
International Journal of Artificial Intelligence Research  ISSN: 2579-7298 
Vol 5, No 1, June 2021, pp.1-12   

 

DOI: 10.29099/ijair.v5i1.196  W : http://ijair.id | E : info@ijair.id 

Stochastic Perturbations on Low-Rank Hyperspectral Data for 

Image Classification 

Alex Sumarsonoa,1,*, Farnaz Ganjeizadehb,2, Ryan Tomasic,3 

a California State University East Bay, 25800 Carlos Bee Blvd., Hayward, CA 94542, USA 
b California State University East Bay, 25800 Carlos Bee Blvd., Hayward, CA 94542, USA 
c California State University East Bay, 25800 Carlos Bee Blvd., Hayward, CA 94542, USA 

1 alex.sumarsono@csueastbay.edu*; 2 farnaz.ganjeizadeh@csueastbay.edu; 3 rtomasi@horizon.csueastbay.edu 
* corresponding author 

 

I. Introduction 

Hyperspectral images (HSI) of an object or a scene are typically acquired by electro-optical remote 
sensors. This is achievable because the materials in various objects in a scene inherently reflect, absorb 
and emit electromagnetic radiation. Modern hyperspectral sensors can capture a portion of the 
electromagnetic spectrum from the visible region (0.4 – 0.7 um) through the near-infrared region 
(approximately 2.4 um) in hundreds of narrow contiguous bands of about 10 nm wide calibrated to 
within 1 nm [1,2]. The radiation detected by these sensors over a sufficiently broad spectral band 
creates a distinct spectral signature that can be used to characterize and identify a certain kind of 
material. An example is shown in Figure 1. The image on the left is the image of an urban area in the 
Washington DC mall. It consists of three bands out of 210 bands collected by the sensor. The image 
on the right is the spectral plots of three data pixels as a function wavelength by spectral band number, 
each of which shows the corresponding material (vegetation, roof and water). 

 

Fig. 1. Image of data pixels of three materials as a function of wavelength 
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Hyperspectral imagery (HSI) contains hundreds of narrow contiguous 
bands of spectral signals. These signals, which form spectral 
signatures, provide a wealth of information that can be used to 
characterize material substances. In recent years machine learning has 
been used extensively to classify HSI data. While many excellent HSI 
classifiers have been proposed and deployed, the focus has been more 
on the design of the algorithms. This paper presents a novel data 
preprocessing method (LRSP) to improve classification accuracy by 
applying stochastic perturbations to the low-rank constituent of the 
dataset. The proposed architecture is composed of a low-rank and 
sparse decomposition, a degradation function and a constraint least 
squares filter. Experimental results confirm that popular state-of-the-
art HSI classifiers can produce better classification results if supplied 
by LRSP-altered datasets rather than the original HSI datasets. 
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The spatial and spectral information of an HSI dataset is typically organized as a data cube, similar 
to what is depicted in Figure 2. The face and the depth display the spatial coordinates and the spectral 
bands, respectively. Each band belongs to a narrowband image of the surface covered by the field of 
view of the sensor [3]. Therefore, every image pixel is a vector pixel where each element is a member 
of a spectral band. The vector provides a spectral signature characterizing the materials within the 
pixel. 

 

 

Fig. 2. Hyperspectrometry of 3D data cube 

Applications of hyperspectral imagery span across many disciplines including but not limited to 
resource management, agriculture, mineral exploration and environmental monitoring [4-7]. In recent 
years machine learning has been used to classify and exploit HSI datasets. Many excellent HSI 
classifiers have been proposed and deployed, such as Class Feature Weighted Hyperspectral Image 
Classification (CFW-HSIC), Contextual Information Subspace Based Hyperspectral Image 
Classification (CIS-HSI), Semi-supervised HSI Classification using Self Training and Data Editing 
(RDE_self-training), Multiple Features and Nearest Regularized Subspace (MFNRS), Discriminative 
Marginalized Least Squares Regression (DMLSR) and Iterative Support Vector Machine (ISVM). 
CFW-HSIC [8] deals with class variability by computing the inter-class feature probabilities as class 
weights to generalize commonly used overall accuracy from the extracted features from classes of 
interest. CIS-HSI [9] uses decision fusion at a super-pixel level to generate the classification result. A 
super-pixel is formed by exploiting the contextual information among the spatial features in the data. 
RDE_self-training [10] is a semi-supervised learning algorithm with data editing. It revises the labels 
of mislabeled samples based on a nearest neighbor voting rule.  The training set is then enlarged to 
include some unlabeled samples selected from a pool of candidates drawn from some ordered 
probability of the revised samples. MFNRS [11] proposes a residual fusion strategy with multiple 
features that include local binary patterns, Gabor features and the original spectral signatures to 
represent the test pixel from different perspectives to enhance the classifier’s discriminative ability. 
DMLSR [12] enhances the discriminative power by taking the class separability and data 
reconstruction ability simultaneously. It employs Fisher criterion and imposes data reconstruction 
constraints to avoid overfitting and to improve classification performance. ISVM [13] is an iterative 
version of SVM applied to HSI classification. It extracts spatial information iteratively via feedback 
loops. A Gaussian filter is used to obtain the spatial information of the classification map to combine 
with the currently processed hyperspectral cube for the next iteration. 

