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Assessment and Calibration of the γ−Equation Transition

Model for a Wide Range of Reynolds Numbers at Low Mach

S. Colonia, V. Leble, R. Steijl and G. Barakos

School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland

Abstract

The numerical simulation of flows over large-scale wind turbine blades without considering the transition

from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance.

Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling

concept represents a valid way to include transitional effects into practical CFD simulations. However, the

model involves coefficients to be tuned to match the required application. In this paper, the γ−equation

transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for

wind turbine applications. Different aerofoils are used to evaluate the original model and calibrate it; while a

large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solution for

complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional

and three-dimensional flows, even if cross-flow instabilities are neglected.

Introduction

In many engineering applications, flow computations without considering the transition from laminar to fully tur-

bulent flow may result in incorrect predictions. Thus, the significance of the transition process in various aerodynamics

applications can not be understated, and proper prediction of boundary layer transition is vital in aerodynamic design.

Nevertheless, methods for simulating transitional flows are still not used frequently in computational fluid dynamics.

The main types of transition are natural and bypass. Natural transition process occurs at low free-stream turbulence

intensity (Tu), usually less than 1%. In the initial stage, known as receptivity, environmental disturbances, such as free-

stream noise and turbulence and surface roughness, propagate as small perturbations within the boundary layer. For 2D

flows, these instabilities take the form of periodic waves, known as Tollmien-Schlichting (TS) waves, which, when the

momentum-thickness Reynolds number (Reθ) exceeds a critical threshold, are gradually amplified in the laminar boundary

layer. Their evolution is well captured by the linear stability theory; however, as these instabilities grow, they begin to

exhibit non-linear interactions leading rapidly to the breakdown to turbulence. In 3D boundary layers, the mean velocity
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profile also displays a cross-flow (CF) component other than the stream-wise. The stream-wise velocity profile generates

waves similar to the TS waves observed in 2D flow, while the cross-flow velocity profile induces CF waves that propagate

in a direction normal to the free-stream. Although the same linear stability theory is applicable to both wave types, the

non-linear interactions are different for TS and CF instabilities 1 . In various situations, laminar to turbulent transition

occurs at Reynolds numbers lower than what predicted by the linear stability theory, this suggests that another transition

mechanism exists. Indeed, if the laminar boundary layer is exposed to large free-stream turbulence levels, larger than 1%,

bypass transition process occurs. The term bypass means that the natural transition mechanism driven by the TS or CF

waves has been short-circuited and the disturbances are amplified by non-linear phenomena.

Direct Numerical Simulation (DNS) and sometimes Large Eddy Simulation (LES) 2 are probably the most suitable

approaches for transition prediction, however the computational cost of these methods is too high for routine engineering

applications and are used mainly for research purpose.

At present, the most popular methods for predicting transition are the ones based on the linear stability theory such

as the eN model developed more than half a century ago by Smith and Gamberoni 3 and by van Ingen 4 . This approach

uses the linear stability theory to calculate the growth of the disturbance amplitude in the boundary layer. The so-called N

factor represents the total growth rate of the most unstable among the disturbances and it is not universal. The eN method

has been successfully used to predict transition for a wide range of test cases. However, the main obstacle to its use with

the current Computational Fluid Dynamics (CFD) methods lies in the complex infrastructure required to apply the model.

Indeed, the stability analysis is applied on velocity profiles predicted from highly resolved boundary-layer codes and the

steps required can be summarised as follows: the output of a boundary-layer method is employed as input for the stability

analysis which then provides the required information to the turbulence model in the Reynolds Averaged Navier-Stokes

(RANS) CFD solver. This makes the approach difficult to employ in complex 3D flows; thus the development of simpli-

fied methods is of unquestionable practical interest.

