment expression g′x = (δ1 ./ M4) seems to be simpler than

gx = (((δ1 ./ D2) ./ D3) ./ M3), its integration plan dx
′ might not be better than

dx because it introduces an intermediate materialization M4 = ((D2 ./ D3) ./ M3).

An intermediate materialization M4 needs to be updated whenever increment data

occurs at data container D2, D3, D4 and D5, while an intermediate materialization

M3 is updated when increments from data containers D4 and D5 occur. �

4.5 Scheduling of Online Integration Plans

In the compilation process, a mediator prepares a set of online integration plans in

which every plan is assigned to a data container Di : i = 1, . . . , k. They include at

least a step to compute a relatively small increment against a large data container

or a materialization, which is a step to update either data container, an intermedi-

ate materialization, or a final materialization. An operation on materialized data

requires an IO cost to load them into the main memory and store them back to

the persistent storage.

At run time, a sequence of data increments can be processed accordingly to

their incoming order. However, an optimization of the online integration system

might be obtained if we modify the sequence of data increments such that IO cost

is reduced.
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4.5.1 Static Scheduling

In an online data integration system, a data increment δi received at data container

Di triggers execution of an online integration plan di prepared earlier. The static

scheduling mode executes data increments in the order in which they arrive at the

central site. A static scheduling strategy is performed in the following manner:

Algorithm 3 Static scheduling algorithm
1: prepare an online integration plan di for every data container Di

2: while increment data occurs do
3: pick an online integration plan for corresponding increment data prepared earlier
4: for each step in integration plan di do
5: load data to the main memory if needed
6: perform an algebraic operation
7: if (step=materialization update) then
8: perform writing to a secondary storage
9: end if

10: end for
11: end while

Example 4.12. Static scheduling for a sequence of data increments

Let δi be an increment at a data container Di in the data integration expression

of Equation 4.5. Let di be an online integration plan for δi as in Example 4.10.

We consider data increments arrive at the central site in the following sequence:

δ1a ← δ1b ← δ2 ← δ3a ← δ4 ← δ5a ← δ3b ← δ5b, where δ1a and δ1b represent two

different increments at D1. A static scheduling strategy processes the sequence of

data increments according to the following steps:

1. We prepare online integration plans for all data containers.

2. Then, we process the first data increment δ1a and compute it by the execution

of all steps in online integration plan d1. Processing of d1 is performed as

follows:

a. Load an increment data δ1 into main memory.

b. Load an intermediate materialization M1 into the main memory.

c. Perform an operation (δ1 ./ M1) and store the result in main memory

(∆1).

d. Load a final materialization Me into main memory;

e. Perfom an operation of (Me ∪ ∆1) and write the result back to the

secondary storage.
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f. Load a data container D1 into main memory.

g. Perform an operation (D1 ∪ δ1) and update to D1 in main memory.

h. Load an intermediate materialization M2 into main memory.

i. Compute an operation (M2 ∪ ∆1) and write the result back to the

secondary storage .

3. Processing the next data increment δ1b requires the execution of the same

online integration plan d1 with the same steps above.

4. The processing is continued with the execution of an online integration plan

d2 for an increment data δ2, followed by an online integration plan d3 for

a data increment δ3a, d4 for δ4, d5 for δ5b, d3 for δ3b and finally d5 for an

increment data δ5b.

�

The static scheduling strategy might result in poor performance in the following

circumstances:

1. At the initial stage. At this stage most of the data containers are empty;

therefore executing all the steps in a corresponding integration plan is un-

likely to give the correct answer for a user query. Therefore, we can stop

further processing steps when a binary operation operates on an increment

data against an empty data container. The most important step to be exe-

cuted in this stage is to update the data container itself.

2. A sequence of increments at one data container. The processing of an in-

crement data requires preparation of an online integration plan before the

computation can be started, and writing of all materializations after it is

completed. Thus, processing two data increments from different data con-

tainers in a row requires the preparation of an online integration plan twice.

Let a sequence of δi ← δj be data increments from Di, Dj respectively. Pro-

cessing of two data increments from the same data container in a row allows

us to reduce the preparation process because they have the same online inte-

gration plan. Furthermore, the step to update intermediate materializations

is unnecessary, because they are not used in the next computation, and hence

this reduces the IO cost. Increment results to be appended into intermediate

materialization are stored in a temporary list, and used for materialization

update when necessary.
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3. A sequence of small increments. In some cases, the preparation of process-

ing an increment data is more expensive than processing the increment data

itself. In this case, we wait until a certain amount of increments are avail-

able before computation is started. This reduces the pre-preparation cost of

processing data increments.

4. At the end stage. At this stage most data containers are complete. Then,

updating intermediate materialization can be ignored if we identify that they

are not used in any further computations.

4.5.2 Dynamic Scheduling

The dynamic scheduling algorithm proposed in this thesis eliminates inefficiency

of static scheduling described earlier. A monitoring system (see Figure 4.9) is

employed to continuously collect the behavior of data increments, data containers

and materializations. The monitoring system consists of an increment queue, an

integration controller, a materialization dependency table, temporary increment

lists, and a data container status table.

Figure 4.9: A monitoring system for dynamic scheduling

An increment queue takes responsibility for managing documents received at

the central site, and has a role to serialize concurrent data increments. A mate-

rialization dependency table maintains the relationship between intermediate ma-

terializations and data containers. The table contains information about which

materializations are affected by the increment of a data container, and it deter-

mines which data containers includes a particular intermediate materialization in
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its integration plan. The table is created during the process to generate increment

expressions and integration plans.

An integration controller contains a collection of plans for all data containers.

As the center of a dynamic monitoring system, it utilizes all components to decide

whether to continue the current plan, skip some steps of the plan, or terminate it.

Temporary increment lists are used to retain unprocessed results which later on

will be combined with a materialization. A temporary increment list is associated

with a materialization, and will be flushed whenever needed. Meanwhile, a data

container status table is used to determine the data containers’ status. For a com-

plete data container, the system identifies which materializations can be excluded

from the update process.

Any dynamic scheduling algorithm which employs parallel processing such as

pipelining, parallel processors, or multi threading is not covered in this thesis, but

can be extended by considering dependencies between steps in online integration

plans.

4.5.3 Priority Labeling

The first optimization technique to consider is to minimize the number of doc-

uments involved in a single operation. In an online data integration system, an

increment expression can be union-ed (∪) or antijoin-ed (∼) with the previous fi-

nal materialization (see Equation 4.6 and 4.7). Processing of increment data which

has an increment expression in the second form (∼) might potentially reduce the

number of documents to be processed. Therefore, by giving a higher priority to

the increment expressions in the second form (∼), the performance of the online

integration system might be increased.

Example 4.13. Increment data with the highest priority

We consider increment expressions which are generated in Example 4.9. D2, D3,

and D6 are data containers which have increment expressions of the second form

(Equation 4.7). Meanwhile, the other data containers have increment expressions

of the first form (Equation 4.6). Therefore, data increments from D2, D3, and D6

are assigned to the highest priorities for execution. �

The next dynamic strategy is to minimize materialization update by the man-

agement of increment processing. Let δi and δj be a sequence of increment data,

where δi arrives at the central site before δj. Two consecutive increments might

be in one of the following three possible conditions:
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1. Both data increments (δi and δj) occur at a single data container. For ex-

ample, δ1a and δ1b are data increments at data container D1, where δi = δ1a

and δj is δ1b. For further discussion, this is named Type 1.

2. The data increments (δi and δj) occur at two different data containers (Di, Dj),

and the data containers form an expression of an intermediate materializa-

tion Ma = ha(Di, Dj). Processing this sequence of data increments allows us

to update the materialization twice with a single process to load from and

write to the secondary storate. Hence, it reduces the IO processing cost.

As an example, based on the data integration expression in Figure 4.6, δi

is an increment of data container D4 (δ4) and δj is an increment of data

container D5 (δ5). Intermediate materialization M3 is a computation result

of an expression ha(D4, D5) = (D4 ./ D5). This is an increment in Type 2.

3. Both data increments occur at different data containers (Di, Dj), and the

computation of one data increment δj requires an updated materialization

which involves data container Di. For an example in Figure 4.6, δi is an

increment of D1 (δ1) and δj is increment at data container either D3, D4 or

D5. If δj is at data container D3 (δ3), then an intermediate materialization

M1 must be updated before the computation of increment δ3 can be started.

For further discussion, this is named Type 3.

We propose a dynamic scheduling algorithm based on a sliding window model.

Every increment in a sliding window is labeled with a priority number, and then

data increments are sorted accordingly to their labels. Priority labeling and sorting

are described as follows:

1. A sequence of data increments is obtained from a sliding window.

2. Then, the highest priority is given to all increments at data containers which

have increment expressions in the second form (see Equation 4.7). If there

exist such data increments from more than one data containers, we give the

data increments which appear most often a higher priority.

3. If such a data increment in step 2 does not exist, we select a data increment

at a data container that appears most often among all data containers in the

current sliding window ;

4. The next data increment is determined by the current one. We choose the

next data increment which satisfies Type 1, followed by data increments in
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Type 2. The remaining data increments will have the least priorities. Then,

the step 3 is repeated until all data increments in the current sliding window

are scheduled.

Example 4.14. Priority Labeling

We consider an integration expression as in Figure 4.6. Data increments arrive at

the central site in the following sequence: δ1a ← δ1b ← δ2 ← δ3a ← δ4 ← δ5a ←
δ3b ← δ5b. Suppose, all data increments fit in a sliding window. Then, priority

labeling and sorting will be performed by the following steps:

1. From a collection of increment expressions prepared from the earlier stage,

increment from data containerD3 (δ3a and δ3b are identified having increment

expressions in the second form (∼). Therefore, they are set as the first rows

of data increments to process, (δ3a, and followed by δ3b).

2. After δ3b, we choose the next data increments which are Type 2. Data

container D2 and D3 form an expression of materialization M1 = (D2 ∼ D3).

Therefore, δ2 is taken as the next increment to be scheduled.

3. The next priority is given to an increment at data container D1 because there

is no increment in Type 1 and 2 after δ2. Therefore, we choose δ1a as the

next increment to process.

4. This is followed by δ1b because they are Type 1.

5. The remaining data increments do not satisfy Type 1 and 2. Then, we

consider an increment from D5 as it appears most often among the rest data

increments in the current sliding window. δ5a is scheduled;

6. This is followed by δ5b because it occurs at the same data container with the

previous increment (Type 1).

7. δ4 is the last data increment to be scheduled.

Priority labeling produces the following sequence of data increments for processing:

δ3a ← δ3b ← δ2 ← δ1a ← δ1b ← δ5a ← δ5b ← δ4. �

4.5.4 Management of Plans

Dynamic scheduling system proposed in this thesis reduces materialization updates

by an early termination of plan, and procrastination of plan. Early termination



4.5. Scheduling of Online Integration Plans 110

eliminates unnecessary computations when the remaining steps in an online in-

tegration plan have no impact on the rest of computation. For example, when

computation of (δ1 ./ D2) in an online integration plan d1 results in nothing, the

rest of the steps of plan d1 can be ignored, and plan d1 is ended. Furthermore,

when a data container D2 is empty, the plan d1 can be terminated earlier.

Meanwhile, a procrastination of plan is performed to defer a step to update a

materialization when it is not used in the next computation. In a sequence of data

increments at a single data container, we collect the result of increment processing

in a list and defer the materialization updates. The deferred steps will be executed

when the corresponding materialization takes place in the next online integration

plan. Algorithm 4 shows a generic dynamic scheduling algorithm.

Algorithm 4 Dynamic scheduling system

while (not empty queue) do
Get increment data from a sliding window ;
Sort increment data based on their priority labels;
for each increment in (sorted increment data) do

Prepare online integration plan di;
for each (step pi in integration plan) do

if (pi=materialization (Ma) update then
if (Ma is not used by next plan) then

Store the increments to the designated increment lists;
Defer step pi;

else
if not empty increment lists then

Flush the increment lists to Ma

end if
Execute step pi;

end if
else

Execute step pi;
if (pi has no result) then

Terminate rest steps of current plan di;
end if

end if
end for

end for
Get to the next sliding window ;

end while

We introduce increment lists to store computation results which have not been

updated to intermediate materializations. Every intermediate materialization has

one or two increment lists to keep temporary results of increment expressions. One

list is used to store positive increment results (∪) and the other is for negative
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increment results (∼).

Definition 34. Let Mi be an intermediate materialization. Increment lists, which

are denoted as L∪i and L∼i , are collections of computation results which have not

been updated to Mi. L∪i represents the computation results of any increment ex-

pression in the first form (∪). L∼i collects the computation results of any increment

expression in the second form (∼).

When an intermediate materialization (Mi) update step is deferred, the inter-

mediate computation results (∆i) is stored in the designated increment lists. The

operation to append the intermediate computation results to the increment lists,

is as follows:

1. A positive increment (∪) is appended to the list L∪i with the following oper-

ation:

L∪i = L∪i ∪ (∆i ∼ L∼i )

2. A negative increment (∼) is updated to the lists with the following opera-

tions:

L∪i = L∪i ∼ ∆i;

L∼i = L∼i ∪∆i

Example 4.15. Plan optimization in dynamic scheduling system

We consider a data integration expression as in Equation 4.5, and a sequence of

data increments arrive at the central site in the following sequence: δ1a ← δ1b ←
δ2 ← δ3a ← δ4 ← δ5a ← δ3b ← δ5b. Let all data containers in the data integration

expression be empty before the first data increment is processed. A dynamic

scheduling system performs the following steps:

1. Every increment is labeled and sorted by their priorities, and gives us: δ3a ←
δ3b ← δ2 ← δ1a ← δ1b ← δ5a ← δ5b ← δ4.

2. Then, every increment from the sorted and labeled sliding windows is com-

puted, starting from increment with the highest priority label.

3. δ3a: The first data increment is δ3a from a data container D3. After updat-

ing D3, the monitoring system identifies that materialization Me is empty.

Therefore, computation of ∆1 is not needed, and an early termination is



4.5. Scheduling of Online Integration Plans 112

performed. From the execution plan prepared earlier:

d3 :D3 = (D3 ∪ δ3); ∆1 = (δ3 ∼M4);Me = (Me ∼ ∆1);M1 = (M1 ∼ δ3);

M2 = (M2 ∼ (D1 ∼ δ3)).

we execute: d3 : D3 = (D3 ∪ δ3); and ignore the rest of the steps.

4. δ3b: Next, data increment δ3b at D3 is processed. Because the final materi-

alization Me, and intermediate materializations M1 and M2 are empty, we

execute step D3 = (D3 ∪ δ3); and skip the other steps.

5. δ2: After δ3b, we compute data increment δ2 by execution of online integration

plan d2. From the prepared plan below:

d2 :D2 = (D2 ∪ δ2); ∆1 = (δ2 ∼ D3); ∆2 = D1 ./ ∆1;Me = (Me ∼ ∆2);

M1 = (M1 ∪∆1).

we execute: D2 = (D2 ∪ δ2); ∆1 = (δ2 ∼ D3);M1 = (M1 ∪∆1).

6. δ1a: All steps in an integration plan d1 for increment δ1a are executed except

a step to update intermediate materialization M2. Operation to update M2 is

not needed because the next increment comes from the same data container

D1. The increment result ∆1 is unioned with the increment list L∪2 because

it is in the fist form. Then, from the steps prepared in the online integration

plan:

d1 :D1 = (D1 ∪ δ1); ∆1 = (δ1 ./ M1);Me = (Me ∪∆1);M2 = (M2 ∪∆1).

We execute the following steps:

d1 : D1 = (D1 ∪ δ1); ∆1 = (δ1 ./ M1);Me = (Me ∪∆1);L∪2 = L∪2 ∪∆1

7. δ1b: To compute a data increment δ1b we perform all prepared steps d1, and

add an operation to update an intermediate materialization M2 from the

increment list L∪2 as follows:

d1 :D1 = (D1 ∪ δ1); ∆1 = (δ1 ./ M1);Me = (Me ∪∆1);M2 = (M2 ∼ L∼2 );

M2 = (M2 ∪ L∪2 );M2 = (M2 ∪∆1).
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We add an operation to clear the increment lists L∪2 and L∼2 after the oper-

ation to update an intermediate materialization M2.

8. δ5a: Since data container D4 is empty, a step ∆1 = (D4 ./ δ5) does not need

to be executed. Then, from the following plan:

d5 :D5 = (D5 ∪ δ5); ∆1 = (D4 ./ δ5); ∆2 = ∆1 ∼ D6;Me = (Me ∪∆2);

M3 = (M3 ∪∆1);M4 = (M4 ∪ (∆1 ∼ D6)).

we execute: d5 : D5 = (D5 ∪ δ5);

9. δ5b: Processing of data increment δ5b is the same as processing of increment

data δ5a because D4 is empty.

10. δ4: Processing of data increment δ4 has to perform all steps in an online

integration plan d4 as follows:

d4 :D4 = (D2 ∪ δ4); ∆1 = (δ4 ./ D5); ∆2 = ∆1 ∼ D6;Me = (Me ∪∆2);

M3 = (M3 ∪∆1);M4 = (M4 ∪ (∆1 ∼ D6)).

�

The dynamic scheduling system proposed in this thesis is able to remove un-

necessary operations, especially to update materializations which are IO cost ex-

pensive. In example 4.15, one online integration plan can be terminated earlier,

two materialization updates are deferred, and one plan is terminated.

