2,023 research outputs found

    Comparison of panel codes for aerodynamic analysis of airfoils

    Get PDF
    Cieľom tejto práce bolo vytvorenie prehľadu v súčasnosti používaných implementácií panelových metód pre aerodynamické výpočty charakteristík 2D profilov. Základný popis princípu panelovej metódy, porovnanie jednotlivých implementácií a zhodnotenie ich možností (presnosť, aplikovateľnosť) na typické úlohy. V práci boli použité tri rôzne panelové programy: Xfoil, JavaFoil a XFLR5. Práca bola obohatená o meranie v aerodynamickom tuneli.The purpose of this study is to create an overview of currently the most used panel codes for computation of aerodynamic characteristics of 2D airfoils. Description of the basic principles of panel code, comparison of various implementation and evaluation (accuracy, applicability) for typical tasks. In this thesis there were used three different panel codes: Xfoil, JavaFoil and XFLR5. Thesis was enriched by measurement in wind tunnel.

    CFD modelling of wind turbine airfoil aerodynamics

    Get PDF
    This paper reports the first findings of an ongoing research programme on wind turbine computational aerodynamics at the University of Glasgow. Several modeling aspects of wind turbine airfoil aerodynamics based on the solution of the Reynoldsaveraged Navier-Stokes (RANS) equations are addressed. One of these is the effect of an a priori method for structured grid adaptation aimed at improving the wake resolution. Presented results emphasize that the proposed adaptation strategy greatly improves the wake resolution in the far-field, whereas the wake is completely diffused by the non-adapted grid with the same number and distribution of grid nodes. A grid refinement analysis carried out with the adapted grid shows that the improvements of flow resolution thus achieved are of a smaller magnitude with respect to those accomplished by adapting the grid keeping constant the number of nodes. The proposed adaptation approach can be easily included in the structured generation process of both commercial and in-house structured mesh generators systems. The study also aims at quantifying the solution inaccuracy arising from not modeling the laminar-to-turbulent transition. It is found that the drag forces obtained by considering the flow as transitional or fully turbulent may differ by 50 %. The impact of various turbulence models on the predicted aerodynamic forces is also analyzed. All these issues are investigated using a special-purpose hyperbolic grid generator and a multi-block structured finitevolume RANS code. The numerical experiments consider the flow field past a wind turbine airfoil for which an exhaustive campaign of steady and unsteady experimental measurements was conducted. The predictive capabilities of the CFD solver are validated by comparing experimental data and numerical predictions for selected flow regimes. The incompressible analysis and design code XFOIL is also used to support the findings of the comparative analysis of numerical RANS-based results and experimental data

    Study of the development and verification of an integrated code for UAV design

    Get PDF
    L'objectiu d'aquest estudi és desenvolupar una eina de disseny d'aeronaus utilitzant algoritmes d'optimització per a facilitar el procés. Es pretén incorporar el codi d'estudi i simulació de les actuacions d'un UAV desenvolupat per l'equip Trencalòs Team en un software de disseny aerodinàmic ja existent, ja sigui XFLR5 o AVL. Les funcions objectiu incorporades seran les que l'equip considera per a la participació en el concurs internacional Air Cargo Challenge, amb la intenció de desenvolupar una eina de treball per a Trencalòs que permeti fer un disseny òptim dins del marc de la competició. El treball es dividirà en tres etapes: 1. Incorporació del codi desenvolupat per Trencalòs al software de disseny aerodinàmic2. Fer ús dels algoritmes d'optimització de funcions objectiu per a facilitar el procés de disseny3. Verificació els resultats obtinguts.

    Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine

    Get PDF
    The accurate prediction of the aerodynamics and performance of vertical-axis wind turbines is essential if their design is to be improved but poses a signifi cant challenge to numerical simulation tools. The cyclic motion of the blades induces large variations in the angle of attack of the blades that can manifest as dynamic stall. In addition, predicting the interaction between the blades and the wake developed by the rotor requires a high-fi delity representation of the vortical structures within the fl ow fi eld in which the turbine operates. The aerodynamic performance and wake dynamics of a Darrieus-type vertical-axis wind turbine consisting of two straight blades is simulated using Brown’s Vorticity Transport Model. The predicted variation with azimuth of the normal and tangential force on the turbine blades compares well with experimental measurements. The interaction between the blades and the vortices that are shed and trailed in previous revolutions of the turbine is shown to have a signifi cant effect on the distribution of aerodynamic loading on the blades. Furthermore, it is suggested that the disagreement between experimental and numerical data that has been presented in previous studies arises because the blade–vortex interactions on the rotor were not modelled with sufficient fidelity

    Assessment and calibration of the γ equation transition model for a wide range of Reynolds numbers at low Mach

    Get PDF
    The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients to be tuned to match the required application. In this paper, the γ-equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. Different airfoils are used to evaluate the original model and calibrate it, whereas a large-scale wind turbine blade is employed to show that the calibrated model can lead to reliable solution for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected

    Optimization of a human-powered aircraft using fluid–structure interaction simulations

    Get PDF
    The special type of aircrafts in which the human power of the pilot is sufficient to take off and sustain flight are known as Human-Powered Aircrafts (HPAs). To explore the peculiarities of these aircrafts, the aerodynamic performance of an existing design is evaluated first, using both the vortex lattice method and computational fluid dynamics. In a second step, it is attempted to design and optimize a new HPA capable of winning the Kremer International Marathon Competition. The design will be special in that it allows one to include a second pilot on board the aircraft. As the structural deflection of the wing is found to be a key aspect during design, fluid-structure interaction simulations are performed and included in the optimization procedure. To assess the feasibility of winning the competition, the physical performance of candidate pilots is measured and compared with the predicted required power

    Development of a multifunctional panel for aerospace use through SLM additive manufacturing

    Get PDF
    Lattice materials can overcome the need of light and stiff structures in the aerospace industry. The wing leading edge is one of the most critical parts for both on-board subsystem and structure features: it must withstand to the aerodynamic loads and bird-strike, integrating also the anti-ice system functions. Nowadays, this part is made by different components bonded together such as external skin, internal passageways, and feeding tubes. In the present work, a single-piece multifunctional panel made by additive manufacturing will be developed. Optimal design and manufacturing are discussed according to technological constraints, aeronautical performances and sustainability

    Integration of XFOIL software in MATLAB environment

    Get PDF
    Práce se zabývá programem, který je schopný spouštět a řídit XFOIL z prostředí MATLABu. Tento program je zaměřen hlavně na hormadné zpracování dat a vykreslení výsledků z výpočtu XFOILu do grafů. Práce se také zabývá stručným popisem XFOILu a MATLABu, popisem charakteristik profilu a podobnostních čísel používaných XFOILem při výpočtu.Thesis is concerned with program which is able to run and control XFOIL from MATLAB environment. This program is focused on bulk data processing and plotting of XFOIL results. Thesis is also concerned with brief description of XFOIL and MATLAB, description of profile characteristics and comparison numbers used in calculation by XFOIL.
    corecore