These approaches tend to focus on the design of the classifiers to improve the performance. While 
performance improvement is also our motivation, we are taking a different approach by appropriately 
applying preprocessed data rather than the original data to the algorithm. In this paper we propose a 
novel data preprocessing method to improve classification accuracy by perturbing the statistical nature 
of the HSI data. Perturbations are achieved by adding stochasticity to the low-rank component of the 
data, hence the name Low-Rank Stochastic Perturbation (LRSP). The new dataset will then be 
presented to an HSI classifier. We will show that off-the-shelf state-of-the art HSI classifiers can 
produce higher classification results by using LRSP-generated datasets rather than the original HSI 
datasets. 
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II. Proposed Method 

Due to the nature of the dataset, many of the problems in HSI image classification can be attributed 
to the gradients that are trapped in local optima. The idea behind the LRSP method is to slightly 
perturb the convexity of the data by adding some stochasticity. It should be sufficiently meaningful 
that it can push the gradients out of a local minimum as conceptually depicted in Figure 3. At the same 
time, it should be relatively small so it does not change the underlying structure of the dataset. 

 

Fig. 3. Example of a figure caption. 

 

LRSP consists of three parts: LRS decomposition, degradation function and CLS filtering. Figure 
4 shows the design flow of the proposed method. The original HSI dataset is first decomposed into its 
low-rank and sparse components using the low-rank and sparse (LRS) decomposition method. The 
low rank data matrix is the support matrix that represents the union of multiple subspaces where each 
subspace is occupied by most of the spatial-spectral energy of the associated endmember. The sparse 
data matrix contains the fine approximation providing detailed spatial-spectral resolution to the 
endmember data.  

  

LRS 
Decomposition

Degradation 
Function

CLS Filter

+ Classifier

Low-rank data matrix

Sparse data matrix

Original HSI dataset

Perturbed HSI dataset

 

Fig. 4. Flow of LRSP method 

 

An image degradation function based on an atmospheric turbulence model is applied to the low 
rank matrix. This function adds controlled randomness to the HSI data. The constrained least squares 
(CLS) filter is used to recover the signal information. This filter performs a deconvolution procedure 
to remove any corruption caused by the atmospheric turbulence while simultaneously preserving the 
stochasticity that has been imputed to the data. The last step is to add the sparse data back to produce 
the final perturbed HSI dataset. This dataset has the appropriate amount of perturbations for 
classification accuracy improvement. We will now briefly describe the mathematical formulations for 
each of the steps. 

 

A. Low-Rank and Sparse Decomposition 

Since most signal information in high-dimensional data generally has low intrinsic dimensionality, 
it is desirable to model real-world data as a mixture of several low-rank subspaces [14]. Principal 
Component Analysis (PCA) can be cast as a constraint optimization problem where a data matrix is 
assumed to be composed of a low-rank matrix and a small perturbation (error) matrix whose entries 
are i.i.d. Gaussian random variables. However, the result of PCA may be quite inaccurate if the entries 
in the perturbation matrix are arbitrarily large. To address this problem, an approach known as Robust 
Principal Component Analysis (RPCA) was developed [11]. The Lagrangian formulation is given by: 

 minimize  𝑟𝑎𝑛𝑘(𝐋) + 𝜆 ‖𝐄‖0 subject to  𝐗 = 𝐋 + 𝐄 (1) 
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where 𝜆 is a regularization parameter, 𝐗 ∈ ℝ𝑑 × 𝑛 is the original high-dimensional data, 𝐋 ∈ ℝ𝑑 × 𝑛 is 

the low-rank matrix, 𝐄 ∈ ℝ𝑑 × 𝑛 is the sparse error matrix, and ‖𝐄‖0 is the 𝑙0-norm of matrix 𝐄.  