At the end stage of an online data integration system, we consider a permanent

termination of the plan. Permanent termination is a process to cancel all steps

in the running plan and stop the current online integration plan when any new

increment has no impact on the final result.

Example 4.16. Permanent termination of an online integration plan Let data

containers D2, D3, D4 and D5 in Figure 4.6 are complete and computation of (D2 ∼
D3) and (D4 ./ D5) return empty results. Then, processing of any data increment

atD1 andD6 has no impact on the final result. In this case, the dynamic scheduling

system forces a permanent termination of the current plan, and terminates the

integration process. �

Partial results of online integration system are instantly available to the user if

the data integration expression has no decremental results (antijoin operations).
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Otherwise, the correct answers are available to the user after data containers which

cause decremental results are complete.

4.5.5 Management of Increment Queue

A data increment which has been processed is removed from the current sliding

window. Then, the dynamic scheduling system allows the sliding window to shift

and collect a new increment (see Figure 4.10). The process of labeling and sorting

is repeated with a new data increment in a sliding window. Sorting of a sliding

window with an additional data increment is easier because data increments in the

previous sliding window are sorted.

Figure 4.10: Sliding window for processing data increments

The size of the sliding window may affect to the performance of the dynamic

scheduling system in general. In continuous data increments, the size of a sliding

window might not be a big problem. The biggest effort is to compute labeling

and sorting at the first sliding window. Then, for an additional data increment,

labeling and sorting a sliding window can be performed using a simple algorithm.

For a sequence of data increments which has a significant delay between their

arrivals, a big size sliding window might be empty before a new data increment

arrives. Then, a small size sliding window is preferable to the system.

Another approach is to move the sliding window after all data increments in

a sliding window are computed. However, to obtain an optimal processing of a

sliding window is not covered in this thesis.

A significant delay might exist between arrivals of data increments. The per-

formance of the dynamic scheduling system falls to static scheduling if all steps in

a plan are executed before a new data increment arrives. The dynamic scheduling

system might employ statistical information of the previous increments to predict

the next likely increment to occur. Then, the decision to continue or defer the

process to update materialization can be made. In this work it is assumed that

the time delay between arrivals of data increments is relatively small.
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In the online data integration system described above, processing of a data

increment requires updating of materializations to ensure that their values are up-

to-date. A dynamic scheduling system minimizes the update of materializations to

reduce the IO cost required by the system, but still requires two online integration

plan to compute the data increments.

It may happen at the central site, that more than one data increment arrive

at about the same time. Processing of those data increments in serial mode would

require several operations to update materialization. It is possible to improve the

system if processing of several data increments can be performed in a parallel

manner. Having a single processor at the central site, processing of parallel data

increments can be done by modification of the way to transform a data integration

expression into an increment expression.



Chapter 5

Parallel Processing of Data Increments

In the execution phase of a data integration expression, data increments from two

or more data containers may arrive at the central site nearly or at the same time.

Figure 5.1 illustrates a data integration expression tree which has data increments

from two data containers (Di, Dj) occurring at the same moment. Meanwhile, the

online data integration system proposed earlier is designed to process a single in-

crement at a time. Then, according to the algorithms presented earlier, processing

the data increments of the data containers Di and Dj must be performed serially.

Figure 5.1: Processing of concurrent data increments from two data containers

Processing of two data increments in serial mode requires execution of two

online integration plans where each of them includes a step to update a final

materialization at the end of the plan. This requires double IO costs to load the

final materialization from a secondary storage and double IO costs to write it back

to the secondary storage. The system is optimized by modification of the online

integration plans to reduce the IO costs by placing the steps to process the final

materialization updates such that they can be executed consecutively, one after

the other.

A data integration expression for concurrent increments is transformed into one

increment expression. Then, an online integration plan to process the concurrent

increments is generated for every increment expression. To show how processing of

116
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concurrent data increments works, it is assumed that the central site has a single

processor.

In this chapter the online integration system is extended for processing of con-

current data increments. The structure of this chapter is as follows: Section 5.1

describes an example of concurrent data increments, and Section 5.2 discuss the

possible approaches to process them. Then, an algorithm to generate an incre-

ment expression for concurrent increments is described in Section 5.3. In Section

5.4, a scheduling strategy for the concurrent increments is discussed. Section 5.5

describes the execution of an online integration plan in parallel fashion. The dy-

namic scheduling system in Section 5.6 extends the scheduling system in Chapter

4 to achieve an efficient processing of concurrent data increments.

5.1 An Example of Data Integration Expression

The data integration expression in Example 5.1 is provided to support the descrip-

tion of processing concurrent data increments.

Example 5.1. A data integration expression with concurrent increments

We consider a data integration expression as follows:

f(D1, D2, D3, D4) = (D1 ./ D2) ∼ (D3 ./ D4) (5.1)

The data integration expression is visualized as the following syntax tree:

Figure 5.2: Concurrent data increments from two data containers (δ1, δ4)

According to the algorithms presented in Chapter 4, the increment expression to

compute an increment data δi is formed in one of the following expressions:

f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)

f(D1, . . . , Di, . . . , Dk)∼gi(δi,M1, . . . ,Mj)
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Therefore, after a series of transformation processes we obtain increment ex-

pressions for individual data increments δ1, δ2, δ3 and δ4 as follows:

δ1 :f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2)

=f(D1, D2, D3, D4) ∪ g1

δ2 :f(D1, D2, D3, D4) ∪ ((D1 ./ δ2) ∼M2)

=f(D1, D2, D3, D4) ∪ g2

δ3 :f(D1, D2, D3, D4) ∼ (δ3 ./ D4)

=f(D1, D2, D3, D4) ∼ g3

δ4 :f(D1, D2, D3, D4) ∼ (D3 ./ δ4)

=f(D1, D2, D3, D4) ∼ g4

where: g1 = ((δ1 ./ D2) ∼M2), g2 = ((D1 ./ δ2) ∼M2), g3 = (δ3 ./ D4),

g4 = (D3 ./ δ4),M2 = (D3 ./ D4).

To simplify notation, gi(δi,M1, . . . ,Mj) is written as gi.

After all increment expressions for a single increment are obtained, we generate

an online integration plan for every increment expression as follows:

d1 :∆1 = (δ1 ./ D2); ∆2 = (∆1 ∼M2);Me = (Me ∪∆2);D1 = (D1 ∪ δ1);

M1 = (M1 ∪∆1);

d2 :∆3 = (D2 ./ δ2); ∆4 = (∆3 ∼M2);Me = (Me ∪∆4);D2 = (D2 ∪ δ2);

M1 = (M1 ∪∆3);

d3 :∆5 = (δ3 ./ D4);Me = (Me ∼ ∆5);D3 = (D3 ∪ δ1);M2 = (M2 ∪∆5);

d4 :∆6 = (D3 ./ δ4);Me = (Me ∼ ∆6);D4 = (D4 ∪ δ4);M2 = (M2 ∪∆6);

Me is the final materialization, M1 = (D1 ./ D2) and M2 = (D3 ./ D4) are

intermediate materializations. �

5.2 Processing of Concurrent Data Increments

Two data increments δi and δj in a data integration expression are called concurrent

data increments if they arrive at the central site at about the same time. Processing

of the concurrent data increments can be performed in two different ways:

1. Serialization of increments. In this approach, computation of concurrent
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data increments is performed by processing one increment at a time. Serial-

ization of concurrent increments δi and δj results in a sequence of processing

data increments in the order of either δi followed by δj, or δj followed by δi.

An algorithm to process each data increment is described in Chapter 4.

2. A single increment expression for concurrent increments. In this

approach, all possible data containers which can be processed concurrently

are identified. Then, the pre-processing stage generates all increment ex-

pressions including for concurrent data increments identified earlier. For

concurrent data increments δi and δj, an increment expression is created

using the following steps:

(a) A data integration expression is transformed into increment expression

of single increment for every data container δi and δj.

(b) The final materialization in the increment expression for δj is replaced

with an increment expression for δi. Then, data container Di is replaced

with (Di ∪ δi) and Dj with (Dj ∪ δj) in the increment part.

(c) Then, we transform the data integration expression in step (b) to obtain

an increment expression which includes both increments δi and δj.

At the end of the pre-processing stage, an online integration plan is obtained

to process concurrent data increments.

5.3 Increment Expression for Concurrent Incre-

ments

In the single increment expression for concurrent increments approach, a

sequence of transformations on a data integration expression is performed to pro-

duce an increment expression by considering all the increments at the participating

data containers.

Example 5.2. Increment expression for two concurrent increments

Let δ1 and δ4 be concurrent data increments in a data integration expression

f(D1, D2, D3, D4) = (D1 ./ D2) ∼ (D3 ./ D4) as shown in Example 5.1. Trans-

formation of the data integration expression into an increment expression for con-

current data increments δ1 and δ4 can be performed in two ways. The first way is

by transformation of the data integration expression by allowing two increments

at once. The transformation is performed in the following steps:
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1. D1 and D4 in the data integration expression are replaced with (D1∪δ1) and

(D4 ∪ δ4) respectively.

2. Then, XML algebra rules are applied to transform the data integration ex-

pression as follows:

δ(1,4) =((D1 ∪ δ1) ./ D2) ∼ (D3 ./ (D4 ∪ δ4))

=((D1 ./ D2) ∪ (δ1 ./ D2)) ∼ ((D3 ./ D4) ∪ (D3 ./ δ4))

=((D1 ./ D2) ∼ ((D3 ./ D4) ∪ (D3 ./ δ4))) ∪ ((δ1 ./ D2)) ∼ ((D3 ./ D4)∪

(D3 ./ δ4))

=(((D1 ./ D2) ∼ (D3 ./ D4)) ∼ (D3 ./ δ4)) ∪ (((δ1 ./ D2) ∼ (D3 ./ D4)) ∼

(D3 ./ δ4))

=(((D1 ./ D2) ∼ (D3 ./ D4))︸ ︷︷ ︸
f(D1,D2,D3,D4)

∪ ((δ1 ./ D2) ∼ (D3 ./ D4))︸ ︷︷ ︸
g1

) ∼ (D3 ./ δ4)︸ ︷︷ ︸
g4

(5.2)

From Equation 5.2, the increment expression for concurrent data increments

δ1 and δ4 has two increment components; g1 is an increment component for δ1 and

g4 is for δ4.

Another way is by using increment expressions for single increment obtained

in Example 5.1 to generate an increment expression for concurrent increments δ1

and δ4. �

Let increment expressions for data increments δi and δj be as follows:

δi : f(D1, . . . , Dk)︸ ︷︷ ︸
materialization

∪
∼ gi(δi,M1, . . . ,Mj)

δj : f(D1, . . . , Dk)︸ ︷︷ ︸
materialization

∪
∼ gj(δj,M1, . . . ,Mj)

We obtain an increment expression for concurrent increments δi and δj by

replacing materialization part (f(D1, . . . , Dk)) with an increment expression of

the other data increment such that it forms one of the following expressions:

δ(i,j) : (f(D1, . . . , Dk) ∪∼ gj(δj,M1, . . . ,Mj)) ∪∼ gi(δi,M1, . . . ,Mj)

any data container Dj in gi must be replaced with (Dj ∪ δj)

δ(j,i) : (f(D1, . . . , Dk) ∪∼ gi(δi,M1, . . . ,Mj)) ∪∼ gj(δj,M1, . . . ,Mj)

any data container Di in gj must be replaced with (Di ∪ δi)
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δ(i,j) represents an increment expression for concurrent data increments δi and

δj by replacing materialization in increment expression of δj with an increment

expression δi.

Example 5.3. Increment expression for concurrent increments by transformation

of single increment expressions

Let δ1 and δ4 be concurrent data increments in a data integration expression as

shown in Example 5.1 (f(D1, D2, D3, D4) = (D1 ./ D2) ∼ (D3 ./ D4)). Transfor-

mation of the data integration expression into an increment expression for concur-

rent data increments δ1 and δ4 is done step by step as follows:

1. The data integration expression is transformed to compute data increments

δ1 and δ4, and we get an increment expression:

δ1 : f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2) = f(D1, D2, D3, D4) ∪ g1 (5.3)

δ4 : f(D1, D2, D3, D4) ∼ (D3 ./ δ4) = f(D1, D2, D3, D4) ∼ g4 (5.4)

2. The transformation sequence is for an increment δ1 followed by an increment

δ4. Therefore, we replace an expression f(D1, D2, D3, D4) in Equation 5.4

with an expression in Equation 5.3 such that:

δ(1,4) : (f(D1, D2, D3, D4) ∪ g1) ∼ g4

= (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2)) ∼ (D3 ./ δ4)

= (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4))) ∼ (D3 ./ δ4)

3. Then, D4 is replaced with (D4∪δ4), and allow an application of XML algebra

rules as shown in the following equations:

δ(1,4) : (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4))) ∼ (D3 ./ δ4)

= (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ (D4 ∪ δ4)))) ∼ (D3 ./ δ4)

= (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ ((D3 ./ D4) ∪ (D3 ./ δ4)))) ∼ (D3 ./ δ4)

= (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4) ∼ (D3 ./ δ4))) ∼ (D3 ./ δ4)

= (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4)) ∼ (D3 ./ δ4)) ∼ (D3 ./ δ4)

= (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4))) ∼ (D3 ./ δ4)

= (f(D1, D2, D3, D4) ∪ g1) ∼ g4 (5.5)

To verify that the sequence of transformation does not affect the generated

increment expression, we perform the same steps for transformation of the data
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integration expression into an increment expression with transformation sequence

δ4 followed by δ1 as follows:

1. The transformation sequence is for an increment δ4 followed by δ1. Therefore,

the expression f(D1, D2, D3, D4) in Equation 5.3 is replaced by an expression

in Equation 5.4 such that:

δ(4,1) : (f(D1, D2, D3, D4) ∼ g4) ∪ g1 (5.6)

2. To simplify the transformation, the increment expression is transformed one

by one. An expression g1 is transformed into g′1 by replacing all data con-

tainers D4 in g1 with (D4 ∪ δ4). Then, g4 is transformed into g′4 by replacing

all data containers D1 in g4 with (D1 ∪ δ1).

g′1 = (δ1 ./ D2) ∼ (D3 ./ (D4 ∪ δ4))

= (δ1 ./ D2) ∼ ((D3 ./ D4) ∪ (D3 ./ δ4))

= ((δ1 ./ D2) ∼ (D3 ./ D4)) ∼ (D3 ./ δ4)

= (g1 ∼ g4)

g′4 = (D3 ./ D4) = g4

3. g1 and g4 in the Equation 5.6 are replaced by into g′1 and g′4 respectively.

Then, the expression is transformed by application of XML algebra rules.

The transformation is performed as follows:

δ(4,1) : (f(D1, D2, D3, D4) ∼ g′4) ∪ g′1
= (f(D1, D2, D3, D4) ∼ g4) ∪ (g1 ∼ g4), apply rule 5

= (f(D1, D2, D3, D4) ∪ g1) ∼ g4 (5.7)

From Equations 5.2, 5.5 and 5.7 it is evidence that transformation in any order of

increment ends up with the same increment expressions. Then, it is concluded that

the transformation of a data integration expression into an increment expression

works for concurrent increments and can be performed by transformation of single

increment expressions.
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Using the same approach, increment expressions for other concurrent incre-

ments can be found as follows:

δ(1,2) : f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2) ∪ ((D1 ./ δ2) ∼M2) ∪ ((δ1 ./ δ2) ∼M2)

(5.8)

= f(D1, D2, D3, D4) ∪ g1 ∪ g2 ∪ g(1,2)

δ(1,3) : (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2)) ∼ (δ3 ./ D4) (5.9)

= (f(D1, D2, D3, D4) ∪ g1) ∼ g3

δ(2,3) : (f(D1, D2, D3, D4) ∪ ((D1 ./ δ2) ∼M2)) ∼ (D3 ./ δ4) (5.10)

= (f(D1, D2, D3, D4) ∪ g2) ∼ g3

δ(2,4) : (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4))) ∼ (D3 ./ δ4) (5.11)

: (f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2)) ∼ (D3 ./ δ4) (5.12)

= (f(D1, D2, D3, D4) ∪ g2) ∼ g4

δ(3,4) : f(D1, D2, D3, D4) ∼ (δ3 ./ D4) ∼ (D3 ./ δ4) ∼ (δ3 ./ δ4) (5.13)

= f(D1, D2, D3, D4) ∼ g3 ∼ g4 ∼ g(3,4)

where:

g1 = ((δ1 ./ D2) ∼M2); g2 = ((D1 ./ δ2) ∼M2); g3 = (δ3 ./ D4); g4 = (D3 ./ δ4);

g(1,2) = ((δ1 ./ δ2) ∼M2);M1 = (D1 ./ D2);M2 = (D3 ./ D4);

�

For concurrent data increments at two data containers, we generate a single

increment expression which is in one of the expressions shown in Theorem 3.

