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A Realistic Early-Stage Power Grid Verification
Algorithm Based on Hierarchical Constraints

Yuanzhe Wang, Xiang Hu, Chung-Kuan Cheng, Fellow, IEEE, Grantham K. H. Pang, Senior Member, IEEE, and
Ngai Wong, Member, IEEE

Abstract—Power grid verification has become an indispensable
step to guarantee a functional and robust chip design. Vectorless
power grid verification methods, by solving linear programming
(LP) problems under current constraints, enable worst-case
voltage drop predictions at an early stage of design when the
specific waveforms of current drains are unknown. In this paper,
a novel power grid verification algorithm based on hierarchical
constraints is proposed. By introducing novel power constraints,
the proposed algorithm generates more realistic current patterns
and provides less pessimistic voltage drop predictions. The model
order reduction-based coefficient computation algorithm reduces
the complexity of formulating the LP problems from being
proportional to steps to being independent of steps. Utilizing
the special hierarchical constraint structure, the submodular
polyhedron greedy algorithm dramatically reduces the complex-
ity of solving the LP problems from over O(k3

m) to roughly
O(km log km), where km is the number of variables. Numerical
results have shown that the proposed algorithm provides less
pessimistic voltage drop prediction while at the same time
achieves dramatic speedup.

Index Terms—Hierarchical constraints, model order reduc-
tion, submodular polyhedron, vectorless power grid verification,
worst-case voltage drop.

I. Introduction

POWER grid verification is the procedure of verifying that
the voltage drops on power grids are within an acceptable

range. Due to the ever increasing voltage drops on power
grids and decreasing noise margins of logic gates, power grid
verification has become an indispensable step in chip design to
avoid logic errors and to reduce gate delays. Although solving
the IR or LdI

dt
voltage drops is essentially equivalent to a

DC or transient analysis, the extremely large size of power
grid models renders traditional software like SPICE inefficient.
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Substantial work has been done in the past decades on efficient
and application-specific algorithms for power grid verification
[1]–[29].

Power grid verification methods can be roughly divided into
two groups: simulation-based methods and vectorless methods.
Simulation-based methods model the power grids as RC(L)
networks while transistors, logic gates, and others as current
sources. These methods accept as input the waveforms of
current sources and generate as output the voltage drops on
grid nodes [1]–[5], [7]–[9], [11], [20], [24]. Backward Euler or
trapezoidal rules are employed to perform transient analysis.
Differently, vectorless methods accept as input the constraints
on current sources (instead of specific current waveforms),
and generate maximum possible voltage drops on grid nodes
[12]–[19], [21], [22]. Linear programming (LP), integer pro-
gramming, or convex optimization problems are solved to
obtain these worst-case predictions. Vectorless methods are
preferred over simulation-based methods on the following
occasions: 1) we want to predict voltage drops at an early stage
of design when the specific current waveforms are unknown,
and 2) there exist too many work modes or possible current
waveforms thus it is complicated to determine which one
results in the worst-case voltage drops.

Vectorless method is first proposed in [12]. Worst-case volt-
age drops are solved from LP problems under local and global
current constraints. The current constraints are determined by
experience or design requirements. Current waveforms in [12]
are assumed to be static (essentially a DC analysis). In [15], the
algorithm is extended to transient analysis. A geometrical al-
gorithm is developed to solve the LP problems more efficiently
in sacrifice of some accuracy. However, the current patterns
in [15] are still assumed to be static. An efficient matrix
inversion algorithm is proposed in [16], where small entries of
the inverse (system) matrix are set to zero. This approximation
reduces the CPU time for formulating the LP problems, yet
introduces additional errors in voltage predictions. A dual
algorithm is developed in [17] which achieves better efficiency
by converting the LP problems to convex problems with fewer
variables. However, the efficiency of the algorithm may de-
crease if the number of constraints is large. The deductions in
[15]–[17] are based on the assumption that the system matrix is
an M-matrix [30], thus the power grid models cannot contain
inductors. The algorithm in [14] handles power grid models
with inductors, yet is less efficient due to the increased number
of variables. Besides, the constraints in [14] at different time
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steps are entirely independent of each other, which is generally
not true in practice. An impulse response-based algorithm is
proposed in [18] which takes the transition time of current
sources into consideration. However, the models investigated
in [18] are basically lumped models (instead of resistor-
capacitor-inductor (RCL) mesh models) of power grids.

In this paper, a more realistic early-stage power grid ver-
ification algorithm based on hierarchical current and power
constraints is proposed. The main contributions are as follows.

1) Novel power constraints are developed, leading to more
realistic current waveforms and less pessimistic voltage
drop predictions. Besides, the proposed algorithm does
not rely on M-matrix assumption and naturally handles
general RCL models.

2) The constraints in the LP problems are designed to be
hierarchical. Such special constraint structure enables a
fast submodular polyhedron greedy algorithm (SPGA),
which reduces the complexity of solving LP problems
dramatically from over O(k3

m) to roughly O(km log km).
Here km is the number of variables.

3) An efficient coefficient computation algorithm based on
model order reduction (MOR) is proposed. Coefficient
computation is a major step in the LP problem formula-
tion. Compared with direct coefficient computation, the
MOR-based algorithm is more efficient and its com-
plexity is independent of the number of time steps. The
MOR-based algorithm can further be modified to handle
adaptive step length without increase of computation
complexity.

This paper is an extension of our previous work [19].
Compared with [19], the new contributions of this paper are
as follows.

1) MOR-based coefficient computation method is pro-
posed, whose complexity is lower than that of direct
method and is independent of total number of steps.
Thus, it enables the usage of large number of steps and
adaptive step lengths. The error introduced by MOR is
negligible.

2) The feasible set of the LP problem with hierarchical
constraints is proved to be a submodular polyhedron,
which enables the usage of SPGA. The fact that the LP
problems in this paper are special cases of submodular
optimization problems not only raises the proposed
algorithm to a higher theoretical level but also provides
the possibility of further generalizing the constraint
structure.

3) The complexity of the proposed algorithm is detailed. A
wide spectrum of experimental results are presented to
verify the proposed algorithm.