Although this optimization problem is highly non-convex, it has been shown that the nuclear norm, 
which is the sum of the singular values, is an effective surrogate for the rank of a matrix and the 𝑙1-
norm for the 𝑙0-norm. Moreover, data drawn from multiple subspaces should be represented as a union 

of the subspaces  ⋃ 𝑆𝑖 = {𝑦: 𝑦 ∈ 𝑆𝑗, 1 ≤ 𝑗 ≤ 𝑘}𝑘
𝑖=1 . In other words, 𝐗 is a set of 𝑛 𝑑-dimensional 

vectors strictly drawn from a union of 𝑘 subspaces [12, 13]. The objective of subspace recovery for  
data matrix 𝐗 = 𝐋 + 𝐄 is to recover the row space of 𝐋. It is still a convex optimization problem given 
by:  

 minimize ‖𝐙‖∗ + 𝜆 ‖𝐄‖2,1 subject to  𝐗 = 𝐀𝐙 + 𝐄 (0) 

where 𝐀 is a dictionary that linearly spans the data space, ‖𝐙‖∗ is the nuclear norm of matrix 𝐙 and 
‖𝐄‖2,1 is the 𝑙2,1-norm of matrix 𝐄. The 𝑙2,1-norm of a data matrix is the sum of the Euclidean norm 

of each column vector. The minimizer 𝐙∗ is the lowest rank representation with respect to dictionary 
𝐀. Since 𝑟𝑎𝑛𝑘(𝐀𝐙∗) ≤ 𝑟𝑎𝑛𝑘(𝐗), 𝐀𝐙∗ also represents a low-rank recovery of the original data, which 
is equivalent to matrix 𝐋 in (1). 

Since off-the-shelf solvers are not sufficiently powerful to solve such a problem, a number of 
excellent algorithms have been developed over the years. The one used for the experiments in this 
paper is the Inexact Augmented Lagrange Multiplier [18]. It has been demonstrated that this algorithm 
is quite stable and highly accurate with fast convergence time. 

 

B. Degradation Function 

An image can fluctuate in an unpredictable manner both in intensity and in position as it degrades 
through a turbulence in the atmosphere. The exact level of degradation varies randomly with time and 
field angle [19]. Degradation modeling has been used for many years as a solution that allows 
successful image restoration. The model frames environmental conditions and physical characteristics 
of atmospheric turbulence as a transfer function ℎ(𝑥, 𝑦) where (𝑥, 𝑦) is the 2D spatial coordinates 
[20].  

Assuming the degradation function is linear and position invariant, the degraded image in the 
spatial domain is given by: 

 𝑔(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ∗ 𝑓(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (3) 

where is 𝑓(𝑥, 𝑦) the original image and is 𝜂(𝑥, 𝑦) Gaussian noise. Convolution is denoted by ∗. 
Applying the spatial Fourier transform, (3) can be expressed in the frequency domain as:  

 𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣). 𝐹(𝑢, 𝑣) + 𝑁(𝑢, 𝑣) (4) 

The form of the transfer function 𝐻(𝑢, 𝑣) is similar to that of a Gaussian low pass filter and is given 
by: 

 𝐻(𝑢, 𝑣) = exp [(−𝑘(𝑢2 + 𝑣2))
5 6⁄

] (5) 

where 𝑘 is a hyper-parameter for the blurring effect associated with the nature of the turbulence.  

To be compatible with the degradation function, the HSI dataset must be reshaped from a 3D data 
matrix to a 2D data matrix. The original dataset is composed of (𝑀 × 𝑁) pixel vectors of dimension 
𝐾, which is the number of spectral bands. The new data matrix has 𝑅 vectors of dimension 𝐾 where 
𝑅 = 𝑀 × 𝑁. 