Theorem 3. Let δh, δi be concurrent increments of data containers Dh, Di. Any

data integration expression f(D1, . . . , Dh∪δh, Di∪δi, . . . , Dk) can be always trans-

formed into one of the following equivalent expressions:

f(D1, . . . , Dh, Di, . . . , Dk) ∪ gh ∪ gi ∪ g(h,i) (5.14)

(f(D1, . . . , Dh, Di, . . . , Dk) ∪ gh ∪ gi) ∼ g(h,i) (5.15)

((f(D1, . . . , Dh, Di, . . . , Dk) ∪ gh) ∼ gi) ∪ g(h,i) (5.16)

((f(D1, . . . , Dh, Di, . . . , Dk) ∪ gh) ∼ gi) ∼ g(h,i) (5.17)

(f(D1, . . . , Dh, Di, . . . , Dk) ∼ gh) ∪ gi ∪ g(h,i) (5.18)

((f(D1, . . . , Dh, Di, . . . , Dk) ∼ gh) ∪ gi) ∼ g(h,i) (5.19)

((f(D1, . . . , Dh, Di, . . . , Dk) ∼ gh) ∼ gi) ∪ g(h,i) (5.20)

((f(D1, . . . , Dh, Di, . . . , Dk) ∼ gh) ∼ gi) ∼ g(h,i) (5.21)
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where:

gh = gh(δh,M1, . . . ,Mj), gi = gi(δi,M1, . . . ,Mj) and ghi = ghi(δh, δi,M
′
1, . . . ,M

′
j)

Proof. Theorem 3:

To prove the theorem, we use a set of XML algebra rules which is shown in Chapter

3 to transform a data integration expression into an increment expression.

1. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)

with a union (∪) operator where f(D1, . . . , Di∪δi, . . . , Dk) be the first argu-

ment and (Dk+1 ∪ δk+1) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)∪(Dk+1 ∪ δk+1)

=(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj))∪(Dk+1 ∪ δk+1)

we apply rule 3

=(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)) ∪Dk+1 ∪ δk+1

we apply rule 3

=(f(D1, . . . , Di, . . . , Dk)∪Dk+1) ∪ gi(δi,M1, . . . ,Mj) ∪ δk+1

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj) ∪ gk+1(δk+1)

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M ′
1, . . . ,M

′
k) ∪ gk+1(δk+1)

2. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)

with a union (∪) operator where f(D1, . . . , Di∪δi, . . . , Dk) be the first argu-

ment and (Dk+1 ∪ δk+1) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)∪(Dk+1 ∪ δk+1)

=(f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj))∪(Dk+1 ∪ δk+1)

we apply rule 3

=((f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)) ∪Dk+1︸ ︷︷ ︸
we apply rule 9

) ∪ δk+1

=((f(D1, . . . , Di, . . . , Dk)∪Dk+1) ∼ (gi(δi,M1, . . . ,Mj) ∼ Dk+1)) ∪ δk+1

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ (gi(δi,M1, . . . ,Mj) ∼ Dk+1)) ∪ gk+1(δk+1)
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Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk, Dk+1) : a = 1, . . . , k. Then:

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ gi(δi,M
′
1, . . . ,M

′
j)) ∪ gk+1(δk+1)

3. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)

with a union (∪) operator where (Dk+1 ∪ δk+1) be the first argument and

f(D1, . . . , Di∪δi, . . . , Dk) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=(Dk+1 ∪ δk+1)∪f(D1, . . . , Di ∪ δi, . . . , Dk)

=(Dk+1 ∪ δk+1)∪(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj))

we apply rule 3

=(Dk+1 ∪ f(D1, . . . , Di, . . . , Dk)) ∪ gi(δi,M1, . . . ,Mj) ∪ δk+1

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj) ∪ gk+1(δk+1)

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj) ∪ gk+1(δk+1)

4. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)

with a union (∪) operator where (Dk+1 ∪ δk+1) be the first argument and

f(D1, . . . , Di∪δi, . . . , Dk) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=(Dk+1 ∪ δk+1)∪f(D1, . . . , Di ∪ δi, . . . , Dk)

=(Dk+1 ∪ δk+1)∪(f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj))

we apply rule 3

=(Dk+1 ∪ (f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj))︸ ︷︷ ︸
we apply rule 10

) ∪ δk+1

=((Dk+1 ∪ f(D1, . . . , Di, . . . , Dk)) ∼ (gi(δi,M1, . . . ,Mj) ∼ Dk+1))∪

gk+1(δk+1)

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ (gi(δi,M1, . . . ,Mj) ∼ Dk+1)) ∪ gk+1(δk+1)

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ gi(δi,M
′
1, . . . ,M

′
k)) ∪ gk+1(δk+1)
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5. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)

with a join (./) operator where f(D1, . . . , Di ∪ δi, . . . , Dk) be the first argu-

ment and (Dk+1 ∪ δk+1) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)./(Dk+1 ∪ δk+1)

=(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj))./(Dk+1 ∪ δk+1),

we apply rule 4

=((f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj))./Dk+1)∪

((f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)) ./ δk+1)

we apply rule 4

=((f(D1, . . . , Di, . . . , Dk)./Dk+1) ∪ (gi(δi,M1, . . . ,Mj) ./ Dk+1))∪

((f(D1, . . . , Di, . . . , Dk) ./ δk+1) ∪ (gi(δi,M1, . . . ,Mj) ./ δk))

we apply rule 4

=(f(D1, . . . , Di, . . . , Dk)./Dk+1) ∪ (gi(δi,M1, . . . ,Mj) ./ Dk+1)∪

(f(D1, . . . , Di, . . . , Dk) ./ δk+1) ∪ (gi(δi,M1, . . . ,Mj) ./ δk+1)

we apply rule 3

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj, Dk+1)∪

gk+1(δk+1,M1, . . . ,Mj) ∪ g(i,k+1)(δk+1, δi,M1, . . . ,Mj)

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk, Dk+1) : a = 1, . . . , j. Then:

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M ′
1, . . . ,M

′
j) ∪ gk+1(δk+1,M1, . . . ,Mj)∪

g(i,k+1)(δk+1, δi,M1, . . . ,Mj)

6. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)

with a join (./) operator where f(D1, . . . , Di ∪ δi, . . . , Dk) be the first argu-

ment and (Dk+1 ∪ δk+1) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)./(Dk+1 ∪ δk+1)

=(f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj))./(Dk+1 ∪ δk+1),

we apply rule 7
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=((f(D1, . . . , Di, . . . , Dk)./(Dk+1 ∪ δk+1)) ∼

(gi(δi,M1, . . . ,Mj))./(Dk+1 ∪ δk+1))

we apply rule 4

=((f(D1, . . . , Di, . . . , Dk)./Dk+1) ∪ (f(D1, . . . , Di, . . . , Dk) ./ δk+1)) ∼

((gi(δi,M1, . . . ,Mj)./Dk+1) ∪ (gi(δi,M1, . . . ,Mj)./δk+1))

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ f(D1, . . . , Di, . . . , Dk, deltak+1)) ∼

(gi(δi,M1, . . . ,Mj, Dk+1) ∪ g(i,k+1)(δi,M1, . . . ,Mj, δk+1))

we apply rule 6

=((f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ f(D1, . . . , Di, . . . , Dk, δk+1)) ∼

gi(δi,M1, . . . ,Mj, Dk+1)) ∼ (gi(δi,M1, . . . ,Mj, δk+1)

=((f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gk+1(δk+1, D1, . . . , Di, . . . , Dk)) ∼

gi(δi,M1, . . . ,Mj, Dk+1)) ∼ g(i,k+1)(δi,M1, . . . ,Mj, δk+1);

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk, Dk+1) : a = 1, . . . , k. Then:

=((f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gk+1(δk+1,M1, . . . ,Mj)) ∼

gi(δi,M
′
1, . . . ,M

′
k)) ∼ g(i,k+1)(δi, δk+1,M1, . . . ,Mk)

7. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)

with a join (./) operator where (Dk+1 ∪ δk+1) be the first argument and

f(D1, . . . , Di∪δi, . . . , Dk) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=(Dk+1 ∪ δk+1)./f(D1, . . . , Di ∪ δi, . . . , Dk)

=(Dk+1 ∪ δk+1)./(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)),

we apply rule 4

=(Dk+1./(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)))∪

(δk+1./(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj))),

we apply rule 4

=((Dk+1./f(D1, . . . , Di, . . . , Dk)) ∪ (Dk+1./gi(δi,M1, . . . ,Mj)))∪

((δk+1./f(D1, . . . , Di, . . . , Dk)) ∪ (δk+1./gi(δi,M1, . . . ,Mj)))

we apply rule 4

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj, Dk+1))∪
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(gk+1(δk+1,M1, . . . ,Mj) ∪ g(i,k+1)(δk+1, δi,M1, . . . ,Mj))

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj, Dk+1)∪

gk+1(δk+1,M1, . . . ,Mj) ∪ g(i,k+1)(δk+1, δi,M1, . . . ,Mj)

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk, Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M ′
1, . . . ,M

′
j) ∪ gk+1(δk+1,M1, . . . ,Mj)∪

g(i,k+1)(δi, δk+1,M1, . . . ,Mj)

8. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)

with a join (./) operator where (Dk+1 ∪ δk+1) be the first argument and

f(D1, . . . , Di∪δi, . . . , Dk) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=(Dk+1 ∪ δk+1)./f(D1, . . . , Di ∪ δi, . . . , Dk)

=(Dk+1 ∪ δk+1)./(f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)),

we apply rule 4

=(Dk+1./(f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)))∪

(δk+1./(f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj))),

we apply rule 8):

=((Dk+1./f(D1, . . . , Di, . . . , Dk)) ∼ gi(δi,M1, . . . ,Mj))∪

((δk+1./f(D1, . . . , Di, . . . , Dk)) ∼ gi(δi,M1, . . . ,Mj)))

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ gi(δi,M1, . . . ,Mj))∪

(f(D1, . . . , Di, . . . , Dk, δk+1) ∼ gi(δi,M1, . . . ,Mj))

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ gi(δi,M1, . . . ,Mj))∪

(gk+1(D1, . . . , Di, . . . , Dk, δk+1) ∼ gi(δi,M1, . . . ,Mj))

we apply rule 5

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gk+1(D1, . . . , Di, . . . , Dk, δk+1))

∼ gi(δi,M1, . . . ,Mj)

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gk+1(δk+1,M1, . . . ,Mj)) ∼

gi(δi,M1, . . . ,Mj)

9. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)
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with a antijoin (∼) operator where f(D1, . . . , Di∪δi, . . . , Dk) be the first ar-

gument and (Dk+1∪δk+1) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)∼(Dk+1 ∪ δk+1)

we apply rule 6

=((f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)) ∼ Dk+1) ∼ δk+1,

we apply rule 5

=((f(D1, . . . , Di, . . . , Dk) ∼ Dk+1) ∪ (gi(δi,M1, . . . ,Mj) ∼ Dk+1)) ∼ δk+1,

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj, Dk+1)) ∼ gk+1(δk+1)

Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk+1) : a = 1, . . . , k. Then:

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M ′
1, . . . ,M

′
j)) ∼ gk+1(δk+1,M1, . . . ,Mj)

10. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)

with a antijoin (∼) operator where f(D1, . . . , Di∪δi, . . . , Dk) be the first ar-

gument and (Dk+1∪δk+1) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=f(D1, . . . , Di ∪ δi, . . . , Dk)∼(Dk+1 ∪ δk+1)

=((f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)) ∼ (Dk+1 ∪ δk+1)

we apply rule 6

=f(D1, . . . , Di, . . . , Dk) ∼ (gi(δi,M1, . . . ,Mj) ∪ (Dk+1 ∪ δk+1)︸ ︷︷ ︸
we apply rule 3

)

=f(D1, . . . , Di, . . . , Dk) ∼ (Dk+1 ∪ (gi(δi,M1, . . . ,Mj) ∪ δk+1))

we apply rule 11

=(f(D1, . . . , Di, . . . , Dk) ∼ Dk+1) ∼ (gi(δi,M1, . . . ,Mj) ∪ δk+1)

we apply rule 6

=((f(D1, . . . , Di, . . . , Dk) ∼ Dk+1) ∼ gi(δi,M1, . . . ,Mj)) ∼ δk+1,

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ gi(δi,M1, . . . ,Mj)) ∼ gk+1(δk+1)

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ gi(δi,M1, . . . ,Mj)) ∼ gk+1(δk+1)

11. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)
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with a antijoin (∼) operator where (Dk+1 ∪ δk+1) be the first argument and

f(D1, . . . , Di∪δi, . . . , Dk) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=(Dk+1 ∪ δk+1)∼f(D1, . . . , Di ∪ δi, . . . , Dk)

=(Dk+1 ∪ δk+1)∼(f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)),

we apply rule 5

=(Dk+1 ∼ (f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)))∪

(δk+1 ∼ (f(D1, . . . , Di, . . . , Dk) ∪ gi(δi,M1, . . . ,Mj)))

we apply rule 6

=((Dk+1 ∼ f(D1, . . . , Di, . . . , Dk)) ∼ gi(δi,M1, . . . ,Mj))∪

((δk+1 ∼ f(D1, . . . , Di, . . . , Dk)) ∼ gi(δi,M1, . . . ,Mj)))

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∼ gi(δi,M1, . . . ,Mj))∪

(gk+1(δk+1,M1, . . . ,Mj) ∼ gi(δi,M1, . . . ,Mj))

we apply rule 5

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gk+1(δk+1,M1, . . . ,Mj)) ∼ gi(δi,M1, . . . ,Mj)

12. We extend an expression:

f(D1, . . . , Di ∪ δi, . . . , Dk) = f(D1, . . . , Di ∪ δi, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)

with an antijoin (∼) operator where (Dk+1∪ δk+1) be the first argument and

f(D1, . . . , Di∪δi, . . . , Dk) be the second argument. The expression f(D1, . . . ,

Di ∪ δi, . . . , Dk) is transformed as follows:

=(Dk+1 ∪ δk+1)∼f(D1, . . . , Di ∪ δi, . . . , Dk)

=(Dk+1 ∪ δk+1)∼(f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj))

we apply rule 5

=(Dk+1 ∼ (f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)))∪

(δk+1 ∼ (f(D1, . . . , Di, . . . , Dk) ∼ gi(δi,M1, . . . ,Mj)))

we apply rule 12

=((Dk+1 ∼ f(D1, . . . , Di, . . . , Dk)) ∪ (Dk+1 ./ gi(δi,M1, . . . ,Mj)))∪

((δk+1 ∼ f(D1, . . . , Di, . . . , Dk)) ∪ (δk+1 ./ gi(δi,M1, . . . ,Mj)))

=(f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M1, . . . ,Mj, Dk+1))∪

(gk+1(δk+1,M1, . . . ,Mj) ∪ g(i,k+1)(δi, δk+1,M1, . . . ,Mj))
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Since Ma = ha(D1, . . . , Dk) : a = 1, . . . , j, we are able to form:

M ′
a = h′a(D1, . . . , Dk, Dk+1) : a = 1, . . . , k. Then:

=f(D1, . . . , Di, . . . , Dk, Dk+1) ∪ gi(δi,M ′
1, . . . ,M

′
k)∪

gk+1(δk+1,M1, . . . ,Mj) ∪ g(i,k+1)(δi, δk+1,M1, . . . ,Mj)

For n concurrent data increments, a single increment expression is generated

by the utilization of increment expressions for smaller concurrent data increments.

Algorithm 5 shows an implementation to obtain an increment expression for con-

current data increments.

Algorithm 5 Transformation of a data integration expression into an increment
expression for n number of concurrent increments
1: Generate increment expressions for every data container by considering a single

increment. The transformation of the data integration expression is performed using
the algorithms described earlier.

2: Get an increment expression for data container Dn. δn : f(D1, . . . , Dk)
∪
∼ gn

3: Replace materialization (f(D1, . . . , Dk)) in expression δn : f(D1, . . . , Dn) ∪∼ gn with
an increment expression for concurrent increments δ(1,...,(n−1)), such that the incre-
ment expression become δ(1,...,n) : (((f(D1, . . . , Dk)

∪
∼ g1) ∪∼ g2) ∪∼ . . . ∪∼ gn).

4: for each increment expression gx in an increment expression δn do
5: Replace Di in gx with (Di ∪ δi); i = 1, . . . , n.
6: Transform gx into g′x such that it is in a form of Equation 4.6 or 4.7.
7: end for
8: Replace gx : i = 1, . . . , (n− 1) in the increment expression δ(1,...,n) with g′x.

At the end of transformation process, an increment expression for an n con-

current data increments δ1, . . . , δn is obtained in the form of:

δ(1,...,n) : ((((f(D1, . . . , Dk) ∪∼ g1) ∪∼ . . . ∪∼ gn) ∪∼ g(1,2))
∪
∼ . . . ∪∼ g(m,n))

∪
∼ g(1,...,n)

Example 5.4. Transformation of a data integration expression into an increment

expression for three concurrent increments

Let δ1, δ3 and δ4 be concurrent data increments in a data integration expression

f(D1, D2, D3, D4) = (D1 ./ D2) ∼ (D3 ./ D4) as shown in Example 5.1. The

increment expressions obtained for two concurrent increments in Example 5.3 is

used. To show that the transformations can be performed in any order of increment

processing, the data integration expression is transformed in all possible orders of

the increment, and compare the transformation results in the following:

1. The first case is a transformation of a data integration expression for con-

current data increments in the order of: δ1, δ3, then δ4.
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(a) To get the increment expression, an increment expression for a single in-

crement δ4 is used, and f(D1, D2, D3, D4) is replaced with an increment

expression for concurrent increments δ1 and δ3. δ(1,3,4) represents an

expression for three concurrent increments from D1, D3, and D4 respec-

tively. Meanwhile, δ(1,3) is an expression for two concurrent increments

at D1 and D3.

