108 research outputs found

    Improved Approximation Algorithms for Multidepot Capacitated Vehicle Routing

    Full text link
    The Multidepot Capacitated Vehicle Routing Problem (MCVRP) is a well-known variant of the classic Capacitated Vehicle Routing Problem (CVRP), where we need to route capacitated vehicles located in multiple depots to serve customers' demand such that each vehicle must return to the depot it starts, and the total traveling distance is minimized. There are three variants of MCVRP according to the property of the demand: unit-demand, splittable and unsplittable. We study approximation algorithms for kk-MCVRP in metric graphs where kk is the capacity of each vehicle, and all three versions are APX-hard for any constant k3k\geq 3. Previously, Li and Simchi-Levi proposed a (2α+1α/k)(2\alpha+1-\alpha/k)-approximation algorithm for splittable and unit-demand kk-MCVRP and a (2α+22α/k)(2\alpha+2-2\alpha/k)-approximation algorithm for unsplittable kk-MCVRP, where α=3/21036\alpha=3/2-10^{-36} is the current best approximation ratio for metric TSP. Harks et al. further improved the ratio to 4 for the unsplittable case. We give a (41/1500)(4-1/1500)-approximation algorithm for unit-demand and splittable kk-MCVRP, and a (41/50000)(4-1/50000)-approximation algorithm for unsplittable kk-MCVRP. Furthermore, we give a (3+ln2max{Θ(1/k),1/9000})(3+\ln2-\max\{\Theta(1/\sqrt{k}),1/9000\})-approximation algorithm for splittable and unit-demand kk-MCVRP, and a (3+ln2Θ(1/k))(3+\ln2-\Theta(1/\sqrt{k}))-approximation algorithm for unsplittable kk-MCVRP under the assumption that the capacity kk is a fixed constant. Our results are based on recent progress in approximating CVRP

    Locating Depots for Capacitated Vehicle Routing

    Full text link
    We study a location-routing problem in the context of capacitated vehicle routing. The input is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for this problem. To achieve this result, we reduce to the k-median-forest problem, which generalizes both k-median and minimum spanning tree, and which might be of independent interest. We give a (3+c)-approximation algorithm for k-median-forest, which leads to a (12+c)-approximation algorithm for the above location-routing problem, for any constant c>0. The algorithm for k-median-forest is just t-swap local search, and we prove that it has locality gap 3+2/t; this generalizes the corresponding result known for k-median. Finally we consider the "non-uniform" k-median-forest problem which has different cost functions for the MST and k-median parts. We show that the locality gap for this problem is unbounded even under multi-swaps, which contrasts with the uniform case. Nevertheless, we obtain a constant-factor approximation algorithm, using an LP based approach.Comment: 12 pages, 1 figur

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    Genetic Algorithm applied to the Capacitated Vehicle Routing Problem: an analysis of the influence of different encoding schemes on the population behavior

    Get PDF
    Genetic Algorithm (GA) is an optimization method that has been widely used in the solution of NP-Hard (Non-deterministic Polynomial-time) problems, among which is the Vehicle Routing Problem (VRP), widely known in the literature due to its applications in the logistics and supply sectors, and which is considered in this work. However, finding solution for any optimization problem using GA presupposes the adoption of a solution encoding scheme that, according to the literature, impacts its performance. However, there is a lack of works in the literature exploring this theme. In this work we carry out an analysis of the main encoding schemes (binary and integer) employed in the GA for the solution of the capacitated VRP (CVRP), in order to evaluate the influence of each of them on the behavior of the GA population and, consequently, on the algorithm performance. To this end, we developed a computational tool that allows visualizing the GA individuals (solutions) mapped to a two-dimensional space. Based on the experiments conducted, we observed that, in general, integer vectors provide better conditions for GA individuals to explore the solution space, leading to better results. The results found, besides corroborating some assumptions in the literature, may justify the preference for integer encoding schemes to solve CVRP in recent literature works. In addition, this study can contribute to the choice and/or proposition of heuristics that allow GA to search for better quality solutions for the VRP with less computational effort

    Probabilistic Analysis of Euclidean Capacitated Vehicle Routing

    Get PDF
    We give a probabilistic analysis of the unit-demand Euclidean capacitated vehicle routing problem in the random setting, where the input distribution consists of n unit-demand customers modeled as independent, identically distributed uniform random points in the two-dimensional plane. The objective is to visit every customer using a set of routes of minimum total length, such that each route visits at most k customers, where k is the capacity of a vehicle. All of the following results are in the random setting and hold asymptotically almost surely. The best known polynomial-time approximation for this problem is the iterated tour partitioning (ITP) algorithm, introduced in 1985 by Haimovich and Rinnooy Kan. They showed that the ITP algorithm is near-optimal when k is either o(?n) or ?(?n), and they asked whether the ITP algorithm was "also effective in the intermediate range". In this work, we show that when k = ?n, the ITP algorithm is at best a (1+c?)-approximation for some positive constant c?. On the other hand, the approximation ratio of the ITP algorithm was known to be at most 0.995+? due to Bompadre, Dror, and Orlin, where ? is the approximation ratio of an algorithm for the traveling salesman problem. In this work, we improve the upper bound on the approximation ratio of the ITP algorithm to 0.915+?. Our analysis is based on a new lower bound on the optimal cost for the metric capacitated vehicle routing problem, which may be of independent interest