An alternative to this approach is to use the concept of intermittency, γ, which represents the fraction of time that

the flow is turbulent during the transition phase. The intermittency is zero in the laminar region and becomes one in the

fully turbulent region, thus can be used to control the onset and the development of transition. From experimental observa-

tions, the development of intermittency is almost general for the steady boundary layer on a flat plate, therefore the onset

location can be correlated. Most correlations usually relate the transition momentum thickness Reynolds number to turbu-

lence intensity and the pressure gradient. Among them, the most commonly used are the correlation of Abu-Ghannam and

Shaw 5 , Michel’s criterion 6 and the Cebeci and Smith approach 7 . Dhawan and Narasimha 8 were the first to correlate

experimental data and propose a general intermittency distribution function across flow transition. Their correlation was

later improved by Gostelow et al. 9 including flows with pressure gradients for a range of free-stream turbulence intensi-

ties. Steelant and Dick 10 proposed to obtain the intermittency more generally as the solution of a transport equation in

which the source term is defined so that the γ distribution of Dhawan and Narasimha 8 is reproduced across the transition

region. In 10 , the intermittency was then incorporated into two strongly coupled sets of conditioned Navier-Stokes equa-

tions and this is not compatible with the currently available CFD codes. In 11 , Suzen and Huang formulated an alternative

2



Assessment and Calibration of the γ−Equation Transition Model for a Wide Range of Reynolds Numbers at Low Mach

transport equation for the intermittency based on Steelant and Dick 10 , and the work of Cho and Chung 12 . These ap-

proaches, although empirical, are often sufficiently accurate for capturing the major effects of transition. Moreover, they

are relatively easy to calibrate and correlations can be developed for the different transition mechanisms such as bypass,

natural, cross-flow and separation induced transition. However, these models typically require information on the integral

thickness of the boundary layer and the state of the flow outside the boundary layer and these non-local operations are not

well adapted to massively parallel computations.

For these reasons, the Local-Correlation based Transition Modelling (LCTM) concept was proposed by Menter et.

al. 13 almost a decade ago and fully disclosed by the authors later in 14 . The first formulation of the LCTM, termed γ-Reθ

model, involves two additional transport equations, for the turbulence intermittency and for the transition onset correlation

respectively, which allow combining experimental correlations in a local fashion with the underlying turbulence model.

A strong characteristic of the LCTM concept is its flexibility and relatively straightforward implementation into practical

CFD simulations allowing the inclusion of different transitional effects for which enough experimental data is available to

tune and optimise the model. Since its introduction, the correlation based transition model has shown promising results

and various works have been done to improve it. Recently, a simplified version of the model has been presented 15 with the

goal to maintain the LCTM concept, including the ability to model various transitional processes, reduce the formulation

to only the γ-equation providing tunable coefficients to match the required application, and obtain a Galilean invariant

formulation. In 15 , Menter et al. assessed the model for different test cases covering a range of Reynolds number between

50×103 and 500×103 at subsonic and transonic Mach numbers. Thus, further works are needed to evaluate the γ-equation

model at more extreme conditions such as high Reynolds numbers (i.e. Re ≥ 1 × 106), very low Reynolds numbers (i.e.

Re ≤ 50 × 103) and supersonic/hypersonic flows.

In this paper, the γ−equation transition model is calibrated for all Reynolds numbers flows at low Mach numbers to

be employed for wind turbine applications, allowing for better estimates of flow transition. For wind turbine applications,

flow analysis and design methods based on the RANS equations have been extensively employed by several research

groups 16 . The most common approach is to use fully turbulent simulations ignoring the transition process. However,

fully turbulent flow solutions have been shown to over-predict the aerodynamic drag impacting the design of wind turbine

aerofoils 17–19 . Brodeur and van Dam 17 demonstrated the validity of the eN method for two-dimensional flows around

wind turbine profiles. As mentioned before, the complex infrastructure required by the methods affect it applicability to

complex three-dimensional cases. For this reason, Sørensen 18 , first, and Khayatzadeh and Nadarajah 19 , later, made an

effort to use the γ-Reθ model to predict laminar-turbulent transition for wind turbine aerofoils and rotors showing promis-

ing results.

In the context of the present work, the γ−equation transition model of Menter has been implemented in the CFD

code of the University of Glasgow, HMB3 20, 21 . A detailed description of the solver is presented in section 2. In section

3 the main features as well as the tunable constants of the model are discussed. Then, section 4 contains a summary of the

selected test cases while in section 5 the calibration approach and the results are presented. During the calibration of the

model, various test cases have been simulated. The goal was not to obtain perfect agreement with experimental data and

3
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linear stability results, since this would require to change the model correlation with more complex ones, but to tolerate

some differences as part of the approach taken to formulate the original model 15 . Finally, in section 6 conclusions of the

present work are given as well as suggestions for future improvements.