δ4 : f(D1, D2, D3, D4) ∼ g4

δ(1,3,4) : δ(1,3) ∼ g4; The expression δ(1,3) is obtained from Example 5.3

= ((f(D1, D2, D3, D4) ∪ g1) ∼ g3) ∼ g4

= ((f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2)) ∼ (δ3 ./ D4)) ∼ (D3 ./ δ4)

= ((f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4))) ∼ (δ3 ./ D4)) ∼

(D3 ./ δ4)

(b) To simplify the transformation, g1 is transformed into g′1 and g3 into

g′3 one by one, by replacing D4 with (D4 ∪ δ4) in the data integration

expression as follows:

g′1 = (δ1 ./ D2) ∼ (D3 ./ (D4 ∪ δ4))

= (δ1 ./ D2) ∼ ((D3 ./ D4) ∪ (D3 ./ g4))

= (δ1 ./ D2) ∼ (D3 ./ D4)) ∼ (D3 ./ δ4)

= (g1 ∼ g4)

g′3 = (δ3 ./ (D4 ∪ δ4))

= (δ3 ./ D4) ∪ (δ3 ./ δ4))

= (g3 ∪ g(3,4))

(c) Then, an increment expression of concurrent data increments δ1, δ3, and

δ4 is by replacement of g1 and g3 with g′1 and g′3 as follows:

δ(1,3,4) : ((f(D1, D2, D3, D4) ∪ g′1) ∼ g′3) ∼ g4

= ((f(D1, D2, D3, D4) ∪ (g1 ∼ g4)) ∼ (g3 ∪ g(3,4))) ∼ g4

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ (g4 ∼ f(D1, D2, D3, D4))) ∼ g3) ∼ g(3,4)) ∼ g4

Since (A ∼ B) ∼ C = (A ∼ C) ∼ B, then:

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ (g4 ∼ f(D1, D2, D3, D4))) ∼ g4) ∼ g3) ∼ g(3,4))

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ ((g4 ∼ f(D1, D2, D3, D4)) ∪ g4)) ∼ g3) ∼ g(3,4))
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Since ((A ∼ B) ∪A) = A, then:

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ g4) ∼ g3) ∼ g(3,4))

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ g3) ∼ g4) ∼ g(3,4)) (5.22)

Since the increment expression for concurrent increments δ1, δ3 is identical

with the increment expression for concurrent increments δ3, δ1, then incre-

ment expression for δ1, δ3, δ4 is identical with the one for δ3, δ1, δ4.

2. Processing data increments in the order of: δ1, δ4, then δ3.

(a) To get the final result of an increment expression in this order, an incre-

ment expression for a single increment δ4 is obtained and f(D1, D2, D3, D4)

is replaced with increment expression for concurrent increments δ1 and

δ4.

δ3 : f(D1, D2, D3, D4) ∼ g3

δ(1,4,3) : δ(1,4) ∼ g3; The expression δ(1,4) is obtained from Example 5.3

= ((f(D1, D2, D3, D4) ∪ g1) ∼ g4) ∼ g3

= ((f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2)) ∼ (D3 ./ δ4)) ∼ (δ3 ./ D4)

= ((f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼ (D3 ./ D4))) ∼ (δ3 ./ D4)) ∼

(δ3 ./ D4)

(b) To simplify the transformation, g1 is transformed into g′1 and g4 into

g′4 one by one, by replacing D3 with (D3 ∪ δ3) in the data integration

expression as follows:

g′1 = (δ1 ./ D2) ∼ ((D3 ∪ δ3) ./ D4)

= (δ1 ./ D2) ∼ ((D3 ./ D4) ∪ (δ3 ./ D4))

= (δ1 ./ D2) ∼ (D3 ./ D4)) ∼ (δ3 ./ D4)

= (g1 ∼ g3)

g′4 = ((D3 ∪ δ3) ./ δ4)

= (D3 ./ δ4) ∪ (δ3 ./ δ4))

= (g4 ∪ g(3,4))

(c) Then, an increment expression of conccurent data increments δ1, δ3, and
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δ4 can be obtained by replacing g1 and g3 with g′1 and g′3 as follows:

δ(1,3,4) : ((f(D1, D2, D3, D4) ∪ g′1) ∼ g′4) ∼ g3

= ((f(D1, D2, D3, D4) ∪ (g1 ∼ g3)) ∼ (g4 ∪ g(3,4))) ∼ g3

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ (g3 ∼ f(D1, D2, D3, D4))) ∼ g4) ∼ g(3,4)) ∼ g3

Since (A ∼ B) ∼ C = (A ∼ C) ∼ B, then:

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ (g3 ∼ f(D1, D2, D3, D4))) ∼ g3) ∼ g4) ∼ g(3,4))

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ ((g3 ∼ f(D1, D2, D3, D4)) ∪ g3)) ∼ g4) ∼ g(3,4))

Since ((A ∼ B) ∪A) = A, then:

= ((((f(D1, D2, D3, D4) ∪ g1) ∼ g3) ∼ g4) ∼ g(3,4)) (5.23)

Since the increment expression for concurrent increments δ1, δ3 is identical

with the increment expression for concurrent increments δ3, δ1, increment

expression for δ1, δ3, δ4 is identical with the one for δ3, δ1, δ4.

3. Processing data increments in the order of: δ3, δ4, then δ1.

(a) To produce the final result increment expression in this order, an incre-

ment expression for a single increment δ1 is obtained and f(D1, D2, D3, D4)

is replaced with increment expression for concurrent increments δ4 and

δ3.

δ1 : f(D1, D2, D3, D4) ∪ ((δ1 ./ D2) ∼M2)

δ(3,4,1) : δ(3,4) ∪ g1; The expression δ(3,4) is obtained from Example 5.3

= (f(D1, D2, D3, D4) ∼ g3 ∼ g4 ∼ g(3,4)) ∪ g1

(b) To simplify the transformation, g3 is transformed into g′3, g4 into g′4 and

g(3,4) into g′(3,4) by replacing D1 with (D1 ∪ δ1). Then g1 is transformed

into g′1 by replacing D3 with (D3 ∪ δ3) and D4 with (D4 ∪ δ4). The

transformations are performed as follows:

g′3 = (δ3 ./ D4) = g3

g′4 = (D3 ./ δ4) = g4

g′1 = ((δ1 ./ D2) ∼ ((D3 ∪ δ3) ./ (D4 ∪ δ4))

= ((δ1 ./ D2) ∼ ((D3 ./ (D4 ∪ δ4)) ∪ (δ3 ./ (D4 ∪ δ4))

= ((δ1 ./ D2) ∼ ((D3 ./ D4) ∪ (D3 ./ δ4)) ∪ (δ3 ./ D4) ∪ (δ3 ./ δ4))

= ((δ1 ./ D2) ∼ (D3 ./ D4)) ∼ (D3 ./ δ4) ∼ (δ3 ./ D4) ∼ (δ3 ./ δ4)
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= (g1 ∼ g4 ∼ g3 ∼ g(3,4))

g′(3,4) = (δ3 ./ δ4) = g(3,4)

(c) Then, an increment expression of concurrent data increments δ3, δ4, and

δ1 can be obtained by replacing g1, g3, g4 and g(3,4)3 with g′1, g
′
3, g
′
4 and

g′(3,4) as follows:

δ(4,3,1) : ((f(D1, D2, D3, D4) ∼ g′3 ∼ g′4 ∼ g′(3,4) ∪ g′1
δ(4,3,1) : ((f(D1, D2, D3, D4) ∼ g3 ∼ g4 ∼ g(3,4) ∪ (g1 ∼ g4 ∼ g3 ∼ g(3,4))

δ(4,3,1) : ((f(D1, D2, D3, D4) ∼ (g3 ∪ g4 ∪ g(3,4))) ∪ (g1 ∼ (g4 ∪ g3 ∪ g(3,4)))

apply rule 5

δ(4,3,1) : (f(D1, D2, D3, D4) ∪ g1) ∼ (g3 ∪ g4 ∪ g(3,4))

δ(4,3,1) : (f(D1, D2, D3, D4) ∪ g1) ∼ g3 ∼ g4 ∼ g(3,4) (5.24)

Since the increment expression for concurrent increments δ4, δ3 is identical

with the increment expression for concurrent increments δ3, δ4, then incre-

ment expression for δ4, δ3, δ1 and the one for δ3, δ4, δ1 are identical.

From Equations 5.22, 5.23 and 5.24 it can be concluded that the transformation

to generate a single increment expression works for any number of concurrent

increments. �

5.4 Integration Plan for Concurrent Increments

An online integration plan for concurrent increments is obtained in the same way

as for a single data increment (see Section 4.4.2). Given an increment expression

for concurrent data increments below:

δ(1,...,n) : ((((f(D1, . . . , Dk) ∪∼ g1) ∪∼ . . . ∪∼ gn) ∪∼ g(1,2))
∪
∼ . . . ∪∼ g(m,n))

∪
∼ g(1,...,n)

we transform this into an online integration plan d(1,...,n) using the following steps:

1. First, all increment components (gi : i = 1, . . . , n) of the increment ex-

pression are mapped, such that every simple expression (ωi : i = 1, . . . , j)

in gi(δi,M1, . . . ,Mj) = ωj(. . . (ω2(ω1(δi,M1),M2) . . .)Mj) is mapped into a

corresponding step from the inner-most to the outer most XML algebraic

operation.
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2. Next, several steps to update a final materialization (Me) are appended to

the result of the increment computation (Me = Me ∪ gi or Me = Me ∼ gi).

Every increment part on an increment expression contributes to the final

materialization update.

3. In the next step of processing, all data containers which contribute in con-

current data increments (Di : i = 1, . . . , n) are updated with (Di ∪ δi).

4. Then, all intermediate materializations Ma = ha(D1, . . . , Dk) are identified

which are affected by all concurrent increments. The identification process

uses the materialization dependency table generated in the pre-processing

stage.

5. These procedures are performed to compute every data integration expres-

sion for materialization Ma = ha(D1, . . . , Dk) : a = 1, . . . , j identified, but

without a step to update the data containers.

Example 5.5. Online integration plan for concurrent data increments

Let δ1 and δ4 be concurrent data increments in a data integration expression as

shown in Example 5.1. In a single increment expression for concurrent

increments approach we obtain the following increment expression:

δ(1,4) : (((D1 ./ D2) ∼ (D3 ./ D4))︸ ︷︷ ︸
Me

∪ ((δ1 ./ D2) ∼M2)︸ ︷︷ ︸
g1

) ∼ (D3 ./ δ4)︸ ︷︷ ︸
g4

where M2 = (D3 ./ D4)

The above procedure is used to create an online integration plan d(1,4) step by step

as follows:

1. First, all simple operations in g1 are mapped:

p1 : ∆1 = (δ1 ./ D2)

p2 : ∆2 = (∆1 ∼M2)

2. Then, all simple operations in g2 all mapped:

p3 : ∆3 = (D3 ./ δ4)

3. Next, two steps to update the final materialization Me are added with resutls

of g1 and g4:

p4 : ∆4 = (Me ∪∆2)

p5 : Me = (∆4 ∼ ∆3)
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4. Two steps to update data container D1 and D4 are added:

p6 : D1 = (D1 ∪ δ1)

p7 : D4 = (D4 ∪ δ4)

5. In the next step, intermediate materializations M1 and M2 are updated:

p8 : M1 = (M1 ∪∆2)

p9 : M2 = (M2 ∪∆3)

At the end of transformation, an online integration plan is obtained as follows:

d(1,4) :∆1 = (δ1 ./ D2); ∆2 = (∆1 ∼M2); ∆3 = (D3 ./ δ4); ∆4 = (Me ∪∆2);

Me = (∆4 ∼ ∆3);D1 = (D1 ∪ δ1);D4 = (D4 ∪ δ4);M1 = (M1 ∪∆2);

M2 = (M2 ∪∆3); (5.25)

�

Next we compare online integration plans between two approaches in processing

concurrent increments.

Example 5.6. Comparison of two approaches in processing concurrent increments

Let d(1,4) be an online integration plan for concurrent increment δ1 and δ4 as in

Equation 5.25. Using a single increment for concurrent data increments

approach, the online integration plan is shown in Figure 5.3:

start

∆1 = δ1 ./ D2 ∆2 = ∆1 ∼M2 ∆3 = D3 ./ δ1 ∆4 = Me ∪∆2 Me = Me ∪∆3

D1 = D1 ∪ δ1 D4 = D4 ∪ δ4 M1 = M1 ∪∆2 M2 = M2 ∪∆3

end

Figure 5.3: Execution of an online integration plan d(1,4)

Meanwhile, in a serialization approach two online integration plans (d1 and d4)

are executed. According to the Example 5.1, the execution plans is as follows:

d1 :∆1 = (δ1 ./ D2); ∆2 = (∆1 ∼M2);Me = (Me ∪∆2);D1 = (D1 ∪ δ1);

M1 = (M1 ∪∆1);

d4 :∆6 = (D3 ./ δ4);Me = (Me ∼ ∆6);D4 = (D4 ∪ δ4);M2 = (M2 ∪∆6);

The execution of online integration plans d1 and d4 is shown in Figure 5.4:

Figure 5.4 shows that in the serialization aproach the final materialization

updates are processed at steps 4 and 8 each of which requires an operation to
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start d1

start d4

D1 = D1 ∪ δ1 ∆1 = δ1 ./ D2 ∆2 = ∆1 ∼M2 Me = Me ∪∆2 M1 = M1 ∪∆1

end d1

D4 = D4 ∪ δ4 ∆5 = D3 ./ δ4 Me = Me ∪∆5 M2 = M2 ∪∆6

end d4

Figure 5.4: Execution of online integration plan d1 and d4 in the serialization
approach

load the data from a secondary storage and then write back the results to that

persistence storage.

Meanwhile, using one increment expression for concurrent increments

approach as in Figure 5.3, we push operations to update the final materialization

one after the other. This reduces the IO cost to retrieve materialization from a

secondary storage as well as to store computation result back to the secondary

storage. �

5.5 Parallel Processing of Online Data Integra-

tion Plans

Let δi and δj be concurrent data increments. The transformation of a data inte-

gration expression to compute δi and δj produces one increment expression in one

of the expressions in Equation 5.14 - 5.21. The increment expression for two con-

current data increments has three increment components gh, gi, and g(h,i), where

g(h,i) is optional.

In this thesis, an assumption is made that the central site is equipped with a

parallel processing configuration which consists of several processors, and shares

storage and memory among processors. Parallel processing of concurrent data in-

crements is achieved by sending each increment component (gi) to an independent

processor. Then, the individual processor executes an online integration plan for

the specific increment component gi, for further computation. The computation

results of gi are used to update the final materialization based on the increment

expression created earlier. The materialization update processes are performed

serially. Meanwhile, intermediate materialization and data container updates can

be performed again in parallel fashion.

Assuming that the central site has a sufficient number of processors, Figure 5.5

shows how an increment expression δ(1,...,n) is computed in parallel fashion.

Processing of each increment part of an increment expression (gi) by a single



5.5. Parallel Processing of Online Data Integration Plans 139

start

g1 ∆1 = Me ∪ g1 update D1 update Mas

g2 ∆2 = ∆1
∪
∼ g2 update D2 update Mas

...

g(1,...,n) Me = ∆n−1
∪
∼ g(1,...,n)

end

Figure 5.5: Parallel processing of increments by sending every independent incre-
ment component to a processor

independent processor is inefficient because an online integration plan for gi may

have a varying number of steps. Therefore, any processor which has completed its

computation process must wait on other processing before the next step can be

performed. Moreover, the number of concurrent data increments strictly depends

on the number of processors at the central site.

To obtain better performance with a limited number of processors, we identify

the process or task dependencies in the online integration plan and distribute the

tasks among existing processors.

Example 5.7. Parallel computation of increment expresions

Parallel processing of online integration plans for concurrent increments δ1 and δ4

as in Example 5.5 is shown in Figure 5.7.

Let δ1 and δ4 be concurrent increments in the data integration expression in

Example 5.1. In a single increment expression for concurrent increments

approach the following increment expression is obtained:

δ(1,4) : (((D1 ./ D2) ∼ (D3 ./ D4))︸ ︷︷ ︸
Me

∪ ((δ1 ./ D2) ∼M2)︸ ︷︷ ︸
g1

) ∼ (D3 ./ δ4)︸ ︷︷ ︸
g4

where M2 = (D3 ./ D4)

The online integration plan is shown step by step from p1 to p9 as follows:

p1 : ∆1 = (δ1 ./ D2)

p2 : ∆2 = (∆1 ∼M2)

p3 : ∆3 = (D3 ./ δ4)

p4 : ∆4 = (Me ∪∆2)

p5 : Me = (∆4 ∼ ∆3)
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p6 : D1 = (D1 ∪ δ1)

p7 : D4 = (D4 ∪ δ4)

p8 : M1 = (M1 ∪∆2)

p9 : M2 = (M2 ∪∆3)

Then, processing can be performed as in the task dependency diagram shown in

Figure 5.6.

start

p1 p2 p4

p8

p3 p9

p5
p6

p7

Figure 5.6: Task dependency diagram for processing of an increment expression
δ(1,4)

If the central site has two processors, the execution of the online integration

plan is modified based on their orders and utilization the processors’ idle time.

A process can be executed if it is independent or its dependent processes have

completed. The execution plan is modified to that shown in Figure 5.7. �

p1 p2 p4 p6 p8

p3 p7 p9

end

p5

Figure 5.7: Modification of online integration plan to compute concurrent incre-
ments δ1 and δ4 in a parallel execution

Task-based parallel processing is not trivial and plays an important role in

parallel processing. In this area, numerous optimization techniques have been
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designed to optimize parallel processing. They can be directly applied to this

problem, but are excluded from this thesis.