The remainder of this paper is organized as follows. Back-
ground information is introduced in Section II. Hierarchical
constraints and LP problem formulation are proposed in Sec-
tion III. The MOR-based coefficient computation algorithm
and SPGA are proposed in Section IV. The complexity of the
proposed algorithm is analyzed in Section IV. Experiments
on industrial power grid examples are presented in Section V.
Finally, conclusions are drawn in Section VI.

II. Background

A. Power Grid Model

A typical 3-D power grid consists of several layers, with
each layer containing either horizontal or vertical metal wires.
Wires in different layers are connected to each other at the
intersection points by vias. The power grid can be modeled
as an RCL network (which may or may not be regular) for
simulation. External power sources (connected to the top layer)
can be modeled as ideal voltage sources. Transistors, logic
gates, and memory units (connected to the bottom layer) can
be modeled as ideal current drains.

Let N be the number of nodes in the RCL network that
are not connected to ideal voltage sources. If only the voltage
drops at these N nodes are of interest, a revised circuit model
can be generated by short-circuiting all ideal voltage sources
and reversing the directions of all ideal current sources [12].
Nodal voltages of the revised circuit are equal to voltage drops
of the original circuit. The state-space equation obtained by
modified nodal analysis [31] of the revised circuit can be
written as follows:

Cẋ(t) + Gx(t) = Bu(t). (1)

Here, x(t) ∈ Rn is the vector of nodal voltages and inductor
currents, n is the sum of node number and inductor number,
u(t) ∈ Rm is the vector of current drains, C ∈ Rn×n is a
diagonal matrix with its diagonal elements being capacitances
and inductances, G ∈ Rn×n is a matrix of conductances and
“±1,” B ∈ Rn×m is the 0–1 current distribution matrix. Note
that each row of B may contain more than one “1,” which
means that more than one current source can be attached to
a single node. On the other hand, each column of B contains
exactly one “1,” which corresponds to the position at which a
current source is attached.

B. Submodular Function and Polyhedron

Definition 1: Submodular Function [32]: Let M be a finite
set (the ground set 2M denotes the set of all the subsets of
M), a set function f : 2M �→ R is submodular if and only if
for ∀A1, A2 ⊆ M, f (A1 ∪ A2) + f (A1 ∩ A2) ≤ f (A2) + f (A2).

One can prove the submodularity of a set function based on
the following lemma [32]. According to the lemma, submod-
ularity intuitively means that adding an element to a smaller
set helps more than adding it to a larger set.

Lemma 1: A set function f : 2M �→ R is submodular if and
only if for ∀A ⊆ M and ai, aj ∈ M\A, f (A ∪ aj) − f (A) ≥
f (A ∪ ai ∪ aj) − f (A ∪ ai).

Definition 2: Submodular Polyhedron [32]: Let f : 2M1 �→
R be a set function, the set {u ∈ R

M :
∑

a∈A u(a) ≤
f (A), ∀A ⊆ M} is called a submodular polyhedron if f is
submodular.
Here, the set M is simply an index set {1, 2, . . . , M1}, x ∈ RM1

is a vector of length M1 with its subscripts being the members
of M.

In LP problems, if the variables are restricted to a submod-
ular polyhedron, SPGA can be utilized to find the optimal
solution [32]–[34].
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C. Krylov Subspace-Based MOR

Consider the state-space model in (1). If a linear combina-
tion of the state variables is of interest, (1) can be rewritten as

Cẋ(t) + Gx(t) = Bu(t) (2a)

y(t) = eT x(t) (2b)

where (2a) is the same as (1), y(t) ∈ R, e ∈ Rn×1 is an
arbitrary output distribution matrix.

In industrial power grid models, the number of state vari-
ables is large (in many cases n > 106), which renders transient
analysis expensive. Therefore, MOR can be applied to reduce
the computation complexity [35]–[37]. The transfer function
of (2) and its Taylor expansion (at s = 0) is

H(s) = eT (sC + G)−1B

= eT G−1
(
I − sCG−1 + (sCG−1)2 + · · · ) B. (3)

As the number of outputs is much smaller than the number of
inputs (1 � m), we choose to build output Krylov subspace.
An order-r Krylov subspace based on output distribution
matrix can be expressed as

Kr

(
G−T CT , G−T e

)
= span

{
G−T e,

(
G−T CT

)
G−T e, . . . ,

(
G−T CT

)r−1
G−T e

}
.

(4)

Using the Arnoldi orthogonalization approach, a set of or-
thonormal basis of the Krylov subspace can be found. Let
V ∈ Rn×r be the matrix whose columns are the orthonor-
mal basis (i.e., VTV is an identity matrix of dimension r

and colspan{V} = K
(
G−T CT , G−T e, r

)
). The reduced-order

model can be expressed as follows:

Crẋr(t) + Grxr(t) = Bru(t) (5a)

y(t) = eT
r xr(t) (5b)

where xr(t) = VT x(t), Gr = VT GV , Cr = VT CV , Br = VT B,
and er = VT e. It can be proven that the first r moments of the
transfer function of the reduce-order model equal to those of
the transfer function of the original model. The reduced-order
model can be used for transient analysis which achieves faster
speed. Besides, the reduced-order model (5) is guaranteed to
be passive [35], [38].

III. Hierarchical Constraints and

Linear Programs

A. Transient Analysis

In this subsection, we derive the relationship between volt-
age drops and currents based on the procedure of transient
analysis. Similar derivations appeared in [16]. Using the
backward Euler method, (1) can be discretized as follows:

(
G +

C

�t

)
x(t + �t) =

C

�t
x(t) + Bu(t + �t). (6)

Under the stability assumption [all the poles of (1) are in the
open left half of complex plane], the system matrix G + C

�t
is

invertible. Define

M =

(
G +

C

�t

)−1
C

�t
N =

(
G +

C

�t

)−1

B. (7)

We have

x(t + �t) = Mx(t) + Nu(t + �t). (8)

Dividing the simulation time span into kt time steps, and with
a zero initial state assumption (i.e., x(0) = 0), the voltage drops
at the final time step can be represented as

x(kt�t) =
kt∑

k=1

Mkt−kNu(k�t). (9)

B. Hierarchical Constraints

In practice the peak value of a current source is bounded,
i.e., ui(t) ≤ IL,i. Local current constraints can be formulated
by combining all these inequalities as