Fully Implicit Formulation for a Steady Case

The Helicopter Multi-Block (HMB3) code 21 , developed at Glasgow University, has been used in the present work.

The RANS equations are discretised using a cell-centred finite volume approach. The computational domain is divided

into a finite number of control-volumes, and the governing equations are applied in integral-conservation form at each

cell. The equations are written in a curvilinear co-ordinate system. The spatial discretisation of the system equations leads

to a set of ordinary differential equations in time. The solver uses a fully-implicit time integration where the new solution

does not only depend on the known solution at the previous time step, but also on a coupling between the cell variables at

the new time step. Thus, following the pseudo-time approach, after the linearisation of the residual at the new pseudo time

step the discretised RANS result in a large system of linear equations which, rewritten in terms of the primitive variables

P, for a steady is given by Vi, j,k

∆t∗
∂Wi, j,k

∂Pi, j,k
+
∂Ri, j,k

∂Pi, j,k

∆Pi, j,k = −Ri, j,k(Wm) (1)

where R represents the residual vector. The above equation must be solved over the computational domain and provides an

update to the vector of primitive variables variables as a solution of a system of algebraic equations of the form Ax−b = 0.

In HMB3, the latter is solved employing a Generalised Conjugate Gradient (GCG) method 22 with an Incomplete Lower

Upper factorisation (ILU) pre-conditioner 23 .

For the evaluation of the inviscid fluxes, the code implements the Roe’s 24 and Osher’s schemes 25 for subsonic and

transonic flows but also the LM-Roe 26 and AUSM+/AUSM+up 27 schemes are available for very low and high Mach

flows 28, 29 . The Osher’s scheme is used in the present work. For the viscous fluxes the solver employs a second order

central discretisation scheme.

To discretise the convective part of the Navier-Stokes equations a, formally, third order Monotone Upstream-

Centred Scheme for Conservation Laws (MUSCL) 30 is employed with the Van Albada limiter 31 . To avoid ill-conditioning

a first order Jacobian is used. Thus, the exact Jacobian matrix is approximated by removing the dependence of the MUSCL

interpolation This leads to a lower quality Jacobian which, however, is much more computationally efficient. Indeed, it

has been experienced that the conditioning of the system gets worse when additional off-diagonal terms are included.

When a transition model is in use the resulting Jacobian matrix is given by


A00 A01 A02

A10 A11 A12

A20 A21 A22

 (2)

where
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• A00 is a 5 × 5 matrix associated with the flow primitive variables,

• A11 is a 2 × 2 matrix for a two-equation turbulence model,

• A11 is a scalar or a 2 × 2 matrix for one-equation or two-equation transition models,

• A01 and A10 are related to how the fluid variables depend on the turbulent variables and vice-versa,

• A02 and A20 are related to how the fluid variables depend on the transition model variables and vice-versa,

• A12 and A21 are related to how the turbulent variables depend on the transition model variables and vice-versa.

The γ−Equation Transition Model

For the complete definition of the γ−equation LCTM the reader is referred to the original work of Menter et al. 15

whose notation is preserved in the present paper. A first set of parameters is the one used in the critical momentum-

thickness Reynolds number correlation

Reθc (TuL, λθL) = CTU1 +CTU2 exp (−CTU1TuLFPG (λθL)) (3)

and define the minimum (CTU1), maximum (CTU1 + CTU2) and the rate of decay with an increase of the turbulence

intensity (CTU3) of the critical Reθc number. A further set of constants is introduced in the function employed to include

in the transition onset the effect of the stream-wise pressure gradient

FPG (λθL) =


min
(
1 +CPG1λθL,Clim

PG2

)
λθL ≥ 0

min
(
1 +CPG2λθL,Clim

PG2

)
λθL < 0

(4)

Here, CPG1 controls the value of Reθc in areas with favorable pressure while CPG2 with adverse pressure gradient. In 15

also an additional constant CPG3 is considered to correct Reθc in regions with separation if necessary but it is set to zero

and here the same approach is followed.