5.6 Scheduling of Online Integration Plans

We extend the scheduling system described in Chapter 4 to work on concurrent

processing of increments. The scheduling system has two phases. The purpose

of the first phase is to obtain a sequence of data increments in sorted priority

labels. It is performed in the same way as described in Section 4.5. Meanwhile, the

second phase intends to find data increments which can be computed in parallel

mode; it is performed at the execution time.

Depending on the current data increment to process, concurrent processing is

obtained by finding data increments in the following circumstances:

1. They share the same materialization to compute with. A materialized data

usually has a larger size than a data container. Therefore, a process to load

an intermediate materialization from a persistent storage into main memory

requires an expensive IO cost.

2. They share the same materialization to update. The operation to update a

materialized data requires a process to retrieve it from secondary storage and

then write the update back to it. These operations are IO cost expensive,

and the costs can be reduced if we perform operations to update a particular

materialization one after the other. This strategy will minimize the IO costs

to load intermediate materialization from and write it back to secondary

storage.

Data increments which satisfy any conditions above are classified as type 2 (see

Section 4.5.3).

The dynamic scheduling algorithm proposed in the previous chapters is mod-

ified to optimize processing of concurrent data increments. It modifies the order

of processing data increments such that processing of increments which compute

or update the same materializations are taken for processing in a parallel mode.

Algorithm 6 shows an example dynamic scheduling algorithm for concurrent data

increments.

Example 5.8. Dynamic scheduling for concurrent data increments

Let a sequence of increment data δ1a ← δ1b ← δ2 ← δ3a ← δ4 ← δ5a ← δ3b ← δ5b

arrives at the central site for an integration expression as in Figure 4.6. The

scheduling system for concurrent increment data is performed as follows:
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Algorithm 6 Dynamic scheduling for concurrent data increments

while (not empty queue) do
Get increment data from a sliding window ;
Sort increment data based on their priority labels;
for each increment in (sorted increment data) do

Get all data increments in Type 2 of di; {dx} : x = 1, . . . , n
Prepare online integration plan for d(i,{x});
for each (step pi in integration plan) do

if (pi=materialization (Ma) update then
if (Ma is not used by next plan) then

Store the increments to the designated increment lists;
Defer step pi;

else
if not empty increment lists then

Flush the increment lists to Ma

end if
Execute step pi;

end if
else

Execute step pi;
if (pi has no result) then

Terminate rest steps of current plan d(i,{x});
end if

end if
end for

end for
Get to the next sliding window ;

end while

1. At the end of the first phase, a sequence of increment data δ3a ← δ3b ←
δ2 ← δ1a ← δ1b ← δ5a ← δ5b ← δ4 is obtained in the sliding window.

2. The second phase of dynamic scheduling is performed in the following

manner:

(a) We find concurrent increments that can be processed together with the

increment data δ3a. Processing of δ3a requires an intermediate material-

ization M4 for computation. In the example, there is no data increment

which requires M4 in their plans.

(b) We find data increments which have an online integration plan to up-

date materializations M1 and/or M2. Online integration plans d1 and

d2 satisfy this condition. Then, δ2, and δ1a are processed together.
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Modification of the plan is made as:

d321 :D3 = (D3 ∪ δ3);D2 = (D2 ∪ δ2); ∆1 = (δ3 ∼M4); ∆2 = (δ2 ∼ D3);

∆3 = (D1 ./ ∆2);M2 = (M2 ∼ (D1 ∼ δ3));D1 = (D1 ∪ δ1);

M1 = (M1 ∼ δ3);M1 = (M1 ∪ (∆2 ∼ δ3)); ∆4 = (δ1 ./ M1);

M2 = (M2 ∪∆4);Me = (Me ∼ (∆1 ∪∆3));

Me = (Me ∪ (∆4 ∼ (∆1 ∪∆3));

Then, at the first row we compute increment data δ3a, δ2 and δ1a con-

currently.

(c) The next concurrent increment will be δ3b. Following the same stategy

above we compute δ3b and δ1b together.

(d) The next increment to compute is δ5a where the same intermediate

materialization M2 is shared in its computation. Therefore, δ5a and δ4

can be computed together.

(e) Lastly, the increment data δ5b is computed.

At the end of the second phase, a modified schedule is produced as: (δ3a, δ2, δ1a)←
(δ3b, δ1b) ← (δ5a, δ4) ← δ5b, where increments in parentheses are computed

in parallel.

�

Further dynamic scheduling strategies (i.e early termination of plan, and pro-

crastination of plan) from Section 4.5.4 are applicable for parallel processing of

increments.

Extension of an online data integration system presented in this thesis allows

for processing some data increments in parallel. Multiple transformations of a

data integration expression are performed for some data increments such that one

increment expression and one online integration plan are generated at the end of

the transformation process. Data containers which can be processed in parallel

must satisfy the conditions specified in Section 5.2.

Although it helps to improve the performance of an online data integration sys-

tem, parallel processing of data increments will also decrease in performance when

data increments consist of a large number of XML elements. So far, processing of

a data increment can be started after it is available at the central site as a com-

plete XML document. In fact, not all elements in an XML document are needed
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to trigger the computation of a data increment. Therefore, an improved online

integration system might be obtained if: (1) processing large size XML documents

is done in fragments; and (2) the minimal requirements of an XML document to

be processed can be identified. In the next chapter the processing of a fragmented

XML document is discussed.



Chapter 6

Processing of XML Fragments

The online data integration system proposed in the previous chapters considers

an incoming of a complete XML document before processing of the increment can

be started [49]. The waiting time to start processing of a data increment depends

on how long the transmission time from the first byte arriving at the central site

until all bytes of the document become available at the central site. This means

that we need a longer waiting time for a large size data increment before it can be

computed.

In a distributed multi-database system, the large documents from the remote

sites might be sent to a central site in the form of XML fragments. The remote

sites have the responsibility of splitting the large XML documents into a number

of XML fragments, then send them to the central site. At the central site, the

incoming XML fragments are combined to form the original documents for fur-

ther processing. Although the XML fragments are sent in the same order they

are disassembled, they might arrive at the central site in a random order as the

communication network may have unpredictable delays.

In fact, processing a large data increment can be started as soon as the existing

XML fragments have enough properties for processing the increment. Hence, we

identify the minimum requirements for processing of an increment such that we

can process a smaller unit of increment rather than a complete XML document.

To enable processing on XML fragments we modify the algorithms described in

the previous chapters.

The principles and assumptions to process XML fragments are described in

Section 6.1. Section 6.2 covers fragmentation of XML documents. Then, XML

algebraic operations on fragmented XML documents is described in Section 6.4.

In Section 6.5 an online integration algorithm for fragmented XML documents is

described.

145
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6.1 Principles and Assumptions

Figure 6.1 shows how XML fragments are transferred by the remote sites and

combined at a central site. During the transmission process, it may happen that

some packages have significant delays in arriving at the central site. Therefore,

some fragments might be unavailable at the moment when the central site is ready

to process the incoming documents.

Figure 6.1: Transmission of XML fragments from the remote sites to a central site.

Figure 6.1 shows the data containers at the central site (D1, . . . , Dn), where

each of them contains a set of XML documents x(i,j) : i = 1, . . . , n; j = 1, . . . ,m.

The complete XML documents have all their fragments available at the central

site, otherwise they are classified as incomplete documents. x(n,m) in Figure 6.1

represents a complete XML document, while the other documents are classified as

incomplete documents. In this thesis, both complete and incomplete documents

are represented by fragmented XML documents.
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We consider data increments which are transferred in the form of XML frag-

ments. Then, the performance of an online integration system can be improved

by processing a data increment in a smaller unit rather than a complete XML

document. A data increment is processed as soon as all required XML fragments

are available at the central site.

To enable processing of XML fragments in the online data integration system,

the following assumptions are made:

1. The remote sites have the ability to disassemble XML documents into XML

fragments with the characteristics described in the next section.

2. XML fragments from the remote sites are received by the central site in a

random order.

3. The central site may reject XML fragments of a particular XML document

which are no longer necessary for further computations.

4. The remote sites are highly autonomous.

Based on these assumptions, the following modifications to the online data inte-

gration system are made:

1. A fragmented XML document is a set of XML fragments.

2. The system has the same pre-processing as described in Chapter 4. The

main difference is that transformation of a data integration is targeted for

XML fragments instead of a complete XML document.

3. The remote sites are responsible for the fragmentation process, and the cen-

tral site has the responsibility of combining the incoming XML fragments.

4. Every data container contains fragmented XML documents.

5. Attributes used in all the condition expressions are identified for every data

container, and stored in an adequate list. The list is used to identify whether

a set of XML fragments is ready for processing. Identification of attributes

for condition expressions is discussed in Section 6.5.

Figure 6.1 shows that XML fragments are stored in a data container as a set

of XML fragments.
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6.2 Fragmented XML Documents

Operations on XML fragments allows us to compute incomplete XML documents,

and to append their missing parts to the end of computations. At some point we

may have results of XML algebraic operations as incomplete documents. With

the incomplete documents scattered at some computation results, an algorithm

is needed to locate the correct places to attach if the missing parts arrive at the

central site.

In the fragmentation process, a unique identity of an XML document is copied

and stamped along with its fragments to retain their origin document identity.

Based on the assumption that every node in an XML document can be identified

by a unique path (i.e path and index), an XML fragment is defined.

Definition 35. An XML fragment is defined as 〈xi(mi), o, p,H〉 where xi(mi) is

an XML document as defined in Definition 11 and it represents the body of the

XML fragment. o is an identity of the origin XML document where the fragment

comes from, and p (hook) is a unique path where the XML fragment is located in

the origin XML document. H is a set of paths to represent the missing the XML

fragments (holes) in xi(mi).

Definition 36. A fragmented XML document is a set of XML fragments {〈xi(mi),

oi, pi, Hi〉 : i = 1, . . . , n}.

Definition 37. Let x(m) = {〈xi(mi), oi, pi, Hi〉 : i = 1, . . . , n} be a fragmented

XML document. A complete XML document is defined as a fragmented XML doc-

ument where ∪
i
pi − {"xml"} = ∪

i
Hi

Next, how the data containers are used to store the results of XML algebraic

operations is considered. Figure 6.2 shows an illustration of how two join opera-

tions operate on fragmented XML documents.

A join operation on two XML documents described in Chapter 3 (see Defi-

nition 24) combines the XML documents by a merge operation on their ETGs.

Let r(l), s(m) and t(n) be XML documents in Figure 6.2, where l=xml[id](l’),

m=xml[id](m’) and n=xml[id](n’). After processing of a data integration ex-

pression f = (r(l) ./ (s(m) ./ t(n))), two XML documents z(o) and e(p) are

obtained, where o =xml[id](m’ n’) and p =xml[id](m’ n’ l’). If s(m) is a

fragmented XML document, then z(o) and e(p) are fragmented XML documents.

Since fragmented XML documents are allowed to be processed in the online

data integration system, the manner of storing the incoming XML fragments in a

data container is covered in the next sections.
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Figure 6.2: Join operation on XML fragments.

Example 6.1. XML fragments in an XML document

Let x(m) be an XML document as shown in Figure 6.3 with an identifier id="1".

The XML document is disassembled into the six XML fragments which are shown

in Figure 6.4, and their components shown in Table 6.1. Meanwhile, the body of

XML fragments (a)-(f) in Figure 6.4 is shown as follows:

Figure 6.3: A complete XML document before fragmentation.

<xml id="1.1">

<book isbn="9872347765" lang="EN">

<title/>

<authors/>

<subject/>

<ed_email>ross@gmail.com</ed_email>

</book>

</xml>
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Figure 6.4: The body of XML fragments as result of fragmentation on
XML document in Figure 6.3: (a) 〈x1(m1), o1, p1, H1〉 (b) 〈x2(m2), o2, p2, H2〉
(c) 〈x3(m3), o3, p3, H3〉 (d) 〈x4(m4), o4, p4, H4〉 (e) 〈x5(m5), o5, p5, H5〉 (f)
〈x6(m6), o6, p6, H6〉

Table 6.1: The components of XML fragments in Figure 6.4
XML Origin id Hook Holes

Fragment

(a) o1="1" p1="xml" H1={"xml/book/title",
"xml/book/authors",
"xml/book/subject"}

(b) o2="1" p2="xml/book/title" H2={}
(c) o3="1" p3="xml/book/authors" H3={"xml/book/authors/aut id[1]",

"xml/book/authors/aut id[2]"}
(d) o4="1" p4="xml/book/authors/aut id[1]" H4={}
(e) o5="1" p5="xml/book/authors/aut id[2]" H5={}
(f) o6="1" p6="xml/book/subject" H6={}

<xml id="1.2">

<title>XML</title>

</xml>

<xml id="1.3">

<authors>

<aut_id/>

<aut_id/>

</authors>

</xml>

<xml id="1.4">

<aut_id>andy@yahoo.com</aut_id>

</xml>

<xml id="1.5">

<aut_id>ben@yahoo.com</aut_id>

</xml>
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<xml id="1.6">

<subject>Data</subject>

</xml>

The ETGs of the XML fragments above are as the follows:

N={S,BOOK,TITLE,AUTHORS,AUT EMAIL,SUBJECT,ED EMAIL}
T={xml,book,title,authors,subject,ed email}
A={id,isbn,lang}
P={S→xml[id](BOOK),BOOK→book[isbn lang](TITLE AUTHORS SUBJECT ED EMAIL?),

TITLE→title,AUTHORS→authors,SUBJECT→subject,ED EMAIL→ed email}

N={S,TITLE}
T={xml,title}
A={id}
P={S→xml[id](TITLE),TITLE→title}

N={S,AUTHORS,AUT ID}
T={xml,authors,aut id}
A={id}
P={S→xml[id](AUTHORS),AUTHORS→authors(AUT ID*),AUT ID→aut id}

N={S,AUT ID}
T={xml,aut id}
A={id}
P={S→xml[id](AUT ID),AUT ID→aut id}

N={S,AUT ID}
T={xml,aut id}
A={id}
P={S→xml[id](AUT ID),AUT ID→aut id}

N={S,SUBJECT}
T={xml,subject}
A={id}
P={S→xml[id](SUBJECT),SUBJECT→subject}

�

Example 6.2. A fragmented XML document

Let x(m) be an XML document where the original document and its XML frag-

ments are as shown in Example 6.1. Let 〈x2(m2), o2, p2, H2〉 and 〈x4(m4), o4, p4, H4〉
be XML fragments which are available in a data container at the central site. Then,

the XML fragments are stored in a data container in the form of a fragmented XML

document x(m) as follows:

x(m) = {〈x2(m2), o2, p2, H2〉, 〈x4(m4), o4, p4, H4〉}

�
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Example 6.3. Join operations over fragmented XML documents

Let r(l) = {〈r1(l1), "r", "xml", H1〉}, s(m) = {〈s2(m2), "s", p2, H2〉, 〈s4(m4), "s",

p4, H4〉}, and t(n) = {〈t1(n1), "t", "xml", {}〉} be fragmented XML documents in

Figure 6.2. Let "r", "s", and "t" be the identities of the origin XML documents

r(l), s(m), and t(n) respectively. After join operations, we obtain two fragmented

XML document results z(o) and e(p) where:

z(o) = {〈s2(m2), "s", p2, H2〉, 〈s4(m4), "s", p4, H4〉, 〈t1(n1), "t", "xml", {}〉}

e(p) = {〈r1(l1), "r", "xml", H1〉, 〈s2(m2), "s", p2, H2〉, 〈s4(m4), "s", p4, H4〉,

〈t1(n1), "t", "xml", {}〉}.

�

An XML fragment (〈xi(mi), o, p,H〉) has the following characteristics:

1. An XML fragment body (xi(mi)) is a well-formed XML document.

2. An XML fragment has a component (o) to store the id attribute value of

its original XML document where it comes from. Hence, all XML fragments

from one XML document have the same o component values.

3. An XML fragment has a hook component (p) and a hole component (H) in

order to enable the reconstruction of XML fragments into the origin XML

document.

4. A hook component (p) is represented by a path, and determines where the

XML fragment is located at the origin XML document. An XML fragment

has exactly one hook component where hook="xml" represents that the XML

fragment has a root node of the origin XML document.

5. A hole (H) component is a set of paths where each path represents a missing

part of the fragment. In the body of XML fragment, they are represented

by empty elements.

6. An XML fragment may have zero or more missing fragments. An XML

fragment which has an empty set of hole represents a complete sub-tree.
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6.3 Fusion Operation on Extended Tree Gram-

mars

The merge operation described in Chapter 3 is an operation to combine two ETGs

into one ETG. The merge operation combines two XML document structures in

a horizontal orientation, which means that two XML documents will be combined

and placed at the same level in a document result. It is used to perform a join

operation on two XML documents. In the processing of fragmented XML docu-

ments, the join and merge operations are redefined such that they are suitable for

processing XML fragments.

Meanwhile, in order to assemble XML fragments we need another operation to

combine two XML documents where one of them becomes a part of the other. A

fusion operation on two ETGs is created as follows:

Definition 38. Let G = (Ng, Tg, Ag, Sg, Pg) and H = (Nh, Th, Ah, Sh, Ph) be

ETGs, Ng ∩ Nh 6= ∅, Y be a non terminal symbol, and y ∈ (Ng ∩ Nh). Let

S→xml[id](Y) be a production rule for start symbol in H. Let pg ∈ Pg and

ph ∈ Ph be production rules for a non terminal symbol Y in both ETGs. Fusion

operation on two ETGs is denoted as F = G ⊕ H and is an operation that com-

bines G and H, such that F = (N, T,A, S, P ) is an ETG where N = Ng ∪ Nh,

T = Tg ∪ Th, A = Ag ∪ Ah, and P = Pg ∪ Ph − {pg}.