0 ≤ u(k�t) ≤ IL (k = 1, . . . , kt) (10)

where IL ∈ Rm is a vector with its ith element being the upper
bound of the ith current source. Here, and in what follows, “≤”
is taken to be element-wise. On the other hand, block-level
current constraints are formulated as follows:

Uu(k�t) ≤ IG (k = 1, . . . , kt) (11)

where U ∈ Rp×m is a 0–1 matrix. Each inequality in (11)
corresponds to a functional block, i.e., the total current of
a functional block is bounded. The block-level current con-
straints here are different from [12] and [16] in the sense
that each column of U contains at most one nonzero entry.
This determines that one current source only belongs to one
specific functional block (appears in only one inequality). If
two different functional blocks draw currents from one node,
the current drawn from this node should be modeled as two
independent current sources. This agrees with the fact that
each row in B may contain more than one “1,” as shown in
Fig. 1.

Novel power constraints are introduced which restrict the
average power consumptions of functional blocks

U

(
kt∑

k=1

u(k�t)

)
≤ kt

Vdd

PB. (12)

Here Vdd ∈ R is the voltage of external power supply. PB ∈ Rp

is a vector with its ith element being the power limit of the
ith functional block. Power constraints are usually specified
as design requirements.

As functional blocks have interactions with each other, high-
level power constraints are introduced to restrict the total
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Fig. 1. Block-level current constraints based on total currents of functional
blocks.

Fig. 2. Illustrative figure of hierarchical current and power constraints. Each
blue circle represents one entry of a vector u(k�t).

power of groups of functional blocks

1st level U1U

(
kt∑

k=1

u(k�t)

)
≤ kt

Vdd

P
(1)
T

...
...

qth level UqUq−1 · · · U1U

(
kt∑

k=1

u(k�t)

)
≤ kt

Vdd

P
(q)
T .

(13)

Here U1 ∈ Rp1×p, U2 ∈ Rp2×p1 , . . . ,Uq ∈ Rpq×pq−1 are 0–1
matrices with each column containing at most one “1,”
P

(1)
T ∈ Rp1×1,. . . ,P (q)

T ∈ Rpq×1 are power bounds of groups
of functional blocks.

With the property that U, U1, ..., Uq contain at most
one nonzero entry in each column, (10)–(13) constitute a
group of hierarchical constraints, as depicted in Fig. 2. The
hierarchy enables SPGA to solve LP problems, which is faster
than standard algorithms such as simplex algorithm, ellipsoid
algorithm, and interior-point algorithm [39]. Details of SPGA
will be described in Section IV-C.

C. LP Problem

Until now we have derived the relationship between voltage
drops and input currents [as in (9)] and established the
constraints on input currents [as (10)–(13)]. Let ci,k be the
ith row of Mkt−kN . The LP problems to solve the worst-case

voltage drops under the hierarchical current constraints can be
formulated as follows:

max
i=1,... ,N

xi(kt�t) =
kt∑

k=1

ci,ku(k�t)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ u(k�t) ≤ IL Uu(k�t) ≤ IG (k = 1, ..., kt)

U

(
kt∑

k=1
u(k�t)

)
≤ kt

Vdd
PB

Uq′Uq′−1 · · · U
(

kt∑
k=1

u(k�t)

)
≤ kt

Vdd
P

(q′)
T (q′ = 1, ..., q).

(14)

Equation (14) contains N independent LP problems. The
objective functions of (14) are the voltage drops at time kt�t,
i.e., the voltage drops at the final time step. It can be proven
that the voltage drops solved at kt�t are indeed the worst-case.
Let max{xi(kt�t)} be the worst-case voltage drop of node i at
the ktth time step and max{xi(kτ�t)} be that at the kτ th time
step, we have the following lemma.

Lemma 2: If 1 ≤ kτ ≤ kt , max{xi(kτ�t)} ≤ max{xi(kt�t)}.
Proof: See Appendix A.

Lemma 2 indicates that the worst-case voltage drops always
occur at the final time step. Thus, solving LP problems at the
ktth step is guaranteed to provide the worst-case voltage drops.
This significantly reduces computation time from solving N ×
kt LP problems to solving N LP problems.

IV. Coefficient Computation and SPGA

A. Coefficient Computation Based on MOR

Optimization problem (14) contains N independent LP
problems. However, in practice we do not have to solve all
of them.

1) Among the nodes in the bottom layer, only those with
current drains (transistors, logic gates, and so on) at-
tached are of interest. The nodes that are not connected
to current drains have no influence on the performance
of the circuit. The number of current drains m is usually
much smaller than the number of nodes N.

2) Sometimes we only need to predict the voltage drops
on “critical” nodes that have small noise margins or are
critical to the performance of the whole chip.

3) For a regular power grid with external voltage sources
connected to the corners, the worst-case voltage drops
are mostly likely to occur in the central area.

In view of these facts, we can solve (14) for i ∈ �, where
� ⊂ {1, 2, . . . , N} is the set of indices of nodes of interest.
If � is chosen based on 1, we call the voltage drop prediction
a complete prediction or a full-chip prediction. On the other
hand, if � is chosen based on 2 or 3, we call the voltage drop
prediction a heuristic one. No matter what kind of predictions
we perform, the number of LP problems to be solved is much
smaller than N. Thus, a method to construct (14) without
computing matrix inversion is required, as what we elaborate
in the remainder of this subsection. This method also enables
a parallel computation of ci,k for different i.
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According to the definition of ci,k we have

ci,k = eT
i

[(
G +

C

�t

)−1
C

�t

]kt−k (
G +

C

�t

)−1

B (15)

where ei ∈ Rn×1 is the ith elementary unit vector. Directly
computing the matrix inversion and multiplication is pro-
hibitively expensive. Thus, we propose a method which only
requires one sparse-LU decomposition and kt forward and
backward substitutions. Transpose (15), and we have

cT
i,k = BT

(
GT +

CT

�t

)−1
[

CT

�t

(
GT +

CT

�t

)−1
]kt−k

ei. (16)

Let GT + CT

�t
= LdUd be an LU decomposition, we have

cT
i,k = BT U−1

d L−1
d

(
CT

�t

)
U−1

d L−1
d · · ·

(
CT

�t

)
U−1

d L−1
d︸ ︷︷ ︸

kt−k times

ei.