    REVISIÓN DE LA LITERATURA DEL PROBLEMA DE RUTEO DE VEHÍCULOS EN UN CONTEXTO DE TRANSPORTE VERDE

    Get PDF
    In the efficient management of the supply chain the optimal management of transport of consumables and finished products appears. The costs associated with transport have direct impact on the final value consumers must pay, which in addition to requiring competitive products also demand that they are generated in environmentally friendly organizations. Aware of this reality, this document is intended to be a starting point for Master's and Doctoral degree students who want to work in a line of research recently proposed: green routing. The state of the art of the vehicle routing problem is presented in this paper, listing its variants, models and methodologies for solution. Furthermore, the proposed interaction between variants of classical routing problems and environmental effects of its operations, known in the literature as Green-VRP is presented. The goal is to generate a discussion in which mathematical models and solution strategies that can be applied within organizations that consider within their objectives an efficient and sustainable operation are posed. En el gerenciamiento eficiente de la cadena de suministro aparece la gestión óptima del transporte de insumos y productos terminados. Los costos asociados al transporte tienen impacto directo sobre el valor final que deben pagar los consumidores, que además de requerir productos competitivos también exigen que los mismos sean generados en organizaciones amigables con el medioambiente. Consientes de esa realidad este documento pretende ser un punto de partida para estudiantes de maestría y doctorado que quieran trabajar en una línea de investigación propuesta recientemente: el ruteo verde. En este trabajo se muestra un estado del arte del problema de ruteo de vehículos, enumerando sus variantes, modelos y metodologías de solución. Además, se presenta la interacción que se ha propuesto entre variantes clásicas de los problemas de ruteo y los efectos ambientales de su operación, denominados en la literatura como Green-VRP. El objetivo es generar una discusión donde se planteen modelos matemáticos y estrategias de solución que puedan ser aplicadas en organizaciones que consideren dentro de sus objetivos una operación eficiente y sustentable. Document type: Articl

    Revisión de la literatura del problema de ruteo de vehículos en un contexto de transporte verde

    Get PDF
    In the efficient management of the supply chain the optimal management of transport of consumables and finished products appears. The costs associated with transport have direct impact on the final value consumers must pay, which in addition to requiring competitive products also demand that they are generated in environmentally friendly organizations. Aware of this reality, this document is intended to be a starting point for Master’s and Doctoral degree students who want to work in a line of research recently proposed: green routing. The state of the art of the vehicle routing problem is presented in this paper, listing its variants, models and methodologies for solution. Furthermore, the proposed interaction between variants of classical routing problems and environmental effects of its operations, known in the literature as Green- VRP is presented. The goal is to generate a discussion in which mathematical models and solution strategies that can be applied within organizations that consider within their objectives an efficient and sustainable operation are posed.En el gerenciamiento eficiente de la cadena de suministro aparece la gestión óptima del transporte de insumos y productos terminados. Los costos asociados al transporte tienen impacto directo sobre el valor final que deben pagar los consumidores, que además de requerir productos competitivos también exigen que los mismos sean generados en organizaciones amigables con el medioambiente. Consientes de esa realidad este documento pretende ser un punto de partida para estudiantes de maestría y doctorado que quieran trabajar en una línea de investigación propuesta recientemente: el ruteo verde. En este trabajo se muestra un estado del arte del problema de ruteo de vehículos, enumerando sus variantes, modelos y metodologías de solución. Además, se presenta la interacción que se ha propuesto entre variantes clásicas de los problemas de ruteo y los efectos ambientales de su operación, denominados en la literatura como Green-VRP. El objetivo es generar una discusión donde se planteen modelos matemáticos y estrategias de solución que puedan ser aplicadas en organizaciones que consideren dentro de sus objetivos una operación eficiente y sustentable

    A dynamic programming approach to multi-objective time-dependent capacitated single vehicle routing problems with time windows

    Get PDF
    A single vehicle performs several tours to serve a set of geographically dis- persed customers. The vehicle has a finite capacity and is only available for a limited amount of time. Moreover, tours' duration is restricted (e.g. due to quality or security issues). Because of road congestion, travel times are time-dependent: depending on the departure time at a customer, a different travel time is incurred. Furthermore, all customers need to get delivered in their specicified time windows. Contrary to most of the literature, we con- sider a multi-objective cost function: simultaneously minimizing the total time traveled including waiting times at customers due to time windows, and maximizing the total demand fulfilled. Efficient dynamic programming algorithms are developed to compute the Pareto set of routes, assuming a specific structure for time windows and travel time profiles
    corecore