18,136 research outputs found

    A realistic early-stage power grid verification algorithm based on hierarchical constraints

    Get PDF
    Power grid verification has become an indispensable step to guarantee a functional and robust chip design. Vectorless power grid verification methods, by solving linear programming (LP) problems under current constraints, enable worst-case voltage drop predictions at an early stage of design when the specific waveforms of current drains are unknown. In this paper, a novel power grid verification algorithm based on hierarchical constraints is proposed. By introducing novel power constraints, the proposed algorithm generates more realistic current patterns and provides less pessimistic voltage drop predictions. The model order reduction-based coefficient computation algorithm reduces the complexity of formulating the LP problems from being proportional to steps to being independent of steps. Utilizing the special hierarchical constraint structure, the submodular polyhedron greedy algorithm dramatically reduces the complexity of solving the LP problems from over O(k 3 m) to roughly O(k k m), where k m is the number of variables. Numerical results have shown that the proposed algorithm provides less pessimistic voltage drop prediction while at the same time achieves dramatic speedup. © 2011 IEEE.published_or_final_versio

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids

    Full text link
    Smart grid is a large complex network with a myriad of vulnerabilities, usually operated in adversarial settings and regulated based on estimated system states. In this study, we propose a novel highly secure distributed dynamic state estimation mechanism for wide-area (multi-area) smart grids, composed of geographically separated subregions, each supervised by a local control center. We firstly propose a distributed state estimator assuming regular system operation, that achieves near-optimal performance based on the local Kalman filters and with the exchange of necessary information between local centers. To enhance the security, we further propose to (i) protect the network database and the network communication channels against attacks and data manipulations via a blockchain (BC)-based system design, where the BC operates on the peer-to-peer network of local centers, (ii) locally detect the measurement anomalies in real-time to eliminate their effects on the state estimation process, and (iii) detect misbehaving (hacked/faulty) local centers in real-time via a distributed trust management scheme over the network. We provide theoretical guarantees regarding the false alarm rates of the proposed detection schemes, where the false alarms can be easily controlled. Numerical studies illustrate that the proposed mechanism offers reliable state estimation under regular system operation, timely and accurate detection of anomalies, and good state recovery performance in case of anomalies

    Shuttle/TDRSS modelling and link simulation study

    Get PDF
    A Shuttle/TDRSS S-band and Ku-band link simulation package called LinCsim was developed for the evaluation of link performance for specific Shuttle signal designs. The link models were described in detail and the transmitter distortion parameters or user constraints were carefully defined. The overall link degradation (excluding hardware degradations) relative to an ideal BPSK channel were given for various sets of user constraint values. The performance sensitivity to each individual user constraint was then illustrated. The effect of excessive Spacelab clock jitter on the return link BER performance was also investigated as was the problem of subcarrier recovery for the K-band Shuttle return link signal

    Statistical circuit simulations - from ‘atomistic’ compact models to statistical standard cell characterisation

    Get PDF
    This thesis describes the development and application of statistical circuit simulation methodologies to analyse digital circuits subject to intrinsic parameter fluctuations. The specific nature of intrinsic parameter fluctuations are discussed, and we explain the crucial importance to the semiconductor industry of developing design tools which accurately account for their effects. Current work in the area is reviewed, and three important factors are made clear: any statistical circuit simulation methodology must be based on physically correct, predictive models of device variability; the statistical compact models describing device operation must be characterised for accurate transient analysis of circuits; analysis must be carried out on realistic circuit components. Improving on previous efforts in the field, we posit a statistical circuit simulation methodology which accounts for all three of these factors. The established 3-D Glasgow atomistic simulator is employed to predict electrical characteristics for devices aimed at digital circuit applications, with gate lengths from 35 nm to 13 nm. Using these electrical characteristics, extraction of BSIM4 compact models is carried out and their accuracy in performing transient analysis using SPICE is validated against well characterised mixed-mode TCAD simulation results for 35 nm devices. Static d.c. simulations are performed to test the methodology, and a useful analytic model to predict hard logic fault limitations on CMOS supply voltage scaling is derived as part of this work. Using our toolset, the effect of statistical variability introduced by random discrete dopants on the dynamic behaviour of inverters is studied in detail. As devices scaled, dynamic noise margin variation of an inverter is increased and higher output load or input slew rate improves the noise margins and its variation. Intrinsic delay variation based on CV/I delay metric is also compared using ION and IEFF definitions where the best estimate is obtained when considering ION and input transition time variations. Critical delay distribution of a path is also investigated where it is shown non-Gaussian. Finally, the impact of the cell input slew rate definition on the accuracy of the inverter cell timing characterisation in NLDM format is investigated
    corecore