The authors believe that a further tunable parameter, here named Conset1, can be identified in the function that

controls the transition onset as follow

Fonset1 =
Rev

Conset1Reθc
with Conset1 = 2.2. (5)

Since the triggering of the transition is based on Rev instead of Reθ computed from the velocity profile, Conset1 should

change accordingly with the ratio between these two Reynolds numbers. This ratio can be expressed as function of the

shape factor, H, or the pressure gradient parameter λθ. In the original model the value 2.2 is selected to achieve a Fonset1

equal to one within a Blasius boundary layer and this effect is taken into account through the correlation for the critical
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momentum-thickness Reynolds number presented in equation (3). However, previous works 14, 19 for the γ-Reθ model

observed the necessity to re-scale Conset1 at high Reynolds numbers.

For the results shown in the present work, the model has been coupled with the k − ω SST turbulence model of Menter 32

and the Kato-Launder formulation 33 of the production term is employed. To eliminate the non-physical decay of turbu-

lence variables in the freestream for external aerodynamic problems, the additional sustaining terms to the equations of

the SST model have been employed 34 .

Test Cases Description

For the calibration of the model and its assessment, with particular focus on wind turbine applications, two different

aerofoils and a wind turbine blade have been used. All aerofoil computations are performed at Mach numbers typical of

wind turbine applications, i.e. Ma 0.1. Three different operative conditions, summarised in table 1, are considered for the

wind turbine blade.

The first aerofoil selected is the DU00-w-212, an aerofoil currently employed in the AVATAR project for large scale

wind turbines 35 . The computational domain can be seen in figure 1. The domain is divided in 70 blocks and 82 thousands

cells with 331 cells around the aerofoil, 155 cells in the normal direction and 103 cells from the TE to the far-field. The

employed normal spacing in terms of the chord, c, at the wall is 1 × 10−6c, while spacings of 1 × 10−3c and 1 × 10−4c are

used around the aerofoil at the leading (LE) and trailing (TE) edges, respectively.

The second profile used for the present work is the NASA/Langley/Somers NLF(1)-0416 natural laminar flow

aerofoil. This aerofoil is designed for general aviation applications and typically operates at Reynolds numbers beteween

1 × 106 and 9 × 106. The computational grid is shown in figures 2 and consists in a multi-block structured grid of

75 thousands cells divided in 32 blocks. Around the aerofoil and in the normal direction 275 and 171 cells are used,

respectively, while 85 cells are employed from the TE to the far-field. In this case the same spacings as for the DU00-w-

212 aerofoil are employed.

In all aerofoil computations the far-field is placed at a distance 40c, where c is the aerofoil chord.

Finally, the AVATAR wind turbine blade 35 is selected as 3D case. Figures 3 and 4 show a sketch of the blade and a

section cut. The grid consists of 15 millions cells with 325 points around the section, 295 in the span-wise direction and

101 in the normal direction. The number of blocks in which the domain is decomposed is 442 and the spacing at the wall

is 5 × 10−7cmax. In this case the far-field is placed at 6 blade radius towards the outflow and 3 blade radius towards the

inflow and in the radial direction.

In all considered geometries, hyperbolic laws are employed for the cells distributions along all the blocks’ edges

and steady-state simulations have been performed.

6
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Wind speed, UW (m/s) RMP Pitch
10.00 8.6 0.00
10.50 9.0 0.00
12.00 9.6 3.98

Table 1 – Summary of the selected operative conditions for the AVATAR wind turbine blade (RPM: rotations
per minute).

Figure 1 – DU00-w-212 aerofoil

Figure 2 – NLF(1)-0416 aerofoil.

7
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Figure 3 – AVATAR wind turbine blade

Figure 4 – AVATAR blade section at 75% radius.
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Assessment and Calibration of the γ−equation Model

2-D Cases

In the present work, only natural transition, i.e. Tu < 1%, is considered at high Reynolds numbers and cross-

flow instabilities are neglected. The first proposed modification to the model constants is a rescaling of CTU1 and CTU2

in equation (4) from 100.0 and 1000.0 to 163.0 and 1002.25, respectively. The choice of this constants is done so

that equation (3) exactly matches the Abu-Ghannam and Shaw correlation 5 for zero pressure gradient, i.e. λθL = 0.