Example 6.4. An ETG result of fusion operation on two ETGs.

Let G and H be ETG for XML fragments as in Figure 6.4 (a) and 6.4 (d). The

fusion operation on G and H (G⊕H) returns the ETG shown in Figure 6.7. The

XML fragment result after a fusion operation is shown in Figure 6.8.

N={S,BOOK,TITLE,AUTHORS,AUT EMAIL,SUBJECT,ED EMAIL}
T={xml,book,title,authors,subject,ed email}
A={id,isbn,lang}
P={S→xml[id](BOOK),BOOK→book[isbn lang](TITLE AUTHORS SUBJECT ED EMAIL?),

TITLE→title,AUTHORS→authors,SUBJECT→subject,ED EMAIL→ed email}

Figure 6.5: ETG of an XML fragment in Figure 6.4 (a)

�

6.4 XML Algebra Operations

XML algebraic operations for processing XML fragments are classified into three

categories: (1) operations on XML fragments, (2) operations on fragmented XML
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N={S,AUTHORS,AUT ID}
T={xml,authors,aut id}
A={id}
P={S→xml[id](AUTHORS),AUTHORS→authors(AUT ID*),AUT ID→aut id}

Figure 6.6: ETG of an XML fragment in Figure 6.4 (b)

N={S,BOOK,TITLE,AUTHORS,SUBJECT,ED EMAIL,AUT ID}
T={xml,book,title,authors,subject,ed email,aut id}
A={id,isbn,lang}
P={S→xml[id](BOOK),BOOK→book[isbn lang](TITLE AUTHORS SUBJECT ED EMAIL?),

TITLE→title,AUTHORS→authors(AUT ID*),SUBJECT→subject,AUT ID→aut id,

ED EMAIL→ed email}

Figure 6.7: A result of fusion operation on two ETGs in Figure 6.5 and 6.6

documents, and (3) operations on data containers with fragmented XML docu-

ment.

6.4.1 Hook Operation on XML Fragments

A hook operation combines two XML fragments which have matching hook and

hole components to form a bigger XML fragment as result. After the result docu-

ment is constructed, those two XML fragments are deleted. Definition 39 defines

a hook operator to assemble two XML fragments.

Definition 39. Let 〈xi(mi), oi, pi, Hi〉, 〈xj(mj), oj, pj, Hj〉 be XML fragments with

ETG G and H respectively. Let oi = oj and pj ∈ Hi. A hook operation on two

XML fragments is defined as 〈xi(mi), oi, pi, Hi〉 ←↩ 〈xj(mj), oj, pj, Hj〉 = 〈xr(mr), or,

pr, Hr〉. xr(mr) is an XML fragment result after a hook operation, or = oi = oj,

and pr = pi. Hr = Hi ∪ Hj − {pj} is a set of holes after a hook operation. The

XML fragment result has an ETG F = G⊕H.

Example 6.5. The result of hook operation on two XML fragments.

Let xf1 and xf2 be XML fragments, where:

xf1 = 〈x3(m3), "1", "xml/book/authors", {"xml/book/authors/aut id[1]",

"xml/book/authors/aut id[2]"}〉

xf2 = 〈x4(m4), "1", "xml/book/authors/aut id[1]", {}〉

Hook operation xf1 ←↩ xf2 results to the following XML fragment:

〈xr(mr), "1", "xml/book/authors", {"xml/book/authors/aut id[2]"}〉
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<xml id="100">

<book isbn="9872347765" lang="EN">

<title/>

<authors>

<aut_id>andy@yahoo.com</aut_id>

<aut_id/>

</authors>

<subject/>

<ed_email/>

</book>

</xml>

Figure 6.8: An XML document result of a fusion operation

�

Figure 6.9 shows an illustration of how an XML fragment is hook -ed to another

XML fragment. In a tree structure, it is implemented by replacing a hole at an

XML fragment (a) with a pointer of the other XML fragment (b).

Figure 6.9: A hook operation in a tree structure.

6.4.2 Union Operation on Fragmented XML documents

At a certain stage of computation, we may want to combine some XML fragments

into a fragmented XML document. This is achieved by a union operation on two

sets of XML fragments. Having a fragmented XML document as a set of XML

fragments allows us to perform a union operation which combines an incoming

XML fragment with the existing ones.



6.4. XML Algebra Operations 156

Definition 40. Let x(m) = {〈xi(mi), oi, pi, Hi〉 : i = 1, . . . , s} and y(n) =

{〈yj(nj), oj, pj, Hj〉 : j = 1, . . . , t} be fragmented XML documents. Union operation on

fragmented XML documents is defined as x(m)∪y(n) = {〈zk(mk), o, p,H〉 : 〈zk(mk),

o, p,H〉 ∈ x(m) or 〈zk(mk), o, p,H〉 ∈ y(n)}.

Example 6.6. A union operation on two fragmented XML documents.

Let s(m) = {〈s2(m2), "s", p2, H2〉, 〈s4(m4), "s", p4, H4〉}, and t(n) = {〈t1(n1), "t",

"xml", {}〉} be fragmented XML documents as in Figure 6.2. The union operation

on fragmented XML documents s(m) and t(n), (s(m)∪t(n)) produces a fragmented

XML document as follows:

e(p) = {〈s2(m2), "s", p2, H2〉, 〈s4(m4), "s", p4, H4〉, 〈t1(n1), "t", "xml", {}〉}

�

6.4.3 Defragmentation Procedure

At some point of processing, we might want to produce a bigger chunk of an XML

fragment from smaller XML fragments in the fragmented XML documents. This is

achieved by a defragmentation procedure, and utilizes hook and hole components of

the XML fragments. If two XML fragments have a matching hook and hole values,

they can be combined to form a bigger XML fragment. If all XML fragments are

available in the fragmented XML document, then the defragmentation procedure

produces a complete XML document in the form of a single set fragmented XML

document.

The defragmentation procedure has two different operations:

1. Multiple applications of the hook operation. This is a defragmentation

process on a fragmented XML document where at least one XML fragment

has a hole component (H 6= ∅) and one XML fragment has a non root hook

component (p 6= "xml"). This defragmentation procedure applies multiple

hook operations over all XML fragments in a fragmented XML document.

When all XML fragments are available in the fragmented XML document,

then it produces a complete XML document.

2. A structural join operation. This is a defragmentation process on a frag-

mented XML document where all XML fragments are complete (p = "xml"

and H = ∅). The defragmentation operation of this type combines the

body of XML fragments by merge operations over their ETGs. Let x(m) =
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{〈xi(mi), ox, "xml", {}〉, 〈yj(nj), oy, "xml", {}〉} be a fragmented XML docu-

ment, and mi =xml[id](m′i), nj =xml[id](n′j). A defragmentation process

on x(m) results a fragmented XML document z(p) = {〈z(p), "", "xml", {}〉}
and p =xml[id](m′i n

′
j). o component for z(p) is not needed since it is a

complete XML document.

Algorithm 7 shows an implementation of the defragmentation operation.

Algorithm 7 Defragmentation of a fragmented XML document
1: Get a fragmented XML document x(m) = {〈xi(mi), oi, pi, Hi〉 : i = 1, . . . , n}
2: i=1
3: if (x(m) is a complete XML document) then
4: j=i+1
5: while (j ≤ n) do
6: Perform 〈xr(mr), or, pr, Hr〉 = 〈xi(mi mj), "", "xml", {}〉
7: Remove 〈xj(mj), oj , pj , Hj〉 from the fragmented XML document
8: Copy 〈xr(mr), or, pr, Hr〉 to 〈xi(mi), oi, pi, Hi〉
9: end while

10: else
11: while (i <n) do
12: j=i+1
13: while (j ≤ n) do
14: if (oi = oj) then
15: if (pj ∈ Hi) then
16: Perform 〈xi(mi), oi, pi, Hi〉 ←↩ 〈xj(mj), oj , pj , Hj〉
17: Store the result in 〈xr(mr), or, pr, Hr〉
18: Remove 〈xi(mi), oi, pi, Hi〉 from the fragmented XML document
19: Remove 〈xj(mj), oj , pj , Hj〉 from the fragmented XML document
20: Copy 〈xr(mr), or, pr, Hr〉 to 〈xi(mi), oi, pi, Hi〉
21: n=n-1
22: else
23: j=j+1
24: end if
25: else
26: j=n
27: end if
28: end while
29: i=i+1
30: end while
31: end if

The defragmentation procedure in Algorithm 7 starts with identifying a pair of

XML fragments which can be assembled. To simplify the process, we sort the XML

fragments by their o and p components. The sorted XML fragments show that

the position of XML fragments in a fragmented XML document represents their

location at the origin XML document. If the XML fragments are sorted, then for

two XML fragments 〈xi(mi), oi, pi, Hi〉 and 〈xj(mj), oj, pj, Hj〉 where i, j are the
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element indexes and i<j, we can perform a hook operation 〈xi(mi), oi, pi, Hi〉 ←↩
〈xj(mj), oj, pj, Hj〉 but not the opposite.

Example 6.7. Defragmentation of a fragmented XML document

Let a fragmented XML document have the following XML fragments as its ele-

ments:

s(m) = {〈s1(m1), "1", "xml", {"xml/book/title","xml/book/authors","xml/book/subject"}〉,

〈s2(m2), "1", "xml/book/title", {}〉,

〈s3(m3), "1", "xml/book/authors", {"xml/book/authors/aut id[1]",

"xml/book/authors/aut id[2]"}〉,

〈s4(m4), "1", "xml/book/authors/aut id[1]", {}〉,

〈s5(m5), "1", "xml/book/authors/aut id[2]", {}〉,

〈s6(m6), "1", "xml/book/subject", {}〉}

After the defragmentation process, the fragmented XML document becomes a

single set of XML fragments {〈sr(mr), "1", "xml", {}〉} �

Online data integration of fragmented XML documents may produce some

fragmented XML documents which have the same holes. They require the same

XML fragments to fill the holes. When an incoming XML fragment matches the

hole, it must be hook -ed to all of corresponding fragmented XML documents.

There are three obstacles on processing incoming XML fragments into existing

fragmented XML documents:

1. Indicator of processing a fragmented XML document.

In a data container, there might be some fragmented XML documents that

are ready for processing, but some are not. Therefore, we have to add a sim-

ple indicator to each of the fragmented XML document in order to identify

the unprocessed ones. This has three indicator status: ”not-ready” is for

fragmented XML documents which are waiting to get minimal requirement

to process; ”ready” is when fragmented XML documents get enough proper-

ties for processing; ”processed” is for fragmented XML documents in which

parts of their fragments have been processed. We store the constraints in an

adequate list and refer to the availability of certain elements which are used

in the condition expression of the operations (ϕ).

2. Algorithm to locate the fragmented XML documents in order to

combine an incoming XML fragment.

Every XML fragment has a component to identify which XML document
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they are fragmented from. This component is used to perform a defrag-

mentation operation. However, when fragmented XML document results

are scattered at some places, finding a particular fragmented XML docu-

ments in materializations is not trivial. In this thesis, a different approach is

used to combine the missing fragments without searching to all the scattered

fragmented XML documents.

3. Cost of hook operations.

When an XML fragment arrives at a ”processed” fragmented XML docu-

ment, we have to assemble the particular fragment to all fragmented XML

documents in the materializations which have the matching hook-hole com-

ponents. This simply means that we require higher IO costs to update all

materializations whenever one XML fragment arrives at the central site.

Among the three obstacles listed above, the biggest challenge is to reduce the costs

to update all the fragmented XML documents. Therefore, we design an algorithm

to process incoming XML fragments such that we can determine:

1. Where to place an incoming XML fragment.

2. When to combine an incoming XML fragment into any of existing fragmented

documents in the data containers and materializations.

3. How to perform defragmentation process on the fragmented XML docu-

ments.

6.4.4 XML Algebra on Data Containers with Fragmented

XML Documents

The missing XML fragments are placed in separate data containers and perform

the operations to combine the XML fragments when necessary.

Definition 41. Let D(G), D(H) be data containers of fragmented XML documents.

Let x(m) ∈ D(G), x(m) = {〈xi(mi), oi, pi, Hi〉 : i = 1, . . . , s} and y(n) ∈ D(H),

y(n) = {〈yj(nj), oj, pj, Hj〉 : j = 1, . . . , t}. Let Oi = {oi : ∃〈xi(mi), oi, pi, Hi〉 ∈
x(m) : i = 1, . . . , s}, Oj = {oj : j = 1, . . . , t} and Oi ∩ Oj 6= ∅. A Minion (merge-

union) operator is defined as D(G) ] D(H) = {z(l) : ∃x(m) ∈ D(G), y(n) ∈
D(H), z(l) = x(m) ∪ y(n)}.

In this approach, the following assumptions are made:
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1. Every data container (Di) argument of a data integration expression is di-

vided into two data containers, a bounded data container (Db
i ) and a rover

data container (Dr
i ) such that D = Db ] Dr. Db (bounded data container)

is used to store fragmented XML documents which are ready for processing.

Meanwhile, XML fragments which have not been included in the computa-

tion are placed as elements of fragmented XML documents in a rover data

container (Dr).

2. A new incoming XML fragment is placed as an element of a fragmented XML

document in a data container Dr
i according to its origin XML document.

3. As soon as a fragmented XML document in Dr
i has minimum elements for

computation, it is transferred to a bounded data container Db
i , and processing

of an increment is started. The sufficiency of a fragmented XML document

is described in the next section.

4. The minion operation is performed on data containers of fragmented XML

documents. For all materializations, the minion operation is performed at

the end of computation, just before the final results are released to users.

Since we use a fragmented XML document to replace a complete XML docu-

ment, most of the XML algebra operators described in Chapter 3 are applicable.

Nevertheless, XML algebraic operations have to be re-defined because of two rea-

sons:

1. The XML algebraic operations require a condition expression (ϕ) which no

longer applies on a single XML document, but on a set of XML fragments.

2. For processing a fragmented XML document, a join operation combines two

fragmented XML documents into one fragmented XML document using a

union operation. Then, a merge operation is performed just before the

results are sent to users.

Some XML algebraic operators require an examination of a condition expres-

sion (ϕ) on path expressions. For complete XML documents, path expressions

refer to navigation paths from the root node of XML documents. Meanwhile,

path evaluation on a fragmented XML document requires a process to discover a

particular node in XML fragments which may not have its root element. Algorithm

8 finds a node specified by a path expression p in a fragmented XML document

x(m) = {〈xi(mi), o, pi, Hi〉 : i = 1, . . . , n}.
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Algorithm 8 Finding a path in a fragmented XML document
1: Sort XML fragments in x(m) by length of pi descending.
2: for each 〈xi(mi), oi, pi, Hi〉 in x(m) do
3: Get hook component of 〈xi(mi), oi, pi, Hi〉
4: Remove index from pi
5: if (Length(pi) < Length(p)) then
6: Return False
7: end if
8: if (pi ⊆ p) then
9: Get last part (node) of p and store as e

10: Set actual path pa ="xml"+(p− pi)+e
11: if (pa exists in xi(mi)) then
12: Return True
13: end if
14: end if
15: end for

Example 6.8. Finding a path in a fragmented XML document

Let a fragmented XML document have the following XML fragments:

s(m) = {〈s1(m1), "1", "xml", {"xml/book/title","xml/book/authors","xml/book/subject"}〉,

〈s2(m2), "1", "xml/book/title", {}〉,

〈s3(m3), "1", "xml/book/authors", {"xml/book/authors/aut id[1]",

"xml/book/authors/aut id[2]"}〉,

〈s4(m4), "1", "xml/book/authors/aut id[1]", {}〉,

〈s5(m5), "1", "xml/book/authors/aut id[2]", {}〉,

〈s6(m6), "1", "xml/book/subject", {}〉}

Let ϕ : "xml/book/authors/aut id=’andy@yahoo.com’" be a condition ex-

pression, and p="xml/book/authors/aut id" be a path expression. To evaluate

a path expression p in s(m), the following steps are performed:

1. The XML fragments are sorted on their hook components (pi) in a descending

order. We get the following order of XML fragments:

〈s5(m5), "1", "xml/book/authors/aut id[2]", {}〉,
〈s4(m4), "1", "xml/book/authors/aut id[1]", {}〉,
〈s6(m6), "1", "xml/book/subject", {}〉,
〈s2(m2), "1", "xml/book/title", {}〉,
〈s3(m3), "1", "xml/book/authors", {"xml/book/authors/aut id[1]",

"xml/book/authors/aut id[2]"}〉,
〈s1(m1), "1", "xml", {"xml/book/title","xml/book/authors",
"xml/book/subject"}〉
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2. Take an XML fragment 〈s5(m5), "1", "xml/book/authors/aut id[2]", {}〉

3. Remove the index "[2]" from pi

4. Check if the length of hook path "xml/book/authors/aut id" is less than

the length of "xml/book/authors/aut id" path. It returns true.

5. Check if "xml/book/authors/aut id" ⊆ "xml/book/authors/aut id". It

returns true.

6. Get e = "aut id"

7. Find a path "xml/aut id" in an XML fragment: 〈s5(m5), "1",

"xml/book/authors/aut id[2]", {}〉

8. The path is found but the value does not match the condition. Then the

next XML fragment is processed.