(17)

L−1
d (U−1

d ) multiplying to a vector is fundamentally a forward
(backward) substitution. Thus, computing ci,k from k = 1 to
k = kt following (17) involves one sparse-LU factorization
and kt forward and backward substitutions. The computation
complexity is lower than computing matrix inversion and
matrix multiplication. However, it is proportional to the total
number of steps (i.e., kt). When kt is large, the computation
complexity is still large. Therefore, an efficient coefficient
computation method based on MOR is proposed.

Computing ci,k for a particular i is (numerically) equivalent
to transient analysis of the following state-space model:

Cẋ(t) + Gx(t) = Bu(t) (18a)

y(t) = eT
i x(t). (18b)

A reduced model can be obtained using the projection matrix
V where colspan(V) = K

(
G−T CT , G−T ei, r

)
. We can use the

reduced model to compute the coefficients ci,k. The detailed
flow is shown in Algorithm 1. Note that G−1

L , G−1
U , M−1

L , M−1
U

multiplying a vector is essentially a forward or backward
substitution.

Coefficient computation following Algorithm 1 has two
advantages. First, the complexity of Algorithm 1 is lower
than direct computation following (17) and is independent of
the total number of steps kt . Experiments have shown that a
reduced model of order r = 20–50 can provide accurate results.
Hence the complexity of steps 13–19 of Algorithm 1 is almost
negligible compared with the complexity of (17). Steps 1–12
dominate the complexity of Algorithm 1, which is proportional
to the reduced order r. As r is independent of step number kt

and increases very slowly with the increase of original order
n, the overall complexity of Algorithm 1 is independent of
kt . Second, Algorithm 1 can be modified (as Algorithm 2) to
handle adaptive step length. Algorithm 2 has roughly the same

Algorithm 1 Coefficient Computation Based on MOR

Input: C, G, B, ei, r, kt , �t

Output: ci,k (for k = 1, . . . , kt)

1: GLGU = GT ; (LU decomposition)
2: V0 = G−1

U G−1
L ei;

3: V0 = V0/‖V0‖2;
4: for j1 = 1, . . . , r − 1 do
5: Vj1 = −G−1

U G−1
L (CTVj1−1);

6: for j2 = 0, . . . , j1 − 1 do
7: Vj1 = Vj1 − (

VT
j1
Vj2

)
Vj2 ;

8: end for
9: Vj1 = Vj1/‖Vj1‖2;

10: end for
11: V = [V0 · · ·Vr−1];
12: Gr = VT GV; Cr = VT CV; Br = VT B; eir = VT ei;
13: MLMU = GT

r + CT
r

�t
; (LU decomposition)

14: Tkt
= M−1

U M−1
L eir;

15: ci,kt
= BT

r Tkt
;

16: for j3 = kt − 1, . . . , 1 do
17: Tj3 = M−1

U M−1
L (CT

r

�t
Tj3+1);

18: ci,j3 = BT
r Tj3 ;

19: end for

Algorithm 2 Coefficient Computation w/ Adaptive Time Step

Input: C, G, B, ei, r, kt , �t1, . . . , �tkt

Output: ci,k (for k = 1, . . . , kt)

1: Same as steps 1∼1 of Algorithm 1;
2: Tkt

= (GT
r + CT

r

�tkt
)−1eir;

3: ci,kt
= BT

r Tkt
;

4: for j3 = kt − 1, . . . , 1 do
5: Tj3 = (GT

r + CT
r

�tj3
)−1( CT

r

�tj3
Tj3+1);

6: ci,j3 = BT
r Tj3 ;

7: end for

complexity as that of Algorithm 1. Moreover, when we employ
Algorithm 3 to solve the LP problems, only the order of c̄k

has influence on the result. In other words, although model
reduction may introduce inaccuracy in coefficients, the voltage
drop prediction will be still accurate as long as the order of
c̄k is not changed significantly. Therefore, the accuracy of
voltage-drop prediction is even better than the accuracy of
coefficient computation. Thus, a low-order reduced-model can
be used.

B. Problem Reformulation

With the coefficients ci,k computed by Algorithm 1 or
Algorithm 2, we can set up the LP problem as in (14).
Different components of a vector u(k�t) in (14) are in fact
independent variables. Thus, there exist ktm variables and ktm

coefficients in total. For simplicity, we rename the coefficients
and the variables as follows:

c1 = eT
1 ci,1 · · · cm = eT

mci,1,
...

. . .
...

c(kt−1)m+1 = eT
1 ci,kt

, · · · cktm = eT
mci,kt

,

(19a)
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u1 = u1(�t), · · · um = um(�t),
...

. . .
...

u(kt−1)m+1 = u1(kt�t), · · · uktm = um(kt�t).

(19b)

The constraints in (14) are essentially a set of inequalities.
Specifically, there exist a total of ktm + ktp + p + p1 + · · · + pq

inequalities (ktm local current constraints, ktp block-level
current constraints, p block-level power constraints, p1 + · · · +
pq inter-block power constraints). Each of these inequalities
decides that the sum of a subset of the variables in (19b)
is bounded. We summarize the notations involved in the
constraints as follows:

1) κt: the total number of constraints. Here κt = ktm+ktp+
p + p1 + · · · + pq;

2) κ: the index of constraint, κ = 1, 2, . . . , κt;
3) Lκ: the set of indices of variables involved in the κth

constraint;
4) �κ: the bound of the κth constraint;
5) ind : the index of grid node, with the subscript nd

representing “node.” Here ind ∈ �;
6) xind

: the voltage drop of node ind at time step kt .

The LP problem (14) can be rewritten as follows:

max xind
=

mkt∑
k=1

ckuk

s.t. 0 ≤
∑
i∈Lκ

uk ≤ �κ (κ = 1, . . . , κt).
(20)

Note that some of the coefficients (ck) may be negative,
which indicates that the currents of some nodes at some
time steps may have reverse effects on the voltage drops. In
other words, the smaller some currents (uk) are, the larger
the voltage drop (xind

) is. This phenomenon is caused by the
existence of inductors. From a mathematical perspective, the
existence of inductors results in a non-M matrix (see [30] for
the definition of M matrix). Thus, some entries of M and/or
N may be negative. From a physical perspective, voltage
drops (on inductors) caused by the changes of currents may be
greater than voltage drops (on resistors) caused by the absolute
values of currents. Hence small currents at previous time steps
may result in large voltage drops at the current time step.