Furthermore, the minimum value of 163.0 for the critical momentum-thickness Reynolds number, Reθc , is in accordance

with the Tollmien-Schlichting limit of stability 5 .

For the flow around the DU00-w-212 aerofoil at high Reynolds numbers, no experimental data is currently available

in the literature so simulations performed with Xfoil 36 are employed here as benchmark. Xfoil is a well known tool for 2D

aerofoil computations, firstly developed at the Massachusetts Institute of Technology in the 1980s and since then widely

used by companies and research institutes. The reason behind the choice of this tool is that it employs the eN method to

predict the transition position.

Figures 5a-c show the skin friction coefficient on the lower and upper surfaces of the aerofoil, as functions of the

position along the chord, for different high Reynolds numbers at low free-stream turbulence intensity Tu = 0.0816%. The

results of the original model are in reasonable agreement with Xfoil predictions only at Re = 3×106 as shown in figure 5a.

When the Reynolds further increases, the original model predicts too early transition as can be observed in figures 5b-g.

The first proposed modification improved the agreement of the model with Xfoil predictions at Re = 3 × 106; however, it

was not enough at higher Reynolds numbers.

As mentioned in section 3, previous works in the literature for the γ-Reθ model have observed that the constant

employed in the ratio defined in equation 5 needs to be increased 14, 19 . Thus, a gradual increase of the constant COnset1 to

2.75, 3.3, 3.85 and 4.4 has been considered here. In figures 6a-c skin friction predictions are provided for different values

of COnset1. The results show that an optimal range of COnset1, which leads to a good agreement with Xfoil’s eN results, can

be found at each Reynolds number.

In figure 7 the optimal values of COnset1, among the ones employed, are reported for the considered Reynolds

numbers, while a summary of all the modified constants can be found in table 2. Looking at figure 7, it is possible to

notice that a simple logarithmic curve fitting can be given as follows

Conset1 = min(4.84,max(2.2, 1.388ln(Re × 10−6) + 0.705)) (6)

to define COnset1 as a function of the Reynolds number for 1 × 106 ≤ Re ≥ 15 × 106. In the original model 15 , Menter et

al. observed that the ratio
Rev

2.2Reθ
(7)

9
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can change by as much as a factor of around 2.2 for typical values of the boundary layer shape factor. For this reason a

maximum value of 4.84 is employed here for COnset1, while the minimum value of 2.2 is used to recover the transition

onset of the original model for Re < 3 × 106. Figures 8a-c show predictions of the skin friction coefficient on the lower

and upper surfaces of the DU00-w-212 aerofoil for different Reynolds numbers with equation (6) employed. The results

are in very good agreement with the predictions obtained using the eN method for all the Reynolds numbers considered.

(a) Re = 3 × 106. (b) Re = 9 × 106.

(c) Re = 15 × 106.

Figure 5 – Skin friction coefficient, C f , at various Reynolds numbers: effect of the proposed CTU1 = 163.0
and CTU2 = 1002.25 on the predicted transition region. DU00-w-212 aerofoil at Ma = 0.1 and free-stream
Tu = 0.0816% and µt/µ = 1.0.

10
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(a) Re = 3 × 106. (b) Re = 9 × 106.

(c) Re = 15 × 106.

Figure 6 – Skin friction coefficient, C f , at various Reynolds numbers: effect of COnset1 on the predicted
transition region. DU00-w-212 aerofoil at Ma = 0.1 and free-stream Tu = 0.0816% and µt/µ = 1.0.
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Figure 7 – Proposed logarithm curve fitting for Conset1 at 3 × 106 ≤ Re ≥ 15 × 106.

Model CTU1 CTU2 Conset1

Original 100.00 1000.00 2.20
Modified 1 163.00 1002.25 2.20
Modified 2 163.00 1002.25 2.75
Modified 3 163.00 1002.25 3.30
Modified 4 163.00 1002.25 3.85
Modified 5 163.00 1002.25 4.40
Log. Fit. 163.00 1002.25 min(4.84,max(2.2, 1.388ln(Re × 10−6) + 0.705))

Table 2 – Summary of the employed constants.
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(a) Re = 3 × 106. (b) Re = 9 × 106.