 

C. Constrained Least Squares Filter 

The CLS algorithm does not require the power spectra of an undegraded image be known in 
advance. Using it as a filter will restore the image and minimize any sensitivity caused by the 
degradation function. This algorithm can be expressed as a constraint optimization problem [15]. 

 minimize ∑ ∑ [∇2𝑓(𝑥, 𝑦)]2𝑁−1
𝑦=0

𝑀−1
𝑥=0  subject to ‖𝐠 − 𝐇𝐟‖

2
= ‖𝛈‖2 (6) 



ISSN: 2579-7298 International Journal of Artificial Intelligence Research  
 Vol 5, No 1, June 2021, pp.1-12 

Sumarsono et.al (Stochastic Perturbations on Low-Rank Hyperspectral Data for Image Classification) 

The constraint in (6) is essentially the algebraic manipulation of (4) in vector-matrix form where 𝐟 
is the estimate of the undegraded image instead of the original image. The Laplacian of the image, 
∇2, is added to alleviate a noise sensitivity problem that inherently exists in the transfer function 𝐇.  

∇2 for two variables is defined as:  

∇2𝑓(𝑥, 𝑦) = 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1) − 4𝑓(𝑥, 𝑦)  (7) 

The frequency domain solution to (6) is given by: 

 𝐹̂(𝑢, 𝑣) = [𝐻∗(𝑢, 𝑣) (|𝐻(𝑢, 𝑣)|2 + 𝛾|𝑃(𝑢, 𝑣)|2)⁄ ]. 𝐺(𝑢, 𝑣) (8) 

where 𝛾 is a parameter that must be adjusted to satisfy the constraint in (6). 𝑃(𝑢, 𝑣) is the Fourier 
transform of (7). In matrix form, it can be expressed as: 

 𝑝(𝑥, 𝑦) = [
0 −1 0

−1 4 −1
0 −1 0

] (9) 

The best estimate of the undegraded image can be achieved by simply taking the inverse Fourier 
transform of (8). 

III. Experiments 

The datasets for our experiments consist of a synthetic dataset and two real-world HSI datasets 
(Salinas-A and Indian Pines) [21]. We employed two commonly used multi-class classifiers for HSI 
data: Subspace Projection Multinomial Logistic Regression (MLRsub) and Linear Discriminant 
Analysis (LDA). MLRsub [22] is a subspace projection-based classifier that represents hyperspectral 
data as a linear mixture model. The spectral response of a pixel is a linear combination of the spectral 
signatures of the endmembers weighted by the corresponding abundance fractions. This approach 
works well for cases with prevalent nonlinear class separability where projection onto lower subspaces 
is required to discover the manifold. LDA [23] is a multi-variate generative classifier. It attempts to 
maximize the posterior probabilities governed by the Bayes rule from the data statistical properties 
learned during training. This method is best used when linear decision boundaries can easily be applied 
for class separation in the input space. 

All the experiments were conducted using MATLAB simulations running on the ThinkPad X1 
Yoga Gen 4 with 1.6 GHz i7 Processor and 16 GB of RAM.  

 

A. Datasets 

The synthetic dataset has six endmembers. Six pixel vectors are taken from the Salinas-A scene at 
randomly chosen locations to form an 80 × 40 × 204 HSI cube. Small Gaussian random noise was 
added. The spectral signatures are shown in Figure 5. 

 

Fig. 5.  Synthetic Dataset Spectral Signatures 

The Salinas-A dataset, shown in Figure 6, is a subset of the Salinas image collected by the AVIRIS 
sensor over Salinas Valley in California. It is characterized by high spatial resolution (3.7 m pixel 
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size) and six classes. 20 water absorption bands are removed (108 – 112, 154 – 167, 224) forming a 
total of 204 spectral bands for analysis.   

 

 

 

(a). Spectral Band 150 

 

 

(b). Ground Truth 

Fig. 6. Salinas-A Spectral Band 75 and Ground Truth. (figure caption) 

The Indian Pines scene, shown in Figure 7, is a subset of a larger scene over the Indian Pines test 
site in northwestern Indiana collected by the AVIRIS sensor. It has 16 classes and 224 spectral 
reflectance bands acquired in the 0.4 – 2.5 um region. The dataset is composed of 145×145 pixels 
with a ground resolution of 17 m. Two-third of the scene is agriculture. The remaining one-third is 
forest and other natural perennial vegetation. Two major dual lane highways, a rail line and some low-
density housing are also part of the scene. The bands covering the region of water absorption are 
removed reducing the number of bands to 200. 

