551 research outputs found

    Combining multiscale features for classification of hyperspectral images: a sequence based kernel approach

    Get PDF
    Nowadays, hyperspectral image classification widely copes with spatial information to improve accuracy. One of the most popular way to integrate such information is to extract hierarchical features from a multiscale segmentation. In the classification context, the extracted features are commonly concatenated into a long vector (also called stacked vector), on which is applied a conventional vector-based machine learning technique (e.g. SVM with Gaussian kernel). In this paper, we rather propose to use a sequence structured kernel: the spectrum kernel. We show that the conventional stacked vector-based kernel is actually a special case of this kernel. Experiments conducted on various publicly available hyperspectral datasets illustrate the improvement of the proposed kernel w.r.t. conventional ones using the same hierarchical spatial features.Comment: 8th IEEE GRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2016), UCLA in Los Angeles, California, U.

    Robust hyperspectral image classification with rejection fields

    Full text link
    In this paper we present a novel method for robust hyperspectral image classification using context and rejection. Hyperspectral image classification is generally an ill-posed image problem where pixels may belong to unknown classes, and obtaining representative and complete training sets is costly. Furthermore, the need for high classification accuracies is frequently greater than the need to classify the entire image. We approach this problem with a robust classification method that combines classification with context with classification with rejection. A rejection field that will guide the rejection is derived from the classification with contextual information obtained by using the SegSALSA algorithm. We validate our method in real hyperspectral data and show that the performance gains obtained from the rejection fields are equivalent to an increase the dimension of the training sets.Comment: This paper was submitted to IEEE WHISPERS 2015: 7th Workshop on Hyperspectral Image and Signal Processing: Evolution on Remote Sensing. 5 pages, 1 figure, 2 table

    A Variable Splitting Augmented Lagrangian Approach to Linear Spectral Unmixing

    Full text link
    This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed \emph{simplex identification via split augmented Lagrangian} (SISAL). Following Craig's seminal ideas, hyperspectral linear unmixing amounts to finding the minimum volume simplex containing the hyperspectral vectors. This is a nonconvex optimization problem with convex constraints. In the proposed approach, the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The obtained problem is solved by a sequence of augmented Lagrangian optimizations. The resulting algorithm is very fast and able so solve problems far beyond the reach of the current state-of-the art algorithms. The effectiveness of SISAL is illustrated with simulated data.Comment: 4 pages, 2 figures. Submitted to "First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing, 2009

    Stochastic Perturbations on Low-Rank Hyperspectral Data for Image Classification

    Get PDF
    Hyperspectral imagery (HSI) contains hundreds of narrow contiguous bands of spectral signals. These signals, which form spectral signatures, provide a wealth of information that can be used to characterize material substances. In recent years machine learning has been used extensively to classify HSI data. While many excellent HSI classifiers have been proposed and deployed, the focus has been more on the design of the algorithms. This paper presents a novel data preprocessing method (LRSP) to improve classification accuracy by applying stochastic perturbations to the low-rank constituent of the dataset. The proposed architecture is composed of a low-rank and sparse decomposition, a degradation function and a constraint least squares filter. Experimental results confirm that popular state-of-the-art HSI classifiers can produce better classification results if supplied by LRSP-altered datasets rather than the original HSI datasets.

    Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing

    Full text link
    In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric effects, thus requiring robust techniques for the unmixing problem. This paper presents a robust supervised spectral unmixing approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem considers the fully-constrained unmixing, with both the non-negativity and sum-to-one constraints, while the second one deals with the non-negativity and the sparsity-promoting of the abundances. The corresponding optimization problems are solved efficiently using an alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images validate the performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing is robust to outlier bands.Comment: 23 page
    corecore