(c) Re = 15 × 106.

Figure 8 – Skin friction coefficient, C f , at various Reynolds numbers: effect of the proposed logarithm curve
fitting on the predicted transition region. DU00-w-212 aerofoil at Ma = 0.1 and free-stream Tu = 0.0816%
and µt/µ = 10.0.
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Increasing the free-stream turbulent kinetic energy by one order, i.e. Tu = 0.2582%, the predictions obtained

employing the logarithm curve fitting in the one-equation LCTM are still in good agreement with Xfoil results, as seen

in figures 8a-c, and no further calibration of the transition onset was required. At even higher free-stream turbulence

intensity, Tu = 0.8165%, results shown in figures 8a-c indicate that the proposed modified model agrees with Xfoil at

Reynolds numbers Re = 3 × 106 and Re = 9 × 106, while at Re = 15 × 106 it predicts an earlier transition point. This

shows that further investigations may be required for high levels of free-stream turbulence intensity at very high Reynolds

numbers. In fact, the original model 15 has been already calibrated and assessed for a large range of free-stream turbulence

intensities spanning from Tu = 0.03% to Tu = 7% but at intermediate Reynolds number, 50×103 and 500×103. However,

at high levels of free-stream turbulence intensity and very high Reynolds the flow is expected to be fully-turbulent due to

surface roughness, erosion and dirt. Thus, employing a transition model at these extreme conditions may be questionable.

When employed to predict lift and drag coefficients at various angles of attack, the γ−equation LCTM with the

logarithm curve fitting for the transition onset, shows good agreement with Xfoil computations as seen from figures 11a-b

for Re = 3 × 106, figures 12a-b for Re = 9 × 106 and figures 13a-b for Re = 15 × 106. As expected the original model

predicts an earlier transition and thus a much higher drag coefficient, in particular at low angles of attack, for the two

higher Reynolds numbers considered, while the proposed calibrated model shows better agreement with Xfoil capturing

the low drug bucket. At the highest Reynolds number considered, 15 × 106, the original model does not even predict a

low drug bucket while employing the logarithm curve fitting for the transition onset, more reliable results are obtained

as can be seen in figure 13b. Tables 3, 4 and 5 summarise some important design properties computed for the DU00-w-

212 aerofoil such as the low drag bucket extension, the zero lift angle (αCl=0) and the lift slope (Clα). Note that Clα is

computed here using the lift coefficients at −4◦ and 4◦ angles of attack. In comparison with Xfoil results; the low drag

bucket extension as well as the zero lift angle are correctly predicted, less than 1% difference, by the calibrated model for

all cases considered, while the original transitional model leads to reliable results only for Re = 3 × 106. Regarding the

Clα, slightly lower, around 3%, values are predicted by both models.

14
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(a) Re = 3 × 106. (b) Re = 9 × 106.

(c) Re = 15 × 106.

Figure 9 – Skin friction coefficient, C f , at various Reynolds numbers: effect of the proposed logarithm
fitting on the predicted transition region. DU00-w-212 aerofoil at Ma = 0.1 and free-stream Tu = 0.2582%
and µt/µ = 10.0.

15
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(a) Re = 3 × 106. (b) Re = 9 × 106.

(c) Re = 15 × 106.

Figure 10 – Skin friction coefficient, C f , at various Reynolds numbers: effect of the proposed logarithm
fitting on the predicted transition region. DU00-w-212 aerofoil at Ma = 0.1 and free-stream Tu = 0.8165%
and µt/µ = 10.0.
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(a) Cl vs α. (b) Cl vs Cd.

Figure 11 – Polars for DU00-w-212 aerofoil at Re = 3 × 106, Ma = 0.075 and free-stream Tu = 0.0864%
and µt/µ = 1.0.

Xfoil Log. Fit. Original
low drag bucket extension 6◦ ÷ −6◦ 6◦ ÷ −8◦ 4◦ ÷ −8◦

αCl=0 −2.69◦ −2.66◦ −2.65◦

Clα 0.123 0.120 0.120

Table 3 – Summary of the DU00-w-212 aerofoil design properties at Re = 3 × 106, Ma = 0.075 and
free-stream Tu = 0.0864% and µt/µ = 1.0.
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(a) Cl vs α. (b) Cl vs Cd.