Lemma 3: xind
reaches its maximum value when all the

variables uks associated with negative coefficients cks are set
to zero.

Proof: See Appendix B.
Given the LP problem (20), the first step should be setting

all the uks associated with negative cks to zero. Hence the
number of variables to be determined is smaller than (or equal
to) ktm. Accordingly, some constraints can be deleted if all the
variables it involves have been set to zero. Besides, we sort
the positive cks in descending order and rearrange the variables
following the order of cks. The following notations are used
to further simplify the LP problem:

1) km: total number of positive coefficients (km ≤ mkt);
2) c̄k: positive coefficients in descending order, i.e., c̄1 ≥

· · · ≥ c̄km
(k = 1, . . . , km);

Fig. 3. Two illustrative examples. (a) Hierarchical. (b) Nonhierarchical.

3) ūk: the variables associated with c̄ks (k = 1, . . . , km);
4) κm: total number of constraints left (κm ≤ κt);
5) �κ, Lκ: a rearrange of constraints that still exist (κ =

1, . . . , κm).

The LP problem in (20) is converted to

max xind
=

km∑
k=1

c̄kūk

s.t. 0 ≤
∑
i∈Lκ

ūk ≤ �κ (κ = 1, . . . , κm).
(21)

Note that c̄1 ≥ · · · ≥ c̄km
> 0 in (21). To predict the

voltage overshoot (instead of the voltage drop), the sign of
the objective function should be reversed.

C. Submodular Polyhedron Greedy Algorithm

The constraints in the reformulated LP problem (21) remain
hierarchical. The hierarchical constraint structure has the fol-
lowing property.

Property 1: For any two constraints j1, j2 (1 ≤ j1, j2 ≤
κm), at least one of the following three equations holds: 1)
Lj1 ⊆ Lj2 ; 2) Lj2 ⊆ Lj1 ; and 3) Lj1 ∩ Lj2 = ∅.

We look at two illustrative examples depicted in Fig. 3. The
constraints in Fig. 3(a) are hierarchical, which can be written
explicitly as follows:

0 ≤ ū1 ≤ �1, 0 ≤ ū2 ≤ �2, 0 ≤ ū3 ≤ �3, 0 ≤ ū4 ≤ �4,

ū1 + ū2 ≤ �5, ū3 + ū4 ≤ �6, ū1 + ū2 + ū3 + ū4 ≤ �7.

(22)

In this example, km = 4, κm = 7, L1 = {1}, L2 = {2},
L3 = {3}, L4 = {4}, L5 = {1, 2}, L6 = {3, 4}, L7 = {1, 2, 3, 4}.
The upper bound of the sum of some variables (◦) is denoted
as f (◦). For this example, we have

f (ū1) = min{�1, �5, �7}, f (ū3) = min{�3, �6, �7},
f (ū1 ∪ ū2) = min{�1 + �2, �5, �7},

f (ū1 ∪ ū2 ∪ ū3) = min{f (ū1 ∪ ū2) + f (ū3), �7}.
(23)

Unlike the constraints in Fig. 3(a), the constraints in
Fig. 3(b) are non-hierarchical because L4 ∩ L5 = {1, 2} ∩
{2, 3} = {2} �= ∅ and L4 �⊆ L5 and L5 �⊆ L4.

Theorem 1: The feasible space defined by the constraints
in (21) is a submodular polyhedron.
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Algorithm 3 Submodular Polyhedron Greedy Algorithm

Input: c̄ks, Lκs, �κs, km, κm

Output: ūks

1: for k = 1, . . . , km do
2: Select all the sets Lκ that satisfy k ∈ Lκ. The subscripts

of these Lκs form a set �k;
3: Set ūk to min{�κ|κ ∈ �k};
4: �κ = �κ − ūk for all κ ∈ �k;
5: end for

Algorithm 4 Algorithm Flow for Voltage-Drop Prediction

Input: C, G, B, �, r, kt , �t

Output: xind
, u(k�t)(ind ∈ �, k=1, . . . , kt)

1: Set up hierarchical constraints (10)-(13);
2: for ind ∈ � (in parallel) do
3: cind ,k = ALG1(C, G, B, eind

, r, kt, �t);
4: Set up LP problem as (14);
5: Reformulate (14) as (21) following Subsection IV-B. c̄k,

Lκ, �κ, km and κm are generated in this process;
6: ūk = ALG3(c̄k,Lκ, �κ, km, κm);
7: xind

=
∑km

k=1 c̄kūk;
8: end for
9: xworst = max{xind

|ind ∈ �};

Proof: See Appendix C.
According to Theorem 1, the feasible space in the LP

problem (21) is a submodular polyhedron, which enables a
fast greedy algorithm as shown in Algorithm 3.

Theorem 2: ū = [ū1, . . . , ūkm
]T solved by Algorithm 3 is

the optimal solution of LP problem (21).
Proof: See Appendix D.

D. Algorithm Flow and Complexity Analysis

The complete algorithm flow for worst-case voltage drop
prediction is summarized as Algorithm 4, where ALG1 and
ALG3 represent Algorithm 1 and Algorithm 3, respectively.

Given different time step lengths, Algorithm 4 can be
adapted by replacing ALG1 in Step 4 by ALG2. The com-
plexity of Algorithm 4 is analyzed below.

1) Complexity of coefficient computation (Algorithm 1).
a) Steps 1–10. These steps involve one sparse LU

decomposition, r forward and backward substitu-
tions, r(r − 1)/2 inner products, r(r − 1)/2 vector
subtractions. As GT is a sparse matrix with O(n)
nonzero entries, the complexity of a sparse LU
decomposition is O(nα) (1 < α < 2) and the
complexity of one forward (backward) substitution
is O(nβ) (1 < β < 2). Thus, the complexity of
Steps 1–10 is O(nα + nβr + nr2).

b) Steps 11–12. The complexity of these two steps is
O(nr).

c) Steps 13–19. These steps involve one LU decom-
position and kt forward and backward substitu-
tions. The complexity is O(r3 + r2kt).

