11 research outputs found

    Sequential Inference with the Mallows Model

    Get PDF
    The Mallows model is a widely used probabilistic model for analysing rank data. It assumes that a collection of n items can be ranked by each assessor and then summarised as a permutation of size n. The associated probability distribution is defined on the permutation space of these items. A hierarchical Bayesian framework for the Mallows model, named the Bayesian Mallows model, has been developed recently to perform inference and to provide uncertainty estimates of the model parameters. This framework typically uses Markov chain Monte Carlo (MCMC) methods to simulate from the target posterior distribution. However, MCMC can be considerably slow when additional computational effort is presented in the form of new ranking data. It can therefore be difficult to update the Bayesian Mallows model in real time. This thesis extends the Bayesian Mallows model to allow for sequential updates of its posterior estimates each time a collection of new preference data is observed. The posterior is updated over a sequence of discrete time steps with fixed computational complexity. This can be achieved using Sequential Monte Carlo (SMC) methods. SMC offers a standard alternative to MCMC by constructing a sequence of posterior distributions using a set of weighted samples. The samples are propagated via a combination of importance sampling, resampling and moving steps. We propose an SMC framework that can perform sequential updates for the posterior distribution for both a single Mallows model and a Mallows mixture each time we observe new full rankings in an online setting. We also construct a framework to conduct SMC with partial rankings for a single Mallows model. We propose an alternative proposal distribution for data augmentation in partial rankings that incorporates the current posterior estimates of the Mallows model parameters in each SMC iteration. We also extend the framework to consider how the posterior is updated when known assessors provide additional information in their partial ranking. We show how these corrections in the latent information are performed to account for the changes in the posterior

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Voice Modeling Methods for Automatic Speaker Recognition

    Get PDF
    Building a voice model means to capture the characteristics of a speaker´s voice in a data structure. This data structure is then used by a computer for further processing, such as comparison with other voices. Voice modeling is a vital step in the process of automatic speaker recognition that itself is the foundation of several applied technologies: (a) biometric authentication, (b) speech recognition and (c) multimedia indexing. Several challenges arise in the context of automatic speaker recognition. First, there is the problem of data shortage, i.e., the unavailability of sufficiently long utterances for speaker recognition. It stems from the fact that the speech signal conveys different aspects of the sound in a single, one-dimensional time series: linguistic (what is said?), prosodic (how is it said?), individual (who said it?), locational (where is the speaker?) and emotional features of the speech sound itself (to name a few) are contained in the speech signal, as well as acoustic background information. To analyze a specific aspect of the sound regardless of the other aspects, analysis methods have to be applied to a specific time scale (length) of the signal in which this aspect stands out of the rest. For example, linguistic information (i.e., which phone or syllable has been uttered?) is found in very short time spans of only milliseconds of length. On the contrary, speakerspecific information emerges the better the longer the analyzed sound is. Long utterances, however, are not always available for analysis. Second, the speech signal is easily corrupted by background sound sources (noise, such as music or sound effects). Their characteristics tend to dominate a voice model, if present, such that model comparison might then be mainly due to background features instead of speaker characteristics. Current automatic speaker recognition works well under relatively constrained circumstances, such as studio recordings, or when prior knowledge on the number and identity of occurring speakers is available. Under more adverse conditions, such as in feature films or amateur material on the web, the achieved speaker recognition scores drop below a rate that is acceptable for an end user or for further processing. For example, the typical speaker turn duration of only one second and the sound effect background in cinematic movies render most current automatic analysis techniques useless. In this thesis, methods for voice modeling that are robust with respect to short utterances and background noise are presented. The aim is to facilitate movie analysis with respect to occurring speakers. Therefore, algorithmic improvements are suggested that (a) improve the modeling of very short utterances, (b) facilitate voice model building even in the case of severe background noise and (c) allow for efficient voice model comparison to support the indexing of large multimedia archives. The proposed methods improve the state of the art in terms of recognition rate and computational efficiency. Going beyond selective algorithmic improvements, subsequent chapters also investigate the question of what is lacking in principle in current voice modeling methods. By reporting on a study with human probands, it is shown that the exclusion of time coherence information from a voice model induces an artificial upper bound on the recognition accuracy of automatic analysis methods. A proof-of-concept implementation confirms the usefulness of exploiting this kind of information by halving the error rate. This result questions the general speaker modeling paradigm of the last two decades and presents a promising new way. The approach taken to arrive at the previous results is based on a novel methodology of algorithm design and development called “eidetic design". It uses a human-in-the-loop technique that analyses existing algorithms in terms of their abstract intermediate results. The aim is to detect flaws or failures in them intuitively and to suggest solutions. The intermediate results often consist of large matrices of numbers whose meaning is not clear to a human observer. Therefore, the core of the approach is to transform them to a suitable domain of perception (such as, e.g., the auditory domain of speech sounds in case of speech feature vectors) where their content, meaning and flaws are intuitively clear to the human designer. This methodology is formalized, and the corresponding workflow is explicated by several use cases. Finally, the use of the proposed methods in video analysis and retrieval are presented. This shows the applicability of the developed methods and the companying software library sclib by means of improved results using a multimodal analysis approach. The sclib´s source code is available to the public upon request to the author. A summary of the contributions together with an outlook to short- and long-term future work concludes this thesis

    SIS 2017. Statistics and Data Science: new challenges, new generations

    Get PDF
    The 2017 SIS Conference aims to highlight the crucial role of the Statistics in Data Science. In this new domain of ‘meaning’ extracted from the data, the increasing amount of produced and available data in databases, nowadays, has brought new challenges. That involves different fields of statistics, machine learning, information and computer science, optimization, pattern recognition. These afford together a considerable contribute in the analysis of ‘Big data’, open data, relational and complex data, structured and no-structured. The interest is to collect the contributes which provide from the different domains of Statistics, in the high dimensional data quality validation, sampling extraction, dimensional reduction, pattern selection, data modelling, testing hypotheses and confirming conclusions drawn from the data

    Proceedings of the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008

    Get PDF
    This volume contains full papers presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, between September 4th and 6th, 2008.FC

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Dipterocarps protected by Jering local wisdom in Jering Menduyung Nature Recreational Park, Bangka Island, Indonesia

    Get PDF
    Apart of the oil palm plantation expansion, the Jering Menduyung Nature Recreational Park has relatively diverse plants. The 3,538 ha park is located at the north west of Bangka Island, Indonesia. The minimum species-area curve was 0.82 ha which is just below Dalil conservation forest that is 1.2 ha, but it is much higher than measurements of several secondary forests in the Island that are 0.2 ha. The plot is inhabited by more than 50 plant species. Of 22 tree species, there are 40 individual poles with the average diameter of 15.3 cm, and 64 individual trees with the average diameter of 48.9 cm. The density of Dipterocarpus grandiflorus (Blanco) Blanco or kruing, is 20.7 individual/ha with the diameter ranges of 12.1 – 212.7 cm or with the average diameter of 69.0 cm. The relatively intact park is supported by the local wisdom of Jering tribe, one of indigenous tribes in the island. People has regulated in cutting trees especially in the cape. The conservation agency designates the park as one of the kruing propagules sources in the province. The growing oil palm plantation and the less adoption of local wisdom among the youth is a challenge to forest conservation in the province where tin mining activities have been the economic driver for decades. More socialization from the conservation agency and the involvement of university students in raising environmental awareness is important to be done
    corecore