610 research outputs found

    Visualization of self-healing materials by X-ray computed micro-tomography at UGCT

    Get PDF
    This work presents recent advancements in X-ray micro-computed tomography (XRMCT) of self-healing materials at Ghent University’s Centre for X-ray Tomography (UGCT). Results of XRMCT imaging in a self-healing polymer system are shown to demonstrate the use of XRMCT in self-healing studies. Furthermore, two new XRMCT scanners are presented. The HECTOR scanner was designed for large samples and strongly attenuating samples, and is therefore well suited to study self-healing concrete. The EMCT scanner is well suited for dynamic self-healing experiments in a controlled environment

    Spectral X‐ray computed micro tomography : 3‐dimensional chemical imaging

    Get PDF
    We present a new approach to 3-dimensional chemical imaging based on X-ray computed micro tomography (CT), which enables the analysis of the internal elemental chemistry. The method uses a conventional laboratory-based CT scanner equipped with a semiconductor detector (CdTe). Based on the X-ray absorption spectra, elements in a sample can be distinguished by their specific K-edge energy. The capabilities and performance of this new approach are illustrated with different experiments, i.e. single pure element particle measurements, element differentiation in mixtures, and mineral differentiation in a natural rock sample. The results show that the method can distinguish elements with K-edges in the range of 20 to 160 keV, this corresponds to an element range from Ag to U. Furthermore, the spectral information allows a distinction between materials, which show little variation in contrast in the reconstructed CT image

    X-ray computed micro tomography as complementary method for the characterization of activated porous ceramic preforms

    Get PDF
    X-ray computed micro tomography (CT) is an alternative technique to the classical methods such as mercury intrusion (MIP) and gas pycnometry (HP) to obtain the porosity, pore-size distribution, and density of porous materials. Besides the advantage of being a nondestructive method, it gives not only bulk properties, but also spatially resolved information. In the present work, uniaxially pressed porous alumina performs activated by titanium were analyzed with both the classical techniques and CT. The benefits and disadvantages of the applied measurement techniques were pointed out and discussed. With the generated data, development was proposed for an infiltration model under ideal conditions for the production of metal matrix composites (MMC) by pressureless melt infiltration of porous ceramic preforms. Therefore, the reliability of the results, received from different investigation techniques, was proved statistically and stereologicall

    Crack bridging modelling in Bioglass® based scaffolds reinforced by polyvinyl alcohol / microfibrillated cellulose composite coating

    Get PDF
    This work deals with crack bridging modelling in Bioglass® based scaffolds due the presence of a special polymer coating. This includes a careful modelling of the scaffold which is based on x-ray computed micro-tomography (micro-CT) scans and identification of bridging mechanism with the aid of extensive fractographic observations of coated, broken struts. A replacement of the real structure of scaffold by a periodic model utilizing Kelvin cell whose size corresponds to the mean cell size of the real foam is discussed. The struts of the idealized foam are modelled using the beam elements. A detailed computational analysis of crack bridging due to coating film fibrils under plane strain conditions is presented and an improvement of fracture resistance of coated scaffolds is explained

    Whetstones from Bronze Age hill forts of North Eastern Italy

    Get PDF
    A group of Bronze Age whetstones from Protohistoric hill forts, locally called Castellieri, of eastern Friuli Venezia Giulia (north eastern Italy) has been studied using different techniques, including non destructive methods such as X-ray computed micro-tomography and portable X-ray fluorescence, in order to characterize the raw material and define its origin. The obtained results suggest that small pebbles of reddish subarkose and quartz arenites collected from the gravel deposits of river Isonzo, perhaps deriving from Val Gardena Formation outcrops, were exploited for the production of the studied artefacts during the Bronze Age. These data complement our knowledge about the lithic raw materials exploitation strategies during the ancient phase of Castellieri culture, almost exclusively based on local rock type

    Three-dimensional visualisation of soft biological structures by X-ray computed micro-tomography.

    Get PDF
    Whereas the two-dimensional (2D) visualisation of biological samples is routine, three-dimensional (3D) imaging remains a time-consuming and relatively specialised pursuit. Current commonly adopted techniques for characterising the 3D structure of non-calcified tissues and biomaterials include optical and electron microscopy of serial sections and sectioned block faces, and the visualisation of intact samples by confocal microscopy or electron tomography. As an alternative to these approaches, X-ray computed micro-tomography (microCT) can both rapidly image the internal 3D structure of macroscopic volumes at sub-micron resolutions and visualise dynamic changes in living tissues at a microsecond scale. In this Commentary, we discuss the history and current capabilities of microCT. To that end, we present four case studies to illustrate the ability of microCT to visualise and quantify: (1) pressure-induced changes in the internal structure of unstained rat arteries, (2) the differential morphology of stained collagen fascicles in tendon and ligament, (3) the development of Vanessa cardui chrysalises, and (4) the distribution of cells within a tissue-engineering construct. Future developments in detector design and the use of synchrotron X-ray sources might enable real-time 3D imaging of dynamically remodelling biological samples
    corecore