In summary, the complexity of 12–19 is negligible com-
pared with the complexity of Steps 1–10. Therefore, the

overall complexity of Algorithm 1 is O(nα + nβr + nr2).
2) Complexity of problem reformulation: problem reformu-

lation process involves finding negative cks and sorting
positive cks. The complexity of former is O(mkt). Using
efficient sorting algorithm, the complexity of the latter
is O(km log km) with km ≤ mkt .

3) Complexity of SPGA: Algorithm 3 involves one “min”
function and |�k| scalar subtractions in each cycle. Here
|�k| denotes cardinality of the set �k. |�k| roughly
equals to q + 3, the total number of constraint levels.
Thus, the complexity of one cycle is O(q+3). The overall
complexity of Algorithm 3 is O(kmq).

Therefore, the complexity for analysis of one node in � is
O(nα + nβr + nr2 + km log km + kmq). The total complexity is
O

(|�|(nα + nβr + nr2 + km log km + kmq)
)
.

1) Comparison with Direct Coefficient Computation: The
complexity of direct coefficient computation (as in [19]) is
O(nα+ktn

β) (using notations in this paper). Note that r is small
(<kt) and independent of total number of time steps. Thus,
complexity of Algorithm 1 is less than that of direct computa-
tion. Moreover, the complexity of Algorithm 1 is independent
of kt which enables more time steps to be considered.

2) Comparison with Standard LP Solver: Standard LP
methods include simplex algorithm, ellipsoid algorithm, and
interior point algorithm [39]. Simplex algorithm is theoreti-
cally NP-hard and has a complexity larger than O(km

3) in most
practical examples. The complexity of ellipsoid algorithm
is O(km

4). The complexity of interior point algorithm is
O(km

3.5). Here km is the number of variables. In contrast, the
complexity of SPGA is O(km log km +kmq) (including problem
reformulation). We thereby conclude that SPGA dramatically
reduces the computational complexity.

V. Numerical Examples

A. Data Description

We generate four 3-D power grids as benchmarks. Each of
the power grids contains four metal layers (namely, M1, M3,
M6, and AP layers) and can be modeled as an RCL network.
The effects of package are also considered by including
package resistors, package inductors, and package capacitors
in the RCL network. The parameters of these four power grids
are shown in Table I. LP problems are set up to predict voltage
drops of the power grids, with both local constraints and global
(including global current, block-level power, and inter-block-
level power) constraints. The experiments are run on a Linux
workstation with 2.5 GHz Intel Xeon CPU and 8 GB RAM.

B. Comparison of SPGA with Standard LP Solver

In this experiment, we compare the runtime and accuracy of
standard LP solver with that of SPGA. The results (single node
prediction) are recorded in Table II. Table II also reports the
number of variables and global constraints of the LP problems.
“Setup” time is the same for both methods as they both employ
Algorithm 1 to calculate coefficients. For PG-1 and PG-2,
the voltage predictions of standard LP solver converge to the
values obtained by SPGA with the increasing of maximum
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TABLE I

Parameters of Power Grids Used in the Experiments

Power Grids Nodes (N) Drains (m) Matrix Size (n) No of Rs No of Cs No of Ls Mean of Rs Mean of Cs Mean of Ls
PG-1 594 297 878 494 279 284 5.82 S 1.50 pF 4.35 pH
PG-2 18 480 1540 27 646 13 651 9121 9166 4.70 S 0.466 pF 0.109 pH
PG-3 78 542 6546 117 648 56 327 39 021 39 106 24.7 S 0.103 pF 3.82 pH
PG-4 1 127 355 93 947 1 660 823 805 253 562 679 562 858 17.7 S 0.103 pF 3.82 pH

Fig. 4. Worst-case current waveforms of one current drain in PG-2 under
different constraints. The second to sixth subfigures are current waveforms
under constraints 1 to 5. The first subfigure is an overlap the second to six
subfigures.

Fig. 5. Worst-case voltage drop on one node in PG-2 under different
constraints.

iteration number. This fact indicates that standard LP solver
and SPGA give the same voltage drop prediction provided
that the maximum iteration number is large enough. For PG-3
and PG-4, the standard LP solver cannot converge in the given
maximum iteration number. The speedup of SPGA is recorded
in the last column.

From Table II we conclude that SPGA greatly (53×∼ ∞)
reduces the runtime for worst-case voltage drop prediction
while at the same time provides guaranteed optimal solution.

Fig. 6. Worst-case current waveforms of one current drain in PG-3 under
different constraints. The second to sixth subfigures are current waveforms
under constraints 1 to 5. The first subfigure is an overlap the second to six
subfigures.

Fig. 7. Worst-case voltage drop on one node in PG-3 under different
constraints. The circles label the regions where voltage overshoots occur.

Besides, it can be seen from Table II that the runtime of SPGA
increases almost linearly with problem size. This agrees with
the complexity analysis in Section IV-D.

C. Impact of Power Constraints (Hierarchy)

In this experiment, we show the impact of power constraints
(pcs) on voltage drop predictions. We study different kinds of
constraint structures: 1) ones including current constraints only
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TABLE II

Comparison of Standard LP Solver and SPGA

LP Problem Standard LP Solver Proposed Algorithm
Speedup

Var’s Con’s Setup Solving Voltage Setup Solving Voltage

PG-1
29.7K 1.5K 0.136 s 4.22 s 16.1 s 23.8 s 6.47 mV 18.1 mV 20.9 mV 0.136 s 3.79e-3 s 20.9 mV

176×iter = 50 iter = 200 iter = 300 iter = 50 iter = 200 iter = 300

PG-2
154K 7.8K 5.80 s 27.2 s 177 s 302 s 5.79 mV 14.9 mV 19.2 mV 5.80 s 3.68e-2 s 19.2 mV

53×iter = 50 iter = 300 iter = 500 iter = 50 iter = 300 iter = 500

PG-3
655K 33K 19.8 s 145 s 803 s 1395 s 4.07 mV 9.32 mV 11.7 mV 19.8 s 0.266 s 13.4 mV

