4 research outputs found

    Design of a User Interface for Radiography Training Simulator

    Get PDF
    The radiography training simulator currently in development minimizes errors through mock training on radiology and improves the accuracy of the tests to minimize radiation exposure of the patients and improve the quality of diagnosis services. The objective of this study is to suggest a configuration method for a user interface in developing a radiography training simulator. To configure the operating program of a radiography training simulator in the same manner as an actual radiography equipment, features allow viewing of the worklist and entry of patient information in accordance with the manual. Body part and projection are selected, after which detector, distance, angle and grid are chosen to proceed with the imaging. The image is then printed. The printed image can be transmitted to the PACS server. In addition, a scenario editing feature and help window on the test method are configured so that the user can configured an image database himself. The developed user interface for radiography training simulator simulates an actual X-ray test, improving the effects of mock training and repetitive learning. Since not all variables that may occur during the image printing cannot be configured, the location data of the model device and camera were used to lead to correct testing methods and positions, thus minimizing errors. In follow-up studies, technological development using object recognition and 3D data will be applied to realize various situations that are close to real-life situations

    “Guía interactiva de anatomía radiológica de Canis familiaris, con énfasis en fracturas”

    Get PDF
    El trabajo que a continuación se describe la construcción de una “Guía interactiva de anatomía radiológica de Canis familiaris con énfasis en fracturas” la cual se constituye en herramienta pedagógica e instrumento transformador en el proceso de enseñanza. El estudio de la Medicina Veterinaria exige que el estudiante busque fuentes de información para afianzar los conocimientos aprendidos en el aula de clase. Así como facilitar un proceso de autoaprendizaje, análisis y comprensión del tema por parte de los estudiantes. Esto solo se logra con buenos instrumentos o herramientas las cuales son escasas especialmente en la anatomía radiológica. Con el desarrollo de las nuevas tecnologías para el estudio de la anatomía radiológica, se pretende apoyar en la enseñanza de áreas en medicina veterinaria. Para la realización de esta guía se recopilaron imágenes radiológicas de la Clínica Veterinaria Kanicat, de la Empresa de Imágenes Diagnósticas – Imavet y del Laboratorio de Anatomía Animal de la Universidad Tecnológica de Pereira, las cuales fueron analizadas con la finalidad de señalar las estructuras anatómicas y las patologías. A partir del análisis de las imágenes fue desarrollada una página Web con la plataforma Wix de acceso libre (https://es.wix.com), en la cual se subieron las imágenes y contenidos sobre radiología para ser visualizada gratuitamente desde internet con acceso en . La página contiene la guía que consta de 7 interfaces en donde se da un breve repaso sobre anatomía esquelética del perro, generalidades de radiología y fracturas. Además, se muestran ejemplos de imágenes radiológicas de caninos sanos e imágenes de caninos con fracturas, con la correspondiente descripción de cada imagen. Esta guía fue desarrollada con la finalidad de aportar a los estudiantes de Medicina Veterinaria, una herramienta de estudio de fácil acceso, que les brinde información precisa y clara como instrumento de estudio o consulta para resolver dudas sobre fracturas y además realizar comparaciones entre la anatomía radiológica normal y la anatomía radiológica patológica

    Geometric validation of a computer simulator used in radiography education

    Get PDF
    The radiographical process of projection of a complex human form onto a two-dimensional image plane gives rise to distortions and magnifications. It is important that any simulation used for educational purposes should correctly reproduce these. Images generated using a commercially available computer simulation widely used in radiography education (ProjectionVRTM) were tested for geometric accuracy of projection in all planes.Methods:An anthropomorphic skull phantom was imaged using standard projection radiography techniques and also scanned using axial CT acquisition. The data from the CT was then loaded into the simulator and the same projection radiography techniques simulated. Bony points were identified on both the real radiographs and the digitally reconstructed radiographs (DRRs). Measurements sensitive to rotation and magnification were chosen to check for rotation and distortion errors.Results:The real radiographs and the DRRs were compared by four experienced observers and measurements taken between the identified bony points on each of the images obtained. Analysis of the mean observations shows that the measurement from the DRR matches the real radiograph +1.5 mm/−1.5 mm. The Bland Altman bias was 0.55 (1.26 STD), with 95% limits of agreement 3.01 to −1.91.Conclusions:Agreement between the empirical measurements is within the reported error of cephalometric analysis in all three anatomical planes. The image appearances of both the real radiographs and DRRs compared favourably.Advances in knowledge:The commercial computer simulator under test (ProjectionVRTM) was able to faithfully recreate the image appearances of real radiography techniques, including magnification and distortion. Students using this simulation for training will obtain feedback likely to be useful when lessons are applied to real-world situations

    X-ray system simulation software tools for radiology and radiography education

    No full text
    Objectives: To develop x-ray simulation software tools to support delivery of radiological science education for a range of learning environments and audiences including individual study, lectures, and tutorials. Methods: Two software tools were developed; one simulated x-ray production for a simple two dimensional radiographic system geometry comprising an x-ray source, beam filter, test object and detector. The other simulated the acquisition and display of two dimensional radiographic images of complex three dimensional objects using a ray casting algorithm through three dimensional mesh objects. Both tools were intended to be simple to use, produce results accurate enough to be useful for educational purposes, and have an acceptable simulation time on modest computer hardware. The radiographic factors and acquisition geometry could be altered in both tools via their graphical user interfaces. A comparison of radiographic contrast measurements of the simulators to a real system was performed. Results: The contrast output of the simulators had excellent agreement with measured results. The software simulators were deployed to 120 computers on campus. Conclusions: The software tools developed are easy-to-use, clearly demonstrate important x-ray physics and imaging principles, are accessible within a standard University setting and could be used to enhance the teaching of x-ray physics to undergraduate students
    corecore