View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

Pacific Asia Conference on Information Systems

PACIS 2000 Proceedings (PACIS)

December 2000

Workflow System Architectures and their
Performance Model

Dongsoo Han
Information and Communications University

Jaeyong Shim

Information and Communications University

Myungjae Kwak

Information and Communications University

Follow this and additional works at: http://aisel.aisnet.org/pacis2000

Recommended Citation

Han, Dongsoo; Shim, Jaeyong; and Kwak, Myungjae, "Workflow System Architectures and their Performance Model" (2000). PACIS
2000 Proceedings. 78.
http://aisel.aisnet.org/pacis2000/78

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please

contact elibrary@aisnet.org.


https://core.ac.uk/display/301341052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2000%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2000?utm_source=aisel.aisnet.org%2Fpacis2000%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2000%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2000%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2000?utm_source=aisel.aisnet.org%2Fpacis2000%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2000/78?utm_source=aisel.aisnet.org%2Fpacis2000%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Workflow System Architectures and Their Performance Model
Dongsoo Harﬁl, Jaeyong ShimE,I Myungjae KwakD
School of Engineering,
Information and Communications University
P.O. Box 77, Yusong P.O., Taejon, 305-600 Korea

Abstract

Various workflow system architectures are proposed to meet diverse requirements for
workflow management system in the internet environment. Centralized, decentralized,
distributed and fully distributed workflow system architectures are considered to be the
generally accepted typical workflow system architectures. Each workflow system architecture
is known to have its pros and cons in different situations but there are no clear criteria and
performance evaluation models to compare them each other yet. In this paper we develop
performance evaluation model for workflow system architecture, focusing on the proto-type
workflow system developed on the CORBA environment. The proto-type workflow system can
change its architecture arbitrarily. Thus the performance evaluation model can be applied to
any workflow system architectures but it is more feasible to apply to workflow systems
developed on the distributed object environment.

Keywords: Workflow system architectures, Distributed workflow system, Task managing
instance, Workflow performance model

1. Preface

Since the needs of workflow system had been invoked, numerous workflow systems have
been developed for either commercial or academic purposes (Alonso, 1995; Ellis, 1995; Han,
1996; Kim et al., 1997). Recently, various workflow system architectures are proposed to
meet diverse requirements for workflow management systems. Centralized, decentralized,
distributed and fully distributed workflow system architectures are considered to be the
generally accepted typical workflow system architectures.

Centralized workflow system is criticized of its limitation to support workflow systems on
the internet because of its shortage of scalability and flexibility. Decentralized or distributed
workflow systems often have been suggested to overcome the limitation in centralized
workflow system. In decentralized workflow system, multiple workflow servers work
together independently dividing the input jobs into a mass and there is no interaction among
workflow servers to complete a process instance. In distributed workflow system, multiple
workflow servers work together like decentralized workflow system, but there could be
interactions among workflow servers during the execution of a process instance. Even fully
distributed workflow system can be proposed to give the extreme flexibility and scalability.
Each workflow system architecture has its pros and cons according to the situation that the
workflow system has to manage. However there are no clear criteria and performance
evaluation models to compare them each other yet. As a result, people tend to advocate a

" Dr. Dongsoo Han is an assistant professor at the School of Engineering of Information and Communications
University and can be approached via email: dshan@jicu.ac.kr.

* Jaeyong Shim is in doctorial course at the School of Engineering of Information and Communications
University and can be approached via email: jacyong7@jicu.ac.kr.

* Myungjae Kwak is in M.S. course in the School of Engineering of Information and Communications
University and can be approached via email: mjkwak@icu.ac.kr.

1088



certain type of workflow system architecture with rather unclear conjecture.

To break through the situation, more concrete and clear criteria to compare workflow system
architectures are required. Performance model of workflow system architectures could be a
good candidate for such purposes. People can discuss or choose better workflow system
architectures in terms of system performance in the given conditions once the performance
model is provided.