Figure 12 – Polars for DU00-w-212 aerofoil at Re = 9 × 106, Ma = 0.082 and free-stream Tu = 0.1988%
and µt/µ = 10.0.

Xfoil Log. Fit. Original
low drag bucket extension 4◦ ÷ −4◦ 4◦ ÷ −4◦ 4◦ ÷ 0◦

αCl=0 −2.74◦ −2.73◦ −2.58◦

Clα 0.123 0.121 0.120

Table 4 – Summary of the DU00-w-212 aerofoil design properties at Re = 9 × 106, Ma = 0.082 and
free-stream Tu = 0.1988% and µt/µ = 10.0.
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(a) Cl vs α. (b) Cl vs Cd.

Figure 13 – Polars for DU00-w-212 aerofoil at Re = 15 × 106, Ma = 0.08 and free-stream Tu = 0.3346%
and µt/µ = 10.0.

Xfoil Log. Fit. Original
low drag bucket extension 4◦ ÷ −2◦ 4◦ ÷ −2◦ Failed to predict

αCl=0 −2.75◦ −2.74◦ −2.65◦

Clα 0.123 0.119 0.117

Table 5 – Summary of the DU00-w-212 aerofoil design properties at Re = 15 × 106, Ma = 0.08 and
free-stream Tu = 0.3346% and µt/µ = 10.0.
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In the original paper of Somers 37 which describes the design of the NLF(1)-0416 aerofoil, both theoretical and

experimental results are provided. Here the wind tunnel data are used to evaluate the model predictions for this aerofoil

at Re = 4 × 106. As can be seen from figures 14a-c the original and calibrated models give reliable results for lift

and drag coefficients, as well as, for the transition position on both sides of the aerofoil. It has to be noted that at the

Reynolds number considered for this test case, equation (7) give a value COnset1 = 2.63 thet is not much different than

the one employed in the original model. However, the proposed calibration leads to a slightly better agreement with the

experimental data.

(a) Cl vs α. (b) Cl vs Cd.

(c) Xtr/c vs Cl.

Figure 14 – Polars and transition position, Xtr, for the NLF(1)-0416 aerofoil at Re = 4× 106, Ma = 0.1 and
free-stream Tu = 0.0816% and µt/µ = 10.0. Experimental results form Somers 37 . ⃝ - upper surface and2 - lower surface.
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3-D Cases

Finally, the tuned model has been employed to predict the flow around the AVATAR wind turbine blade presented in

section 4 at three different wind speeds. In all cases, a free-stream Tu = 0.0816% and µt/µ = 10.0 have been used.

For three-dimensional simulations there is no unique way to define the Reynolds number to be employed to evaluate the

transition onset. However, since it is well known that for rotary wings the main contribution to the aerodynamic forces is

generated in the region around the section at 75% radius; the local Reynolds number at this station, computed as

Re75%R =
ρ∞
√

UW
2 + (0.75R · RPM · π/30)2 · c 75%R

µ
(8)

has been employed in equation (6) to compute the COnset1 employed in the simulations. Table 6 show the predicted Power

and Thrust produced by the wind turbine blade for the considered conditions. As expected, when laminar to turbulent

transition is considered an increase of power and thrust of about 15 − 20% and 8 − 10%, respectively, is obtained with

respect to fully-turbulent results. Moreover, when fully-turbulent flow is considered a decrease in the performance of

the blade is observed at wind speed higher than the design point of UW = 10.5m/s. Contours of C f on the suction and

pressure side of the blade are presented in figures 15a-c and 16a-c. The transition position is around half of the chord in

the region around 75% radius on both pressure and suction sides. However, towards the blade root the transition position

moves towards the LE on the suction side and the TE on the pressure side as result of the effect of the lower rotational

speed on the local angle of attack.