>70.5×iter = 50 iter = 300 iter = 500 iter = 50 iter = 300 iter = 500

PG-4
9.39M 475K 753 s 142 s 743 s Fail 790 mV 5.63e5 mV Fail 753 s 3.83 s 15.0 mV ∞iter = 1 iter = 5 iter = 10 iter = 1 iter = 5 iter = 10

TABLE III

Impact of Power Constraints

Without pcs Block pcs q = 1 q = 2 q = 3
Over-estimationVoltage Time Voltage Time Voltage Time Voltage Time Voltage Time

PG-1
One node 17.8 mV 0.136 s 16.4 mV 0.136 s 16.3 mV 0.136 s 16.1 mV 0.136 s 15.8 mV 0.137 s 8.54%–12.7%
Complete 31.4 mV 40.2 s 27.8 mV 40.2 s 26.2 mV 40.3 s 24.9 mV 40.4 s 23.5 mV 40.7 s 12.9%–33.6%

PG-2
One node 35.9 mV 6.12 s 16.4 mV 6.19 s 13.6 mV 6.36 s 11.4 mV 6.37 s 8.77 mV 6.44 s 119%–309%
Complete 69.8 mV 9.41e3 s 29.5 mV 9.53e3 s 24.0 mV 9.81e3 s 20.9 mV 9.82e3 s 17.6 mV 9.89 s 137%–297%

PG-3 One node 16.8 mV 21.0 s 14.3 mV 21.3 s 14.0 mV 21.8 s 13.7 mV 22.2 s 13.3 mV 22.6 s 17.5%–26.3%
PG-4 One node 20.1 mV 749 s 16.5 mV 753 s 16.2 mV 759 s 15.8 mV 765 s 15.4 mV 771 s 21.8%–30.5%

TABLE IV

Comparison of MOR-Based Coefficient Computation with Direct Ones

Direct Method MOR Method Relative Error
SpeedupVoltage Drop CPU Time Reduced Order Voltage Drop CPU Time Coefficients Voltage Drop

PG-1 16.8 mV 0.411 s 20 16.9 mV 0.0895 s 1.31e-1 8.57e-3 4.59×
PG-2 19.3 mV 19.9 s 30 19.3 mV 5.85 s 3.32e-5 3.23e-7 3.40×
PG-3 13.5 mV 54.3 s 40 13.5 mV 20.1s 1.76e-3 6.19e-5 2.70×
PG-4 14.9 mV 1587 50 14.5 mV 772 s 1.91e-1 3.03e-2 2.06×

(without pcs); 2) ones including block level pcs (block pcs);
3) ones including one-level inter-block pcs (q = 1 pcs); 4) ones
including two-level inter-block pcs (q = 2 pcs); and 5) ones in-
cluding three-level inter-block pcs (q = 3 pcs). The worst-case
voltage drop and CPU time under every constraint structure
are reported in Table III. For PG-1 and PG-2, we also perform
complete predictions (see Section IV-A). The over-estimation
in the table is calculated by comparing the voltage drop under
constraint 1 with that under constraints 2, 3, 4, and 5. From
Table III, we conclude that the worst-case voltage drop will
be significantly over-estimated if we do not consider power
constraints. On the other hand, the runtime for all constraint
structures is roughly the same, because the setup time (instead
of the solving time) dominates the overall runtime.

Remarks: the complete prediction in Table III is executed
sequentially. As the predictions for nodes (ind ∈ �) are
independent of each other, Algorithm 4 can be executed in
parallel. In this case, the runtime for complete prediction can
be greatly reduced.

To provide an intuitive picture, we also plot the current
waveforms and voltage drops at some particular nodes for PG-
2 and PG-3, as shown in Figs. 4–7. From Figs. 4 and 6, we
can see that the current waveforms satisfy 1 > 2 > 3 > 4 > 5.
Similarly, Figs. 5 and 7 show that the voltage drops also satisfy
1 > 2 > 3 > 4 > 5. In Fig. 7, there exist voltage overshoots
(i.e., the voltage of one node is larger than external voltage

supply). This is because that the mean value of inductance
is relatively large compared with that of capacitance for PG-
3. Thus the inductance effects play an important role in the
voltage drops, which may result in negative voltage drops.

D. Comparison of MOR-Based with Direct Coefficient
Computation

In this experiment, we compare the direct coefficient
computation method (as in [19]) with Algorithm 1. The
results are reported in Table IV. The reduced order we used
in Algorithm 1 is recorded in the table. The relative error of
coefficients is calculated by

errc =
‖[ci,1, · · · , ci,kt

] − [c′
i,1, · · · , c′

i,kt
]‖2

‖[c′
i,1, · · · , c′

i,kt
]‖2

(24)

where ci,k is the output of Algorithm 1 and c′
i,1 is the

counterpart calculated by direct method. The relative error of
voltage drop is calculated by

errv =
|xi − x′

i|
|x′

i|
(25)

where xi is the voltage drop calculated with ci,k and x′
i is the

voltage drop calculated with c′
i,k.

We conclude from Table IV that coefficient computation
based on MOR is much faster than direct method, while at



118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

the same time provides an accurate voltage drop prediction.
Note that the relative error of voltage drop is much smaller
than that of coefficients. The reason is that when we employ
Algorithm 3 to solve the LP problems, only the order of c̄ks
has influence on the result. In other words, although model
reduction may introduce inaccuracy in coefficients, the voltage
drop prediction will be still accurate as long as the order of
c̄ks is not changed significantly.

VI. Conclusion

A novel early-stage power grid verification algorithm based
on hierarchical constraints has been proposed in this paper.
Power constraints are introduced to provide more realistic
worst-case voltage drop predictions. MOR-based coefficient
computation is proposed to reduce the computation complexity
of formulating the LP problems. The hierarchical constraint
structure enables SPGA which dramatically reduces the com-
plexity of solving the LP problems. Experimental results have
shown that: 1) power constraints reduces the over-pessimism in
worst-case voltage drop predictions; 2) MOR-based methods
reduce the CPU time for formulating the LP problems with
negligible errors; and 3) SPGA dramatically reduces the CPU
time for solving the LP problems and is guaranteed to deliver
the optimal solutions.