9. Get the next XML fragment 〈s4(m4), "1", "xml/book/authors/aut id[1]", {}〉

10. Remove the index "[1]" from hook component (pi) of the XML fragment.

11. Check if the length of "xml/book/authors/aut id" is less than the length

of "xml/book/authors/aut id". It returns true.

12. Check if ("xml/book/authors/aut id" ⊆ "xml/book/authors/aut id"), It

returns true.

13. Get e = "aut id"

14. Check path "xml/aut id" in 〈s4(m4), "1", "xml/book/authors/aut id[1]", {}〉

15. Since the value matches the condition, then we return true, and process to

find a path expression is ended

�

Definition 42. Let D(G) be a data container of fragmented XML documents,

x(m) ∈ D(G), x(m) = {〈xi(mi), o, pi, Hi〉 : i = 1, . . . , n}, and xf = 〈xi(mi), oi, pi,

Hi〉. Selection on D(G) is a unary operator denoted by σϕ(D(G)) = {x(m) : ∃xf ∈
x(m) (f(xf , ϕ) = true)}, where f(xf , ϕ)) ∈ {true, false}, ϕ is a condition expres-

sion.
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Definition 43. Let x(m) = {〈xi(mi), oi, pi, Hi〉 : i = 1, . . . , n} and y(n) =

{〈yj(nj), oj, pj, Hj〉 : j = 1, . . . ,m} be fragmented XML documents. Let xf =

〈xi(mi), oi, pi, Hi〉 and yf = 〈yj(nj), oj, pj, Hj〉. Join operation on fragmented

XML documents is defined as x(m) •ϕ y(n) = x(m) ∪ y(n) : ∃xf ∈ x(m)∃yf ∈
y(n) and f(xf , yf , ϕ) = true. ϕ is a condition expression and f is an evaluation

function such that f(xf , yf , ϕ) ∈ {true, false}.

Definition 44. Let D(G), D(H) be data containers of fragmented XML documents.

Join operation is defined as D(G) ./ϕ D(H) = {z(o) : ∃x(m) ∈ D(G), y(n) ∈
D(H), z(o) = x(m) •ϕ y(n)}.

Definition 45. Let D(G), D(H) be data containers of fragmented XML docu-

ments. Antijoin operator is defined as D(G) ∼ϕ D(H) = {x(m) : x(m) ∈
D(G) and ∀y(n) ∈ D(H)¬∃(x(m) •ϕ y(n))}, where ϕ is a condition expression.

6.4.5 Properties of the Minion Operation (])

Let Di, Dj, Dk be data containers for fragmented XML documents. The merge

union (minion) operation has the following properties:

1. The minion operation is commutative:

(Di ]Dj) = (Dj ]Di)

2. The minion operation is associative:

Di ] (Dj ]Dk) = (Di ]Dj) ]Dk

3. If the operation condition exists in Di, then the minion operation is distribu-

tive over selection operation:

σϕ(Di ]Dj) = σϕ(Di) ]Dj

4. If the operation condition exists in Dj, then the minion operation is dis-

tributive over selection operation:

σϕ(Di ]Dj) = Di ] σϕ(Dj)

5. If properties for join operation condition exist in Dj, then the minion oper-

ation is distributive over join operation:

Di ./ϕ (Dj ]Dk) = (Di ./ϕ Dj) ]Dk

6. If properties for join operation condition exist in Dk, then the minion oper-

ation is distributive over join operation:

Di ./ϕ (Dj ]Dk) = (Di ./ϕ Dk) ]Dj.
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7. If the operation condition exists in Di, then the minion operation is distribu-

tive over join operation:

(Di ]Dj) ./ϕ Dk = (Di ./ϕ Dk) ]Dj

8. If the operation condition exists in Dj, then the minion operation is dis-

tributive over join operation:

(Di ]Dj) ./ϕ Dk = (Dj ./ϕ Dk) ]Di

9. The minion operation is distributive over the union operation:

Di ∪ (Dj ]Dk) = (Di ∪Dj) ]Dk

(Di ]Dj) ∪Dk = (Di ∪Dk) ]Dj

10. If the operation condition exists in Di, then the minion operation is distribu-

tive over antijoin operation:

(Di ]Dj) ∼ϕ Dk = (Di ∼ϕ Dk) ]Dj

11. If the operation condition exists in Dj, then the minion operation is dis-

tributive over antijoin operation:

(Di ]Dj) ∼ϕ Dk = (Dj ∼ϕ Dk) ]Di

12. The minion operation can reduce the antijoin operation:

Di ∼ϕ (Dj ] Dk) = (Di ∼ϕ Dj), if XML fragment Dj contains elements in

operation condition (ϕ)

Di ∼ϕ (Dj ]Dk) = (Di ∼ϕ Dk), if XML fragment Dk contains elements in

operation condition (ϕ)

6.5 Online Integration of XML Fragments

Online integration of XML fragments requires the management of the incoming

XML fragments to allow the processing of fragmented XML documents as shown

in Figure 6.10.

In order to start processing, an incomplete document must have enough prop-

erties required by query predicates of the XML operators. Online integration of

XML fragments can be performed according to the following steps:

1. The pre-processing steps are similar to the procedures described in the pre-

vious chapters.

2. Data containers which are arguments of the data integration expression are
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Figure 6.10: Fragmented XML documents in the data containers

split into two data containers Db
i and Dr

i . A bounded data container Db
i con-

tains fragmented XML documents which are ready for computation. Mean-

while, a rover data container (Dr
i ) contains fragmented XML documents

which have not been computed.

3. An incoming XML fragment which arrives at the central site is placed in

a rover data container (Dr
i ) and is added to the corresponding fragmented

XML document according to where it comes from.

4. If a fragmented XML document in the rover data container has enough

properties for computation, we transfer it to a corresponding bounded data

container. Incoming data at the bounded data containers triggers computa-

tion of a data integration expression.

5. Now a data container may be used in multiple operations and may use more

than one XML elements in query predicates. Therefore, every data container

has a list of necessary elements to identify which fragmented XML documents

are ready for computation.

6. Before the results of a computation are sent to the end users, all the frag-

mented XML documents in the rover data containers are combined with

their corresponding data containers and materializations by an application

of the minion operations.
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A fragmented XML document in the data container contains a set of XML

fragments which have a uniform o component. The XML fragments are generated

at the remote sites such that all XML fragments fragmented from an XML docu-

ment retain the document’s identity of the origin document. At the central site,

an incoming XML fragment is placed in a fragmented XML document which has

the same o component.

The process to place an incoming XML fragment into the existing fragmented

XML document is performed in the following circumstances:

1. An incoming XML fragment does not match to any existing fragmented

XML document. This means that the incoming XML fragment is the first

fragment for the particular XML document. In this case, we create a new

fragmented XML document and place the incoming XML fragment into it.

2. An incoming XML fragment matches an existing fragmented XML docu-

ment. We append the incoming XML fragment to its corresponding frag-

mented XML document. Then we have an option to let the fragmented

XML document be a set, or perform defragmentation procedure to build a

bigger chunk.

3. An incoming XML fragment matches one of the existing fragmented XML

documents but the properties are not enough to perform a defragmentation

procedure on the fragmented XML document. In this case, we append the

incoming XML fragment as an element of the fragmented XML document.

When dealing with XML fragments, a smaller unit of increment data can trig-

ger the processing. Therefore, the online integration system needs to adjust the

pre-processing phase to deal with XML fragments and requires the following in-

formation to be available:

1. All condition attributes (ϕ) are determined for all operations. For exam-

ple, a data integration shown in Figure 6.11 has two operators which have

conditions determined by ϕ1 and ϕ2.

2. All elements involved in the conditions are determined for every data con-

tainer. For example, a data container D1 involves in two operations where

ϕ1 requires an element in path p1 and ϕ2 requires an element in path p2.

3. All available elements in the fragmented XML documents are determined.

The existing nodes/elements are important to decide whether a fragmented

XML document has enough properties for further processing.
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Figure 6.11: A syntax tree of a simple data integration expression

Now a data container might appear as several arguments in a data integration

expression. Therefore, a data container must have a list of adequate properties.

The structure of the adequate property list is shown in Figure 6.12:

Data Container : Operation Path operator Path or value

Figure 6.12: List of adequate properties

Example 6.9. Adequate list for fragmented XML documents

Let f(D1, D2, D3) = (D1 ./ D2) ∪ (D3 ∼ D1) be a data integration expression in

Figure 6.11. A join operation D1 ./(ϕ1∨ϕ2) D2 has two condition expressions as

follows:

ϕ1 = xml/book/authors/aut id[1]=//aut id

ϕ2 = xml/book/authors/aut id[2]=//aut id

XML paths xml/book/authors/aut id[1] and xml/book/authors/aut id[2]

are unique locations of node elements of a fragmented XML document. Meanwhile,

//aut id is a path of a node element of a fragmented XML document in the data

container D2. Hence, an adequate list is generated as in Table 6.2. �

Table 6.2: An adequate lists of data containers for a data integration expression
in Figure 6.11

Data Operation Path Opr Path or Value
container

D1 Operation 1 xml/book/authors/aut id[1] = //aut id

D1 Operation 1 xml/book/authors/aut id[2] = //aut id

D2 Operation 1 //aut id = xml/book/authors/aut id

Processing of fragmented XML documents may result in fragmented XML doc-

uments at the following parts:
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1. In the data containers, where the particular incomplete documents have

not been processed. Two data containers of fragmented XML documents

are provided named bounded data containers (Db) and rover data containers

(Dr). All XML fragments arrive at the central site will be placed in a frag-

mented XML document in the corresponding rover data container. When

the fragmented XML document has enough properties to compute, the rover

data container transfers the fragmented XML document to the correspond-

ing bounded data container. Thus, the bounded data containers contain all

fragmented XML documents which are ready for computation. The remain-

ing XML fragments of the processed fragmented XML document are stored

in the rover data container.

2. In a materialization (Mj), where the particular incomplete document has

been computed.

3. In a removed list (Ld), where the particular incomplete document does

not meet criteria in the required condition (ϕ) and has no chance to meet

the criteria.

6.5.1 Data Integration Expression

As described earlier, two data containers are used to replace a data container

in Chapter 4, where Di = Db
i ] Dr

i . The bounded data containers get a new

fragmented XML document transfered from rover data containers, which triggers

the processing of a data increment.

To enable processing of an XML fragment, a data integration expression is

transformed using the following steps:

1. All data containers Di in a data integration expression are replaced such that

Di = Db
i ]Dr

i : i = 1 . . . k.

2. The data integration expression by multiple applications of minion properties

is transformed such that all rover data containers are moved to the end of

the computation process.

Example 6.10. A data integration expression for XML fragments

Let D1 = (Db
1 ] Dr

1), D2 = (Db
2 ] Dr

2), D3 = (Db
3 ] Dr

3), D4 = (Db
4 ] Dr

4), D5 =

(Db
5 ]Dr

5), D6 = (Db
6 ]Dr

6) be a data container for fragmented XML document. A

data integration expression in Example 4.6 can be written as:

f(D1, . . . , D6) =(D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)
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we replace D1 with Db
1 ]Dr

1

=((Db
1 ]Dr

1) ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)

=((Db
1 ./ (D2 ∼ D3)) ]Dr

1) ∪ ((D4 ./ D5) ∼ D6)

=((Db
1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)) ]Dr

1

we replace D6 with Db
6 ]Dr

6

=((Db
1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ (Db

6 ]Dr
6))) ]Dr

1

=((Db
1 ./ (D2 ∼ D3)) ∪ (((D4 ./ D5) ∼ Db

6) ]Dr
6)) ]Dr

1

=((Db
1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ Db

6)) ]Dr
1

If we transform all data containers to include data containers

for XML fragment, we obtain:

=(((((Db
1 ./ (Db

2 ∼ Db
3)) ∪ (Db

4 ./ D
b
5) ∼ Db

6) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

To simplify notation, we use D1, D2, D3, D4, D5, D6 to replace Db
1, D

b
2, D

b
3, D

b
4,

Db
5, D

b
6 such that the data integration expression becomes:

(((((D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5.

�

Data increments which arrive at the central site will be handled according to

the following steps:

1. Every XML fragment that arrives at the central site will be placed in a rover

data container. It is combined as an element of a fragmented XML document

according to its origin XML document.

2. An incoming XML fragment at a rover data container triggers an operation

to examine sufficiency of the particular fragmented XML document for fur-

ther processing. The sufficiency examination employs an adequate list which

is prepared at the pre-processing stage.

3. When a fragmented XML document in a rover data container has enough

properties, the fragmented XML document will be transferred into a bounded

data container.

4. An incoming fragmented XML document in a bounded data container is used

to trigger processing of a data increment. An incoming fragmented XML

document at the bounded data container is treated in the same procedure as

a data increment described in Chapter 4.
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6.5.2 Increment Expression

In the next step, a data integration expression is transformed into an increment ex-

pression for every data container by application of XML algebra rules as described

in Chapter 3.

As can be seen from the previous section, the rover data containers can be

moved to the end of data integration expression, which means that the defragmen-

tation process can be performed at the end of the computation.

Transformation of a data integration expression into an increment expression

is performed using the same procedures as in the Chapter 4.

Example 6.11. An increment expression for a data integration expression in Ex-

ample 6.10.

Let δ1 be an increment data at a bounded data container D1. The data integration

expression (((((D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)) ] Dr
1) ] Dr

2) ] Dr
4) ] Dr

5

can be transformed as follows:

f(D1 ∪ δ1, . . . , D6) =((((((D1 ∪ δ1) ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)) ]Dr
1)]

Dr
2) ]Dr

4) ]Dr
5

=((((((D1 ./ (D2 ∼ D3)) ∪ (δ1 ./ (D2 ∼ D3))) ∪ ((D4 ./ D5) ∼

D6)) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

=((((((D1 ./ (D2 ∼ D3)) ∪ ((D4 ./ D5) ∼ D6)) ∪ (δ1 ./ (D2 ∼

D3))) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

=((((f(D1, . . . , D6) ∪ (δ1 ./ (D2 ∼ D3))) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

Using the same transformation procedure, a set of increment expressions for the

rest of data containers is obtained as follows:

δ1 :((((f(D1, . . . , D6) ∪ (δ1 ./ M1)) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

δ2 :((((f(D1, . . . , D6) ∪ (D1 ./ (δ2 ∼ D3))) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

δ3 :((((f(D1, . . . , D6) ∼ (δ3 ∼ ((D4 ./ D5) ∼ D6))) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

=((((f(D1, . . . , D6) ∼ (δ3 ∼M4)) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

δ4 :((((f(D1, . . . , D6) ∪ ((δ4 ./ D5) ∼ D6)) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

δ5 :((((f(D1, . . . , D6) ∪ ((D4 ./ δ5) ∼ D6)) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5

δ6 :((((f(D1, . . . , D6) ∼ (δ6 ∼M1))) ]Dr
1) ]Dr

2) ]Dr
4) ]Dr

5
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where:

M1 = ((D2 ∼ D3) ]Dr
2)

M2 = (((D1 ./ (D2 ∼ D3)) ]Dr
1) ]Dr

2)

M3 = (((D4 ./ D5) ]Dr
4) ]Dr

5)

M4 = ((((D4 ./ D5) ∼ D6) ]Dr
4) ]Dr

5)

Therefore:

g1 = (δ1 ./ M1)

g2 = (D1 ./ (δ2 ∼ D3))

g3 = (δ3 ∼M4)

g4 = ((δ4 ./ D5) ∼ D6)

g5 = ((D4 ./ δ5) ∼ D6)

g6 = (δ6 ∼M1)

�

If we remove the minion operations on rover data containers, increment expres-

sions obtained are exactly the same as increment expressions discussed in Chapter

4.

6.5.3 Online Integration Plan for XML Fragments

Increment expressions generated from a data integration expression on fragmented

XML documents are an extension of processing on complete XML documents.

Therefore, the algorithms for online integration plans and scheduling described in

the Chapter 4 dan be utilized. However, it is a freedom to use one of the following

approaches to perform minion operations in an online integration plan:

1. All fragmented XML documents in the rover data containers are flushed

whenever a fragmented XML document is sent to a bounded data container.

To remove inconsistency between data containers and materializations, all

fragmented XML documents in the rover data containers are combined to its

corresponding data containers and materializations. The drawback of this

approach is that minion operations need to be applied on all materializations.

Example 6.12. Generation of an online integration plan.

Let g1, . . . , g6 be increment expressions generated in Example 6.11. Consider
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a data increment (δ2) which arrives at data container D2. Transformation

of an increment expression g2 = (D1 ./ (δ2 ∼ D3)) into an online integration

plan d2 is performed as follows:

(a) In the first step, an expression (δ2 ∼ D3) is mapped into a step ∆1 =

(δ2 ∼ D3) and an expression (D1 ./ ∆1) into a step ∆2 = (D1 ./ ∆1);

(b) Then, Me = (Me ∼ ∆2) is appended to combine the computation results

with the previous final materialization.

(c) Me = (Me ] Dr
1);Me = (Me ] Dr

4);Me = (Me ] Dr
5) are appended to

combine the rover data containers with the previous final materializa-

tion;

(d) The next step is a process to update a data containerD2: D2 = (D2∪δ2);

(e) An intermediate materialization M1 is identified to be affected to up-

date. M1 is result of computation of a data integration expression

h1(D2, D3) = (D2 ∼ D3), therefore h1(D1, D2) is transformed into an

increment expression gM1 = (δ2 ∼ D3), and a plan for updating M1 is

generated as follows: dM1 : ∆M1 = (δ2 ∼ D3);M1 = (M1 ∪∆M1);M1 =

(M1 ] Dr
3). These steps of processing are appended to the steps pro-

duced erlier.