In this paper we derive a performance model for workflow system architectures. The
performance model is developed referring to a sample workflow system developed on
CORBA environment. For a performance model to be applicable to large domains, it should
reflect general workflow system architectures. Since the sample workflow system can change
its architecture arbitrarily if necessary, the performance model can be applied to any
workflow system architectures. We introduce how the sample workflow system can change
its architectures in detail. Even though the performance model can be applied to any
workflow system architectures, it is more feasible when it is applied to workflow systems
developed on distributed object environment, such as CORBA or DCOM.

Performance evaluation for the workflow system architectures has been performed using the
model varying the conditions. The results of the test reveal the characteristics of each
workflow system architectures as expected and fall into the scope what we can expect from
the test. It implies that the performance model can be used to estimate the performance of
workflow systems if some conditions are given.

The paper is organized as follows. In section 2, we classify workflow types and workflow
architectures. In section 3, system architecture and the components of sample workflow
system are described. In section 4, we derive performance models of each architecture and
show the result of the performance evaluation. Related work are described in section 5 and
we draw conclusion in section 6.

2. Workflow Types and Workflow Architectures
2.1 Workflow Types

Workflow processes can be classified into several different workflow types according to their
inherent properties. For example, while there are workflow processes requiring hard real time
process controls and monitoring services, other workflow processes do not require such a
strong process controls and monitoring services. Rather they often prefer process controls in
which task managers can react automatically and independently. The latter can support
workflow processes more effectively in mobile environment? We call the former as
control/monitoring oriented workflow processes and the latter as autonomy oriented
workflow processes.

In some other workflow processes, the vicinity of the application server and workflow
enactment services is critical. The workflow processes often require the workflow enactment
services or the task manager to be located close to the application server. We call the
workflow processes as application server oriented workflow processes.

1089



Workflow :
Management TMI @ > @

System U
Relevant
Data
Repository
Agent
A

Figure 1. Run Time Architecture of Workflow Enactment Service
2.2 Run Time Architecture of Workflow Enactment Services

Workflow enactment services can be implemented in various ways. But the run time
architecture of each enactment services can be derived as Figure 1. The execution object in
Figure 1 manages from the invocation to the end of the corresponding task. When the task is
over, it signals the next execution object to begin its task. The workflow enactment services
can be considered as the collection of the execution objects. Thus the workflow enactment
services can be implemented in various ways according to the method we implement the
execution objects. They can be implemented in a monolithic module or several modules
which are able to corporate one another to provide services. Also it is possible that each
execution object is implemented as a transient object instance. In that case, workflow sever
should be equipped with the generator and disposer of execution object instance.

2.3 Classification of Workflow Architectures
Workflow systems can be classified into several different workflow architectures according

to the displacement of the execution object instances which we call TMI(Task Managing
Instance) in this paper. In centralized workflow system, all the TMIs are created and operated

Figure 2. Centralized Workflow System Figure 3. Decentralized Workflow System
1090



in one central workflow server. Since the TMI creation is relatively simple compared with
other kind of workflow systems, the system is very simple. Figure 2 shows the centralized
workflow system. In decentralized workflow system, created TMIs are placed in several
workflow servers keeping all the TMIs processing activities in the same workflow process
created in the same server. Decentralized workflow system architecture can be considered as
a kind of multi-workflow server implementation. Figure 3 shows the run time structure of the
decentralized workflow system.

Distributed workflow system is the same with decentralized workflow system in that it places
the created TMIs in physically distributed multiple workflow servers. But there is no
restriction that TMIs in the same workflow process should be created in the same workflow
server in distributed workflow system. Hence more flexible and situation compliant TMI
placement is possible in distributed workflow system. The run time structure of distributed
workflow system is in Figure 4.