Fully-Turbulent Flow Transitional Flow
UW (m/s) 10.0 10.5 12.0 10.0 10.5 12.0

Power (KW) 8150.97 9469.98 9038.53 9432.87 10925.75 10837.78
Thrust (KN) 1228.55 1357.60 1048.42 1331.98 1473.83 1155.48

Table 6 – Power and Thrust as function of the wind speed, UW , for the AVATAR wind turbine blade with
fully-turbulent and transitional flow assumptions.
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(a) . (b) .

(c) .

Figure 15 – Skin friction coefficient contours for the suction side of the AVATAR wind turbine blade at
different wind conditions.
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(a) . (b) .

(c) .

Figure 16 – Skin friction coefficient contours for the pressure side of the AVATAR wind turbine blade at
different wind conditions.

23



S. Colonia, V. Leble, R. Steijl and G. Barakos

Conclusions and Future Works

The LCTM concept was introduced by Menter et. al. 13 almost a decade ago to include transitional flows modeling

in general-purpose CFD codes. This due to the fact that the commonly employed eN method requires a complex in-

frastructure that limit its applicability in complex CFD simulations. Recently, a simplified version of model has been

presented 15 reducing the formulation to only the γ-equation providing tunable coefficients to match the required appli-

cation. The model has been assessed for various test cases however, further works are needed to evaluate the γ-equation

model at more extreme conditions such as high Reynolds numbers (i.e. Re ≥ 1 × 106), very low Reynolds numbers (i.e.

Re ≤ 50 × 103) and supersonic/hypersonic flows.

In this paper the, γ−equation transition model is calibrated for all Reynolds numbers flows, at low Mach numbers,

to be employed in wind turbine applications. The calibration process consisted in a rescaling of CTU1 and CTU2 in equa-

tion (4) from 100.0 and 1000.0 to 163.0 and 1002.25, respectively, and a logarithmic curve has been proposed to define

the transition onset, COnset1, as a function of the Reynolds number for 1 × 106 ≤ Re ≥ 15 × 106. The proposed improve-

ments to the model shown promising results for both two-dimensional and three-dimensional flows, even if cross-flow

instabilities are neglected and only natural transition, i.e. Tu < 1%, has been considered. Compared to the original model

at high Reynolds numbers, while the latter displays a decay of the accuracy, the proposed calibrated model maintains a

good level of reliability and retains the accuracy of the original model at lower Re. This shows that the original model can

be improved and in future works further transitional effects such as cross-flow instabilities and high-Mach effect could be

included.
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Nomenclature

C Chord
Cd Drag coefficient
C f Skin friction coefficient
Cl Lift coefficient
Clα Lift coefficient slope
Clmax Maximum lift coefficient
H Boundary layer shape factor
k Turbulent kinetic energy
Ma Mach number
P Primitive variables vector
R Residual vector
R Radius
Reθ Momentum-thickness Reynolds number, ρU0θ/µ
Reθc Critical Momentum-thickness Reynolds number
Rev Strain-rate (or vorticity) Reynolds number ρS y2/µ
S Strain-rate absolute valure (2S i jS i j)1/2

S i j Strain-rate tensor 0.5(
∂ui

∂x j
+
∂u j

∂xi
)

Tu Turbulence intensity, 100
√

(2k/3)/U
TuL Local turbulence intensity
ui Velocity component in the i-direction
UW Wind speed
U0 Local freestream velocity
W Conservative variables vector
xi Spatial coordinate in the i-direction
Xtr Transition position
y Nearest wall distance
αCl=0 Zero lift angle
γ Intermittency
λθL Local pressure gradient parameter
µt Eddy viscosity
µ Molecular viscosity
ω Turbulence dissipation rate
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Acronyms

AUSM Advection Upstream Splitting Method
CF Cross-Flow
CFD Computatinal Fluid Dynamics
DNS Direct Numerical Simulation
GCG Generalised Conjugate Gradient
ILU Incomplete Lower Upper factorisation
LCTM Local-Correlation based Transition Modelling
LE Leading edge
LES Large Eddy Simulation
LM-Roe Low Mach Roe
MUSCL Monotone Upstream-Centred Scheme for Conservation Laws
NS Nevier-Stokes
RANS Reynold Averaged Nevier-Stokes
RPM Rotations per minute
TE Trailing edge
TS Tollmien-Schlichting
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