APPENDIX A

PROOF OF LEMMA 2

max{xi(kτ�t)} is solved under the same constraints as (14),

with the objective function being xi(kτ�t) =
kτ∑

k=1
ĉi,ku(k�t).

Here ĉi,k is the ith row of Mkτ−kN . It is readily verified
that ci,k+kt−kτ

= Mkt−(k+kt−kτ )N = ĉi,k. Assume max{xi(kτ�t)}
is reached when the current patterns are u(τ)(k�t). Let
u(t)(k�t) = 0 for k = 1, . . . , kt − kτ and u(t)(k�t) = u(τ)((k −
kt + kτ)�t) for k = kt − kτ + 1, . . . , kt . We have that the
current waveform u(t)(k�t) also satisfies (10)–(13) if u(τ)(k�t)
satisfies (10)–(13). On the other hand

xi(kt�t) =
kt∑

k=1

ci,ku
(t)(k�t) =

kt∑
k=kt−kτ+1

ci,ku
(t)(k�t)

(k′ = k − kt + kτ) =
kτ∑

k′=1

ci,k′+tt−kτ
u(t)((k′ + tt − kτ)�t)

=
kτ∑

k′=1

ĉi,k′u(τ)(k′�t) = max{xi(kτ�t)}.

Therefore, max{xi(kt�t)} ≥ max{xi(kτ�t)}.

APPENDIX B

PROOF OF LEMMA 3

Assume xind
reaches its maximum value at a point u(1) with

at least one variable uj associated with negative coefficient cj

being positive. Then we construct a new point u(2) by setting

Fig. 8. Illustrative pictures for the proof of Theorem 1. (a) First case.
(b) Second case.

uj to zero. It is readily verified that u(2) also satisfies the con-
straints in (20) because for any subset L we have

∑
i∈L u

(2)
k ≤∑

i∈L u
(1)
k . On the other hand, xind

|u=u(2) > xind
|u=u(1) , which

conflicts with the assumption that u(1) is optimal.

APPENDIX C

PROOF OF THEOREM 1

Consider ∀A ⊆ {1, . . . , km}, ai, aj ∈ {1, . . . , km}\A. There
exist four types of constraints in total that involve more than
one party among A, ai and aj: 1) ones that involve ai and aj

but do not involve A; 2) ones that involve aj and A but do not
involve ai; 3) ones that involve ai and A but do not involve aj;
and 4) ones that involve aj , ai and A. Among these four types,
1 and 2 cannot exist simultaneously (according to Property 1).
Similarly, 1 and 3 cannot exist simultaneously. Therefore, we
only have to consider two general cases: 1) (1) and (4), and
2) (2), (3), and (4). See Fig. 8.

For 1), let the total number of type-(1) constraints be x and
the total number of type-(4) constraints be y. Assume WLOG
that

Li1 ⊂ · · · ⊂ Lix︸ ︷︷ ︸
type-(1)

⊂ Lj1 ⊂ Ljy︸ ︷︷ ︸
type-(2)

.

Let the subsets of A involved in constraints j1, . . . , jy

be Aj1 , . . . , Ajy
, respectively. We have Aj1 ⊆ . . . ⊆ Ajy

.
Accordingly

f (A ∪ ai) − f (A) = min
{
f (ai), �j1 − f (Aj1 ), . . . , �jy − f (Ajy )

}

f (A ∪ aj ∪ ai) − f (A ∪ aj) = min{f (ai), �i1 − f (aj), . . . , �ix − f (aj),

�j1 − f (Aj1 ∪ aj), . . . , �jy − f (Ajy ∪ aj)}.

Because �j1 −f (Aj1 ∪aj) ≤ �j1 −f (Aj1 ), · · · , �jy
−f (Ajy

∪
aj) ≤ �jy

− f (Ajy
), we have f (A ∪ aj ∪ ai) − f (A ∪ aj) ≤

f (A ∪ ai) − f (A).
For 2), let the total number of type-(2) constraints be y, the

total number of type-(3) constraints be x, and the total number
of type-(4) constraints be z. Assume WLOG that

Li1 ⊂ · · · ⊂ Lix︸ ︷︷ ︸
type-(3)

⊂ Ll1 ⊂ Llz︸ ︷︷ ︸
type-(4)

; Lj1 ⊂ · · · ⊂ Ljy︸ ︷︷ ︸
type-(2)

⊂ Ll1 ⊂ Llz︸ ︷︷ ︸
type-(4)

.
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Let the subsets of A involved in the constraints i1, . . . , ix
and l1, . . . , lz be Ai1 , . . . , Aix and Al1 , . . . , Alz , respectively.
We have Ai1 ⊆ · · · ⊆ Aix ⊆ Al1 ⊆ · · · ⊆ Alz . Accordingly

f (A ∪ ai) − f (A) = min{f (ai), �i1 − f (Ai1 ), . . . , �ix − f (Aix ),

�l1 − f (Al1 ), . . . , �lz − f (Alz )}
f (A ∪ aj ∪ ai) − f (A ∪ aj) = min{f (ai), �i1 − f (Ai1 ), . . . ,

�ix − f (Aix ), �l1 − f (Al1∪aj
), . . . , �lz − f (Alz∪aj

)}.

Because �l1 −f (Al1 ∪ aj) ≤ �l1 −f (Al1 ), · · · , �lz −f (Alz ∪
aj) ≤ �lz − f (Alz ), we have f (A ∪ aj ∪ ai) − f (A ∪ aj) ≤
f (A ∪ ai) − f (A).

Therefore, f (A ∪ aj ∪ ai) − f (A ∪ aj) ≤ f (A ∪ ai) − f (A)
always holds. According to Lemma 1, we have the f (◦) being
a submodular function and the feasible space of (21) is a
submodular polyhedron.

APPENDIX D

PROOF OF THEOREM 2

The LP problem (21) satisfies the following properties:
1) the objective function is a linear combination of variables;
2) all the coefficients c̄ks are positive; and 3) the feasible
space defined by the constraints is a submodular polyhedron.
According to the theory of submodular optimization [refer to
Theorem (19) in [33] for details], the solution solved by SPGA
(Algorithm 3) is optimal.
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