In fully distributed workflow system, TMIs are created in the client sites where the workflow
activity processing actually happens. Limited functions, such as first TMI creation and
starting, remain in central workflow server. Once the first TMI, however, start to manage its
task, the control of the workflow process is handed over to the TMIs in the clients. The TMIs
in the clients can act and react upon its tasks from the server autonomously and
independently and there is no control from the server after the first TMI started. Thus fully
distributed workflow system architecture can cope with mobile environment, because
autonomous and independent control for mobile clients are often required in the mobile
environment. Figure 5 shows the workflow system architecture of fully distributed workflow
system.

2.4 Comparison of Workflow System Architectures

Each workflow system architecture introduced in the previous subsection has its pros and
cons to certain situation. Centralized workflow system is very effective to monitoring and
controlling the workflow process in real time. Robust workflow system can be implemented
relatively easily because the system structure is simple and most of workflow operations
executed in a server. Control/ monitoring oriented workflow types are well suited to
centralized workflow system. However the system inevitably incurs bottleneck when the

Figure 4. Distributed Workflow System Figure 5. Fully Distributed Workflow
System

1091



number of process instances grows over the threshold value the system can accommodate.
Coping with the situation in centralized workflow system is non-trivial.

Decetralized workflow system can handle the situation by adding additional servers and
dividing and allocating the jobs to the servers. Since all the TMIs for one workflow process
instance are generated in a server, the servers need not interact each other to hand over
controls between TMIs. They only have to interact for gathering monitoring or historic
information of process instances. Thus workflow servers in decentralized workflow system
operate in fairly loosely coupled mode. But the restriction that all the TMIs for one process
instance should be generated only in a server could be a barrier to serving various workflow
types effectively. For instance decentralized workflow system cannot cope with the situation
some distributed legacy application servers involved in one process instance prefer TMIs to
be placed near to them.

Distributed workflow system is more flexible than decentralized workflow system because it
can place TMIs on any workflow servers. Thus above situation can be handled easily in
distributed workflow system. But the distribution of TMIs for one process instance on
multiple workflow servers could incur interactions between workflow servers and the
overhead of the interactions depend on the way of TMI placement. Thus desirable TMI
placement strategy should be devised and deployed in distributed workflow systems.
However distributed workflow system has also limitation in mobile environment where the
network disconnection is frequent.

In fully distributed workflow system, since TMIs are pushed to the client sites, users can
work on the work items in disconnected state of the network. The result and the control of the
TMI are handed over after the disconnected state is recovered. Thus the load of centralized
workflow servers is drastically reduced. In theory, tremendous number of workflow instances
can be accommodated in fully distributed workflow system but the cost of monitoring and
system consistency maintenance could be very high. Figure 6 shows the comparison matrix
of each architecture.

Centralized Decentralize Distributed | F-Distributed
Workflow Workflow Workflow Workflow
System System System System
Complexity Low Medium Medium High
Scalability Bad Medium Good Very Good
Reliability Yes or No Good Good Yes or No
Monitoring Good Good Good Bad
Administration Good Good Good Bad
Mobility Bad Bad Medium Good
Flexibility Bad Medium Good Very Good

Figure 6. Comparison Matrix of each Workflow Architecture

1092




3. Distributed Object Based Workflow System for Modeling

In this section we describe software architecture of ICU/COWS which is a research workflow
system developed in the Software Systems Lab. of Information and Communications
University in Korea since 1998. The primary aim of the system is to support multiple
workflow system architectures within single workflow system architectures. The system is
developed using distributed objects on the CORBA environment and the performance model
of this paper is developed based on the system. Thus distributed workflow systems which are
based on distributed objects like CORBA or DCOM and their system structures are similar to
ICU/COWS can use the performance model introduced in this paper to analyze their system
performances.

3.1 Software Architecture

This section describes the system architecture and the components of ICU/COWS.
ICU/COWS is developed on the CORBA environment using WTS(Workflow Transaction
Services) which is specially devised for ICU/COWS. The WTS can be considered as a kind
of extension of CORBA OTS(Object Transaction Service) to enable convenient workflow
system development. Details of the WTS specifications will be treated in other papers in the
near future. The components of ICU/COWS consist of TMIF(Task Managing Instance
Factory), GTMIG(Global Task Managing Instance Generator), Simulator, Process Builder,
Admin/Monitoring Service, and Worklist Handler. Every component is built as CORBA
objects and the details of each module will be described in the following subsections.