 

 

 

(a). Spectral Band 150 

 

 

(b). Ground Truth 

Fig. 7. Indian Pines Spectral Band 150 and Ground Truth 

  

B. Results 

The effect of adding randomness in the dataset is quantified in terms of the dissimilarity measure. 
It is computed based on the Frobenius norm of the difference between the original and the perturbed 
datasets.  

 𝛿 = ‖𝐗 − 𝐗̂‖
2

‖𝐗‖2⁄  (10) 

where 𝐗 and 𝐗̂ are the original and the perturbed datasets, respectively. The denominator is included 
as a normalizing factor. 

As depicted in Table 1, the blurring effect k has a much greater influence on the dissimilarity 
measure than the variances of the zero-mean Gaussian noise. This is expected since (4) and (5) show 
that changing the value of k causes non-linear and exponential perturbations on the data while altering 
the statistics of the Gaussian noise only produces an additive effect. However, the influence of the 
noise components should not be underestimated either. Larger variance means more outliers in the 
data. Although it may not significantly change the statistical characteristics of the dataset, it may cause 
larger classification errors. 
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Table 1.  Dissimilarity Measures (× 10−3)  

 

𝝈𝟐 

Synthetic Salinas-A Indian Pines 

k=1e-4 1e-5 1e-6 1e-7 1e-4 1e-5 1e-6 1e-7 1e-4 1e-5 1e-6 1e-7 

0.1 83.78 41.46 7.20 5.12 106.4 55.3 22.9 32.1 74.35 45.59 26.59 6.88 

0.5 83.78 41.46 7.20 5.12 106.4 55.3 22.9 32.1 74.35 45.59 26.59 6.88 

1.0 83.78 41.46 7.20 5.12 106.5 55.3 22.9 32.1 74.37 45.59 26.59 6.88 

2.0 83.79 41.46 7.20 5.12 106.5 55.3 22.9 32.1 74.44 45.59 26.59 6.88 

5.0 83.80 41.47 7.20 5.12 106.5 55.3 22.9 32.2 74.53 45.60 26.59 6.89 

10.0 83.82 41.47 7.21 5.13 106.6 55.3 23.0 32.4 74.84 45.62 26.59 6.89 

15.0 83.86 41.48 7.22 5.14 106.8 55.4 23.0 32.8 75.29 45.67 26.60 6.89 

 

Table 2 shows the overall classification accuracy results if the Gaussian noise variance is fixed at 
0.1. It is generally accepted that the different classifiers may produce different results. Nevertheless, 
if the same classifier is used, consistent results are observed. In other words, if the right amount of 
stochasticity is added to the original dataset, the LRSP method will always produce higher 
classification accuracy for the same classifier. The best results are indicated in bold associated with 
k=1e-5. The highest improvement corresponds to the Indian Pines dataset using the MLRsub classifier 
from 0.5910 to 0.8850 (49.8%). There is hardly any improvement for Salinas-A with LDA (0.4%) 
because the accuracy is already very high with the original dataset. Further observations show that 
Salinas-A and Indian Pines datasets contain classes that are linearly separable whereas the synthetic 
dataset does not. This is the reason why LDA performs better on the former and MLRsub on the latter.  

Table 2.  Overall Accuracy with Variance = 0.1 

 Synthetic Salinas-A Indian Pines 

MLRsub LDA MLRsub LDA MLRsub LDA 

Original 

dataset 

0.6588 0.6658 0.9217 0.9921 0.5910 0.7407 

k = 1e-4 0.6855 0.6817 0.9471 0.9841 0.8228 0.8340 

k = 1e-5 0.7306 0.7037 0.9676 0.9963 0.8850 0.9284 

k = 1e-6 0.6941 0.6963 0.9160 0.9933 0.7680 0.8614 

k = 1e-7 0.6814 0.6871 0.9248 0.9935 0.6473 0.7723 

k = 1e-10 0.6805 0.6850 0.9241 0.9933 0.6000 0.7474 

 

Figures 8, 9 and 10 show classification accuracies for different values of blurring effect as a 
function of variance. The graphs show that Gaussian noise can have little effect on the results (Figures 
8a, 8b and 9b), moderate effect (Figure 10a) and dramatic degradation (Figures 9a and 10b). But in 
all cases for all the datasets, the right value of k (k = 1e-5) combined with small variances (𝜎2 < 1) 
always produces better classification accuracy for the perturbed datasets compared to the original 
datasets. These values define the operating limit of LRSP. 