Then, the complete online integration plan for increment expression g2 is as

follows:

p1 : ∆1 = (δ2 ∼ D3);

p2 : ∆2 = D1 ./ ∆1;

p3 : Me = (Me ∼ ∆3);

p4 : Me = (Me ]Dr
1);

p5 : Me = (Me ]Dr
4);

p6 : Me = (Me ]Dr
5);

p7 : D2 = (D2 ∪ δ2);

p8 : ∆M1 = (δ2 ∼ D3);

p9 : M1 = (M1 ∪∆M1)

p10 : M1 = (M1 ]Dr
3);

�
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2. Since fragmented XML documents in the rover data containers have no ef-

fect on the rest of computation, minion operations are applied only at the

very end of the computation process. In this approach, fragmented XML

documentsin the rover data containers are excluded in computation of data

integration expression until the results are ready to be sent to users.

Example 6.13. A second approach of an online integration plan.

Let g1, . . . , g6 be increment expressions generated in Example 4.9. We con-

sider a data increment (δ2) arriving at a data container D2. Transformation

of an increment expression g2 = (D1 ./ (δ2 ∼ D3)) into an online integration

plan d2 is performed as follows:

(a) In the first step, an expression (δ2 ∼ D3) is mapped into a step ∆1 =

(δ2 ∼ D3) and an expression (D1 ./ ∆1) into a step ∆2 = (D1 ./ ∆1);

(b) Then, Me = (Me ∼ ∆2) is appended to combine the computation results

with the previous final materialization;

(c) The next step is to update a data container D2: D2 = (D2 ∪ δ2);

(d) An intermediate materialization M1 is identified to be affected to up-

date. M1 is a computation result of a data integration expression

h1(D2, D3) = (D2 ∼ D3), therefore h1(D1, D2) is transformed into an

increment expression gM1 = (δ2 ∼ D3). A plan to update M1 is gen-

erated as follows: dM1 : ∆M1 = (δ2 ∼ D3);M1 = (M1 ∪ ∆M1). These

steps of processing are appended to the steps produced erlier.

Then, the complete online integration plan for increment expression g2 is as

follows:

p1 : ∆1 = (δ2 ∼ D3);

p2 : ∆2 = D1 ./ ∆1;

p3 : Me = (Me ∼ ∆3);

p4 : D2 = (D2 ∪ δ2);

p5 : ∆M1 = (δ2 ∼ D3);

p6 : M1 = (M1 ∪∆M1).

As can be seen from the result, processing of an online integration plan for

fragmented XML documents in this approach has the same algorithms as in

Section 4.4.2.
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Then, minion operations are performed to combine rover data containers

with the final materialization before results are sent to users. The operations

are performed as follows: Me = (Me ] Dr
1);Me = (Me ] Dr

2);Me = (Me ]
Dr

4);Me = (Me ] Dr
5). Operations to combine rover data containers to the

intermediate materializations are not necessary since the end of computation

process has been reached. �

To increase performance of the online integration system, the defragmentation

procedure is applied at the very end of computation or only if needed. Defrag-

mentation allows transformation of a fragmented XML document into an XML

document.

At this stage, the algorithms on scheduling of online integration plans described

in Section 4.5 are applicable.

In this chapter, it has been demonstrated that processing of fragmented XML

documents improves the performance of the online data integration system by

reducing the waiting time to trigger processing of a data increment. The minimum

XML elements required to process a data increment have been identified to create

an adequate list for the particular data container.

Some operations defined in the previous chapters have been modified, and new

operators necessary for processing of XML fragments added.



Chapter 7

Summary, Conclusion and Future Works

A summary of this thesis is presented in Section 7.1 and contributions in Section

7.2. Then, the thesis is concluded in Section 7.3. Section 7.4 describes recommen-

dations and some future works.

7.1 Summary

The approaches to data integration can be classified depending on the way in

which data is accessed. It can be either a materialization approach or virtualization

approach. In a materialization approach, a central site transmits and transforms

data from the external sites and stores the results in a materialized copy which must

be refreshed from time to time at a central site. A central site uses the materialized

copies of data to process the queries. On the other hand, in a virtualization

approach, a central site provides a virtual global view of the external data sources

to a user, and no materialization of external data is performed at the central site.

A query to a central site is translated into a number of sub-queries which are sent

to the external sites for processing. Then, the central site combines the results

and presents them to a user.

The data integration system described in this thesis is based on a virtualization

approach. The data integration system takes a user request based on the virtual

global view of external sites, and transforms it into a global query expression. Then,

the mediator decomposes a global query expression to balance processing between

the central site and remote sites. Then, a data integration expression is generated.

Online data processing allows for theoretically infinite sequences of input data

to be processed to produce results. Online data processing employs online algo-

rithms where input data are processed in a piece-by-piece mode without having

the entire set of data available from the very beginning.

Online data integration is a process of continuous consolidation of data trans-

mitted over a network with the data already available at the central site of a

175
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distributed database environment. The system applies an online algorithm to pro-

cess the units of data increment without having entire set of data available at the

central site. An approach presented in this thesis transforms a data integration ex-

pression generated at an earlier stage into a number of increment expressions such

that every argument of a data integration expression has an increment expression

assigned to it. Then, a sequence of algebraic operations in an online integration

plan is created for every increment expression.

Sequential processing of data increments which share intermediate materializa-

tion incurs an inefficient IO cost for loading it from and then storing it back to a

persistent storage. Parallel processing of these increments is performed in order to

optimize online integration plans by reducing the costs of operations on the same

materialization. The increment expression is modified such that one increment

expression covers processing of multiple data increments.

Since data increments arrive at the central site in random order, static schedul-

ing of plans might create a poor performance of the system. In some cases we might

want to wait until a number of data increments arrive before processing them in

one step. The dynamic scheduling system proposed in this thesis optimizes execu-

tion of online integration plans by changing the order of data increment processing

in a sliding window. Every increment in the sliding window is labeled with a pri-

ority label accordingly to their increment expression form (union-ed or antijoin-ed

with previous result), their frequencies, and their types. Then, the order of in-

crement processing is changed according to the priority labels of data increments.

The scheduling system is able to ignore the remaining steps of a plan when an

operation produces no result to pass to the next steps, as well as being able to

update corresponding intermediate materializations if needed.

Processing of large size XML documents might reduce the performance of an

online data integration because processing of an increment must wait until a com-

plete XML document available at the central site. The online integration system

is optimized by breaking down large size XML documents into XML fragments.

Then, processing of a data increment is triggered when a fragmented XML docu-

ment has enough properties to compute. To justify the sufficiency of increment’s

property, an adequate list is employed for every argument of a data integration

expression.

The online data integration system presented in this thesis is designed to

process semistructured data, where an XML document is used as a model for

semistructured data. Semistructured data play an important role in a web data
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interchange system since a relational database is too schema restricted and un-

structured data is harder to analyze. Among semistructured data models, XML

has advantages in name conflict resolution by using node indexing, and the abil-

ity to handle mixed contents. XML is supported by XPath, XML Schema and

XML which set apart XML from JSON particularly. A different formalization of

XML data model based on tree grammar is proposed. Then an XML algebra is

proposed together with a set of algebraic operators which support online data in-

tegration system. A relational-like algebra is presented, where definition of tuples

are replaced with XML documents which may have more complex structures. This

contains a set of basic unary operators (selection, projection) and binary algebraic

(union,join,antijoin) operators. The operators operate on multi-schema data con-

tainers of XML documents. Using the data containers with a set of schemas allows

us to perform operations with less pain schema operations on participating XML

documents.

7.2 Contributions

The first contribution is a new formal model of XML documents based on extended

tree grammar and XML algebra. The XML algebra proposed in the thesis allows

for online data integration.

The next contribution is an algorithm for integration of theoretically infinite

sequences of semistructured data. This allows queries to be evaluated as soon as

the units of data reach the central site. The algorithm has an online execution

plan which allows parallel processing of data increments, and a dynamic scheduling

system based on the data increments behavior.

The last contribution is an XML fragment model for the online data integration

system. The thesis has proposed some additional XML algebraic operators such

that the online integration algorithms are able to process data increments without

having complete documents available at the central site. The thesis presents an

algorithm to push processing of the remaining XML fragments at the very end,

and provides a set of XML algebraic operators to compose the XML fragments

into bigger chunks.

7.3 Conclusion

The XML data model and algebraic operators proposed in this thesis are complete

enough for implementation of an online integration of semistructured data. The
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union and selection operations are similar to the union and filter in TAX (Tree

Algebra for XML). However, the join operator presented in the thesis preserves its

consistency to join operator in the relational algebra instead of a structural join

as in TAX.

We show that the XML algebra reduces to the relational algebra in the following

circumstances: (1) XML documents have simple structures as tuples, and (2) every

data container has a single set of schema. Furthermore, we show that the proposed

XML algebraic operators are applicable for any XML document structures. The

XML algebraic operators presented in the thesis are consistent with the relational

algebraic operators. Consistency with the relational model allows for any existing

optimization technique to be directly applied for data integration.

The query decomposition strategy proposed in this thesis provides balancing of

the computations between the central site and the remote sites to ensure maximum

resource utilization at both sites, and to reduce transmission costs of data transfer

from remote sites to the central site.

Online integration algorithms optimizes the integration system by starting pro-

cessing during data transmission to produce partial results earlier. Online process-

ing reduces the data amount involved in a single XML algebraic operation, since

data increments are relatively much smaller than those in a materialization. Par-

tial results are instantly available to the user if the data integration expression

has no decremental results (antijoin operations). Otherwise, correct answers are

available to the user after data containers which cause decremental results are

complete.

Online integration plan optimizes the process of integration by reducing IO

costs to load and write materializations as all materialization update operations are

placed at the end of a plan. To generate an increment expression for several data

increments we effectively reuse increment expressions for smaller data increments

without the transformation of a data integration expression from scratch.

The dynamic scheduling system proposed in the thesis provides a better perfor-

mance by modifying the sequence of increments accordingly to their behaviors such

that minimal IO costs to update materializations are required. When most data

containers are empty (initial state) or most of the data containers are completed

(ending state), it may happen that the execution of an online integration plan may

not change the final result, and therefore is unnecessary. The dynamic scheduling

system described in the thesis optimizes online integration plans through deferring

or terminating a plan such that the total number of updates performed on the

materializations is reduced.
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The online integration system on fragmented XML documents adjusts the size

of data increments to trigger their processing. It increases the performance of the

integration system on large size documents because processing of an increment can

be started earlier. In addition, processing of fragmented XML documents is able

to stop unnecessary fragments to be processed, and therefore reduce computations.

It is shown that the XML algebraic operations push processing of the remaining

XML fragments at the end of a plan.

The pre-processing stage of the data integration approach proposed in the the-

sis requires a series of transformations from a data integration expression into a

number of online integration plans. For a small amount of data, the pre-processing

stage can be more expensive than any ordinary data integration system. There-

fore, the system has better performance on processing large size and volume of

semistructured data, such that the pre-processing cost is immaterial compared to

the potential efficiencies of processors, transmission and IO.

The transformation of a data integration expression with n arguments into

one increment expression is done through multiple applications of XML algebraic

rules, and requires a linear time complexity O(n). An online integration plan can

be generated from an increment expression in O(n). Whereas, the algorithm for

dynamic scheduling includes labeling and sorting of data increments in a sliding

window, and takes at most O(n log n).

Finally, the thesis provides a clear formalization of the semistructured data

model, a set of algorithms with high-level descriptions, and running examples.

These formal backgrounds show that the algorithms proposed are implementable.

7.4 Recommendations and Future Work

First of all, the XML algebra can be expanded by adding XML algebraic operators

with aggregation and grouping operations to power the online integration system

with a data analysis feature.

Next, it has been found that online data integration system in this thesis is

inefficient for integration of a small amount of semistructured data due to the

high cost at the pre-processing phase to transform a user request until online

integration plans are generated. If information about the size of data involved

can be obtained earlier, a scheduling algorithm may ignore online processing for

relatively small data and wait until all data are available at the central site before

data integration computation is started.
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The formal backgrounds and algorithms proposed are enough to allow an ex-

tension of this thesis with developed scenario and empirical studies. This opens fu-

ture opportunities in implementation of the online integration system on resource-

constrained devices whose limited processing and storage capabilities, and often

runs on batteries.

In the thesis, sub-queries which resulting from the decomposition strategy are

sent to the external site simultaneously, and remote sites perform the computation

of the sub-queries in parallel fashion. To reduce data transmission, the sub-queries

could be modified before they are sent to the remote sites according to any data

available at the central site. For a number of sub-queries generated, some queries

are sent to remote sites, and wait the results of these queries. Based on the results,

the rest of the queries are modified before sending them to remote sites.

Online data integration described in this thesis is applicable for processing

data streams, especially XML data streams and fragmented XML data streams.

The stream data source is plugged into data containers as arguments of an online

integration expression.

The internet of things (IoT) is interconnected physical devices, embedded sys-

tems, sensors and software which are able to exchange data. IoT is powered with

a Wireless Sensor Network (WSN) which is interconnected sensors. WSN collects

continuous information of sensors and broadcasts data to IoT. Information inte-

gration among objects in WSN requires online processing in order to get instant

results of integration. The online integration system proposed in this thesis is

applicable for integration data over IoT by replacing data containers with sensor

nodes. The first challenge to be solved is the data structure alignment as sensors

may have their own data structures. The second challenge is integration of nu-

merous sensors. Then, the characteristic of data is a challenge where data size is

usually small but frequently changes.

In a multi-database system where multiple sites act as ”central site”, we may

want to modify the decomposition strategy such that the sub-queries generated

can be sent either directly as queries to external sites where data are located or

as data integration expressions to other ”central site”. The central site of a multi-

database system no longer points to a dedicated site, but is transparent to the user.

MapReduce allows processing of a data integration expression to be distributed

into a number of data integration expressions and combines the results afterwards.
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[1] Almarimi A. and Pokorný J. Schema management for data integration: A

short survey. Acta Polytechnica, (1), 2005.

[2] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and Janet L.

Wiener. Incremental maintenance for materialized views over semistructured

data. In Proceedings of the 24rd International Conference on Very Large

Data Bases, VLDB ’98, pages 38–49, San Francisco, CA, USA, 1998. Morgan

Kaufmann Publishers Inc.

[3] Susanne Albers and Stefano Leonardi. On-line algorithms. ACM Comput.

Surv., 31(3es), September 1999.

[4] L. Amsaleg, A. Tomasic, M. J. Franklin, and T. Urhan. Scrambling query

plans to cope with unexpected delays. In Parallel and Distributed Infor-

mation Systems, 1996., Fourth International Conference on, pages 208–219,

Dec 1996.

[5] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen. Query reformulation for

dynamic information integration. J. Intell. Inf. Syst., 6(2-3):99–130, August

1996.

[6] Apichaya Auvattanasombat, Yousuke Watanabe, and Haruo Yokota. XML

documents searching combining structure and keywords similarities. IPSJ

SIG Technical Reports, 2013(14):1–6, 2013.

[7] Catriel Beeri and Yariv Tzaban. SAL: An algebra for semistructured data

and XML. In Informal Proc. of Workshop on The Web and Databases, ACM

SIGMOD, pages 37–42. ACM Press, 1999.

[8] Leopoldo Bertossi and Loreto Bravo. Consistent query answers in vir-

tual data integration systems. In Leopoldo Bertossi, Anthony Hunter, and

Torsten Schaub, editors, Inconsistency Tolerance, pages 42–83. Springer-

Verlag, Berlin, Heidelberg, 2004.

181



BIBLIOGRAPHY 182

[9] L. Birhanu, S. Atnafu, and F. Getahun. Native XML document frag-

mentation model. In Signal-Image Technology and Internet-Based Systems

(SITIS), 2010 Sixth International Conference on, pages 233–240, 2010.

[10] Angela Bonifati and Alfredo Cuzzocrea. Efficient Fragmentation of Large

XML Documents, pages 539–550. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2007.

[11] Angela Bonifati, Martin Goodfellow, Ioana Manolescu, and Domenica Sileo.

Algebraic incremental maintenance of XML views. ACM Trans. Database

Syst., 38(3):14:1–14:45, Sep 2013.

[12] Sujoe Bose and Leonidas Fegaras. Data Stream Management for Historical

XML Data. SIGMOD, 99(3):403–422, 2004.

[13] Sujoe Bose, Leonidas Fegaras, David Levine, and Vamsi Chaluvadi. A query

algebra for fragmented XML stream data. In Proceeding of 9th International

Conference on Data Base Programming Languages (DBPL), pages 275–277,

Potsdam, Germany, September 6-8 2003.

[14] L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez. Dynamic query

scheduling in data integration systems. In Data Engineering, 2000. Pro-

ceedings. 16th International Conference on, pages 425–434, 2000.

[15] Luc Bouganim, Françoise Fabret, C Mohan, and Patrick Valduriez. A dy-

namic query processing architecture for data integration systems. IEEE Data

Eng. Bull., 23(2):42–48, 2000.

[16] Vanessa Braganholo and Marta Mattoso. A survey on XML fragmentation.

SIGMOD Rec., 43(3):24–35, December 2014.

[17] Giacomo Buratti. A Model and an Algebra for Semi-Structured and Full-Text

Queries. PhD thesis, Informatica, Università di Bologna, Padova, 2007.
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