36,517 research outputs found

    Workflow System Architectures and their Performance Model

    Get PDF

    Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core Architectures

    Get PDF
    The aerospace domain, very much similar to other cyber-physical systems domains such as automotive or automation, is demanding new methodologies and approaches for increasing performance and reducing cost, while maintaining safety levels and programmability. While the heterogeneous multi-core architectures seem promising, apart from certification issues, there is a solid necessity for complex toolchains and programming processes for exploiting their full potential. The ARGO (WCET-Aware PaRallelization of Model-Based Ap-plications for HeteroGeneOus Parallel Systems) project is addressing this challenge by providing an inte-grated toolchain that realizes an innovative holistic approach for programming heterogeneous multi-core sys-tems in a model-based workflow. Model-based design elevates systems modeling and promotes simulation with the executing these models for verification and validation of the design decisions. As a case study, the ARGO toolchain and workflow will be applied to a model-based Enhanced Ground Proximity Warning System (EGPWS) development. EGPWS is a readily available system in current aircraft which provides alerts and warnings for obstacles and terrain along the flight path utilizing high resolution terrain databases, Global Positioning System and other sensors-. After a gentle introduction to the model-based development approach of the ARGO project for the heterogeneous multi-core architectures, the EGPWS and the EGPWS systems modelling will be presented

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Pattern-based software architecture for service-oriented software systems

    Get PDF
    Service-oriented architecture is a recent conceptual framework for service-oriented software platforms. Architectures are of great importance for the evolution of software systems. We present a modelling and transformation technique for service-centric distributed software systems. Architectural configurations, expressed through hierarchical architectural patterns, form the core of a specification and transformation technique. Patterns on different levels of abstraction form transformation invariants that structure and constrain the transformation process. We explore the role that patterns can play in architecture transformations in terms of functional properties, but also non-functional quality aspects

    Two Case Studies of Subsystem Design for General-Purpose CSCW Software Architectures

    Get PDF
    This paper discusses subsystem design guidelines for the software architecture of general-purpose computer supported cooperative work systems, i.e., systems that are designed to be applicable in various application areas requiring explicit collaboration support. In our opinion, guidelines for subsystem level design are rarely given most guidelines currently given apply to the programming language level. We extract guidelines from a case study of the redesign and extension of an advanced commercial workflow management system and place them into the context of existing software engineering research. The guidelines are then validated against the design decisions made in the construction of a widely used web-based groupware system. Our approach is based on the well-known distinction between essential (logical) and physical architectures. We show how essential architecture design can be based on a direct mapping of abstract functional concepts as found in general-purpose systems to modules in the essential architecture. The essential architecture is next mapped to a physical architecture by applying software clustering and replication to achieve the required distribution and performance characteristics

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Performance Analysis of Open Source Machine Learning Frameworks for Various Parameters in Single-Threaded and Multi-Threaded Modes

    Full text link
    The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation Also, we present the results of testing neural networks architectures on H2O platform for various activation functions, stopping metrics, and other parameters of machine learning algorithm. It was demonstrated for the use case of MNIST database of handwritten digits in single-threaded mode that blind selection of these parameters can hugely increase (by 2-3 orders) the runtime without the significant increase of precision. This result can have crucial influence for optimization of available and new machine learning methods, especially for image recognition problems.Comment: 15 pages, 11 figures, 4 tables; this paper summarizes the activities which were started recently and described shortly in the previous conference presentations arXiv:1706.02248 and arXiv:1707.04940; it is accepted for Springer book series "Advances in Intelligent Systems and Computing
    • 

    corecore