4,352 research outputs found

    Evaluation of ERIM optically processed SEASAT SAR data

    Get PDF
    The results of three studies on the radiometric and geometric properties of optically processed SEASAT SAR imagery are summarized. The accuracy with which the image scale can be predicted based upon a knowledge of the SAR platform and recording system parameters and the processor characteristics was evaluated. The considerations involved in making radiometric measurements from image films, the use of point targets for calibrating the effects of Doppler spectrum shifts on the radiometric calibration of the SAR image data over extended swath lengths was evaluate

    Impacts of Radar Echoes on Internal Calibration Signals in the TerraSAR-X Instrument

    Get PDF
    For calibrating and monitoring the required radiometric stability, the radar instrument of TerraSAR-X features an internal calibration facility coupling into an additional port of the TRMs. Calibration pulses are routed through the front-end to characterise critical elements and parameters of the transmit (TX) and receive (RX) path. Changes in the signal path appear due to thermal effects, degradation, or extreme conditions in space. Especially the front-end TRMs controlling the phased array antenna are of crucial significance for the instrument reliability. There are many indications that the interference of the RX-Calibration signals is caused by an echo from a transmitted TerraSAR-X chirp pulse of the same data take. As consequently implemented in the TerraSAR-X system, different approaches solve these effects of signal interference. In orbit, the commanding sequence can be optimised for avoiding interference. At processing level, averaging techniques minimise the noise effects inside the calibration signals. This paper presents the effects of the radar echoes on the whole internal calibration process and how they can be detected and minimised

    Airborne Visible/Infrared Imaging spectrometer AVIS: Design, characterization and calibration

    Get PDF
    The Airborne Visible/Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented

    The TerraSAR-X Mission and System Design

    Get PDF
    This paper describes the TerraSAR-X Mission Concept within the context of a public-private-partnership (PPP) agreement between the German Aerospace Center DLR and industry. It briefly describes the PPP-concept as well as the overall project organization. The paper then gives an overview of the satellite design, the corresponding Ground Segment as well as the main mission parameters. After a short introduction to the scientific and commercial exploitation scheme, the paper finally focuses on the mission accomplishments achieved so far during the ongoing mission

    An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    Get PDF
    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    TerraSAR-X SAR Data Processing

    Get PDF
    The TerraSAR-X Mission started operational provision of SAR image products to the scientific and commercial user community in January 2008. An essential prerequisite for the excellent quality of the SAR products was the successful execution of a comprehensive commissioning phase (CP) in 2007. Here, the complete SAR system which comprises instrument commanding, instrument SAR data acquisition as well as SAR processing has been characterized, calibrated and verified. Finally SAR image product verification ensured that the product performance parameters are within the specification. Besides the versatile high-resolution X-Band SAR instrument in space, featuring Stripmap, ScanSAR and Spotlight imaging modes in different polarizations, the TerraSAR Multi-Mode SAR Processor (TMSP) is the central part of the ground segment. Most instrument and SAR calibration parameters have been derived on basis of SAR image products generated by the TMSP. Therefore, already in the beginning of the CP the products had to be relatively radiometric calibrated and geometrical undistorted. An indispensable prerequisite for this was the imaging mode independent normalization of the processor gain as well as the incorporation of external information, i.e. a digital elevation model for the projection of the elevation gain antenna pattern onto the terrain surface and a model of the atmosphere accounting for additional propagation delays. During the CP the TMSP has been adjusted to the in-orbit characteristics of the SAR data and instrument internal calibration. This includes adaptations of calibration pulse processing to a modified internal calibration strategy, accounting for duty cycle dependent pulse energy and temperature dependent gain levels as well as a fine tuning of the signal and geometry based Doppler centroid estimation algorithm. Furthermore, the determination of the reference function for range focusing has been optimized. Finally, the spectral weighting of the SAR data has been adjusted in order to obtain well balanced impulse response function properties in terms of resolution, side lobe ratios and azimuth ambiguities. The presentation reviews the essential features of the TMSP, summarizes the TMSP adjustments and presents results of the SAR product verification

    FIREX mission requirements document for nonrenewable resources

    Get PDF
    The proposed mission requirements and a proposed experimental program for satellite synthetic aperture radar (SAR) system named FIREX (Free-Flying Imaging Radar Experiment) for nonrenewable resources is described. The recommended spacecraft minimum SAR system is a C-band imager operating in four modes: (1) low look angle HH-polarized; (2) intermediate look angle, HH-polarized; (3) intermediate look angle, IIV-polarized; and (4) high look angle HH-polarized. This SAR system is complementary to other future spaceborne imagers such as the Thematic Mapper on LANDSAT-D. A near term aircraft SAR based research program is outlined which addresses specific mission design issues such as preferred incidence angles or polarizations for geologic targets of interest

    Methods of evaluating the effects of coding on SAR data

    Get PDF
    It is recognized that mean square error (MSE) is not a sufficient criterion for determining the acceptability of an image reconstructed from data that has been compressed and decompressed using an encoding algorithm. In the case of Synthetic Aperture Radar (SAR) data, it is also deemed to be insufficient to display the reconstructed image (and perhaps error image) alongside the original and make a (subjective) judgment as to the quality of the reconstructed data. In this paper we suggest a number of additional evaluation criteria which we feel should be included as evaluation metrics in SAR data encoding experiments. These criteria have been specifically chosen to provide a means of ensuring that the important information in the SAR data is preserved. The paper also presents the results of an investigation into the effects of coding on SAR data fidelity when the coding is applied in (1) the signal data domain, and (2) the image domain. An analysis of the results highlights the shortcomings of the MSE criterion, and shows which of the suggested additional criterion have been found to be most important

    Signal level comparison between TerraSAR-X and COSMO-SkyMed SAR Sensors

    Get PDF
    International audienceSoil and vegetation biophysical parameter retrieval using synthetic-aperture-radar images requires radiometrically well-calibrated sensors. In this letter, a comparison of signal levels between TerraSAR-X (TSX) and the COSMO-SkyMed (CSK) constellation (CSK1, CSK2, CSK3, and CSK4) was carried out in order to analyze the ability to use jointly all current X-band sensors. The analysis of the X-band signal over forest stands showed a stable signal (variation lower than 1 dB) over time for each of the studied sensors, but a significant difference was observed between the different X-band sensors. Differences between radar signals were higher in HH than in HV polarization. TSX and CSK4 showed similar backscatter signals, with signal level differences of 0.6 dB in HH and 1.4 dB in HV. The CSK3 signal was observed to be lower than those from TSX and CSK4 by about 2.1 dB and 1.5 dB in HH against 3.2 dB and 1.8 dB in HV, respectively. Moreover, CSK2 and CSK1 which showed slightly different backscatter signals (within 1.1 dB in HH and 1.9 dB in HV) had signal levels lower than those obtained from TSX (2.2-3.3 dB in HH and 3.2-5.1 dB in HV for about 29° incidence angle). These results show that it is currently difficult to use jointly the available X-band satellites (CSK and TSX) for estimating the biophysical parameters of soil or vegetation. This is due to the significant difference in the radar signal level between some of the analyzed satellites, which will cause a high overor underestimation of biophysical parameters
    corecore