  

 
(a). MLRsub 

 
(b). LDA 

Fig. 8. Classification Accuracy for Synthetic Dataset 
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(a). MLRsub 

 
(b). LDA 

Fig. 9. Classification Accuracy for Salinas-A 

 

 
(a). MLRsub 

 
(b). LDA 

Fig. 10. Classification Accuracy for Indian Pines 

 
Classification maps for the two real-world HSI datasets are shown in Figures 11 and 12. It can be 

easily concluded by visual inspection that the maps in Figures 11b, 11d, 12b and 12d are cleaner than 
those in Figures 11a, 11c, 12a and 12c, respectively, since they are associated with higher overall 
classification accuracies. 
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 MLRsub LDA 

 
(a). Original dataset 

 
(c). Original dataset 

 
(b). Perturbed dataset 

 
(d). Perturbed dataset 

Fig. 11. Classification Maps for Salinas-A for k=1e-5, 𝜎2 = 0.1 

 

MLRsub LDA 

 
(a). Original dataset 

 
(c). Original dataset 

 
(b). Perturbed dataset 

 
(d). Perturbed dataset 

Fig. 12. Classification Maps for Indian Pines for k=1e-5, 𝜎2 = 0.1 
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As listed in tables 3, 4 and 5, the per-class classification accuracies for the perturbed datasets are 
higher than those of the original datasets. This is again consistent with the overall accuracy results. 

Table 3.  Per-class Classification Accuracy for Synthetic Dataset 

Class MLRsub LDA 

Original dataset Perturbed dataset Original dataset Perturbed dataset 

1 1.0000 1.0000 1.0000 0.9730 

2 0.6472 0.9806 0.7737 0.8063 

3 0.8000 0.6056 0.5072 0.5697 

4 0.2972 0.1611 0.5910 0.6058 

5 0.1750 0.8556 0.4855 0.5777 

6 0.9833 0.9778 0.9460 0.7787 

Average 0.6588 0.7306 0.6658 0.7025 

 

Table 4.  Per-class Classification Accuracy for SalinasA 

Class MLRsub LDA 

Original dataset Perturbed dataset Original dataset Perturbed dataset 

1 1.0000 0.9858 0.9977 0.9857 

2 0.8673 0.9386 0.9953 0.9977 

3 0.9050 0.9283 0.9583 0.9800 

4 1.0000 1.0000 0.9968 0.9996 

5 0.9950 1.0000 0.9976 0.9996 

6 0.9556 0.9985 0.9845 0.9984 

Average 0.9217 0.9676 0.9921 0.9963 

 

Table 5.  Per-class Classification Accuracy for IndianPines 

Class MLRsub LDA 

Original dataset Perturbed dataset Original dataset Perturbed dataset 

1 0.0222 0.5111 0.5543 0.8761 

2 0.3838 0.7661 0.7025 0.9172 

3 0.0830 0.7550 0.6234 0.8808 

4 0.1759 0.8843 0.5203 0.8857 

5 0.5718 0.9375 0.8749 0.9586 

6 0.9087 0.9893 0.9252 0.9903 

7 0.1481 0.1852 0.6250 0.9964 

8 0.9769 1.0000 0.9759 0.9992 

9 0.2278 0.5556 0.2250 0.8400 

10 0.2772 0.9450 0.6767 0.9103 

11 0.8360 0.9074 0.6660 0.9318 

12 0.0998 0.7797 0.7201 0.8801 

13 0.9365 0.9894 0.9732 0.9912 

14 0.9939 0.9668 0.9182 0.9905 

15 0.0399 0.9117 0.6246 0.9251 

16 0.8519 0.9012 0.8677 0.9710 

Average 0.5910 0.8850 0.7407 0.9284 

IV. Conclusion 

In this paper we proposed a novel low-rank stochastic perturbation method to improve the 
classification accuracy for hyperspectral images. Applying an atmospheric turbulence degradation 
function followed by constraint least squares filtering to the low-rank component of the hyperspectral 
data causes the statistical nature of the data to be perturbed in a way that is conducive to producing a 
higher classification accuracy. The experimental results confirm the effectiveness of this method for 
synthetic and real-world datasets. Popular state-of-the-art HSI classifiers produce better results if the 
LRSP method is used to preprocess the data. Choosing the appropriate the hyperparameter value for 
the blurring effect and keeping the variances small can yield quite an improvement of up to 49.8%. 
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