3.1.1 TMI and GTMI

TMI(Task Managing Instance) is created for each activity to manage the task of the activity.
It either sends a work item to a worklist handler or invokes an application through the
application agents. Application agents access the workflow relevant data via TMI. The TMI
also monitors the status of the invoked tasks through the communication with worklist
handlers or application agents. When a task is completed the TMI sends the start event to the
next TMI and the TMI which receives the event starts the task. In this way, control is
transmitted as defined at process build time.

GTMI controls the process of the global process instance. It either receives status reports
from the TMIs or suspends TMIs transiently to handle requests from the administrator, such
as dynamic reconfiguration. Although a TMI has to report its status to its GTMI, TMI can
continue its execution even if the GTMI crashes because it does not check whether the GTMI
has received its report or not. This approach is effective to achieve availability in a distributed
environment where network partitioning is frequent.

3.1.2 GIMIG and TMIFs

Each server is equipped with one GTMIG and one or more TMIFs respectively. GTMIG asks
TMIF to generate a GTMI for a process instance and the GTMI asks TMIF to generate all the
TMIs for the process instance. Since multiple TMIs are generated and the TMIs may be
created on different servers, when GTMI asks TMIF to generate TMIs, it asks the TMIF that
resides in the same site as the generated TMIs. To the GTMI, local TMIFs and remote TMIFs
are viewed equivalently and they are invoked in the same way. So the workflow system
operates in a fully distributed fashion. The TMI generation site is determined by the user

1093



directives or by considering the system configuration as described in the subsection 4.1.4.
When one server is down, the GTMI searches and uses an alternative server on behalf of the
crashed server. In this way, the whole system can maintain high system availability
irrespective of system failures.

3.1.3 A Workflow Instance Life Cycle

In this subsection, we explain what is happening in ICU/COWS when a process instance
creation is requested by a user. The following is the normal sequence of the steps from a
process instance creation to the end of its execution:

A user asks to create a certain process instance.

GTMIG creates a GTMI for the process instance through TMIF.

GTMI creates all TMIs of the process instance through TMIF.

GTMI sends a start signal to the first TMI.

TMI starts work and sends a start signal to the next TMI once the work is finished
successfully.

Iterate step e until the last TMI is reached.

g. The last TMI sends an end signal to the GTMI when it finishes.

h. GTMI destroys all the generated TMIs and itself.

o0 o

jaur]

Both GTMIG and TMIF reside in all the servers. Therefore if one server crashes the other
server can take over the GTMI and TMI creation job instead. When GTMI creates TMIs, it
can place the TMIs in several different ways based on the user directives. A user can denote
which TMI should be placed on which server explicitly when defining a process template. If
there are no user directives at all, TMIs are created in a distributed fashion by GTMI
considering the location of application servers and load balancing. GTMI creates a TMI

Workflow Server

Workflow Server

GTMIG
p GTMIG
QW R R
/] B B GIMD
AN I\

d @\ —
CORBA| %

WL handler Activity status

ICORBA

WL handler

Workflow Server

GTMIG

& 2
O

?D g Application

(”‘!\ ) Status

— (IMDICORBA 5

gl g

WL handler

fail success

Figure 7. Run Time Architecture of ICU/COWS

1094



through TMIF which is installed on each workflow server. When the designated server of a
TMI crashes, the other server is selected instead for the TMI creation. We found that this
creation method is very flexible and effective in achieving high availability and scalability of
the workflow system. Figure 7 shows the run time architecture of ICU/COWS.

3.1.4 Application Servers and TMI Placement.

It is advantageous that workflow servers reside in the same or close site to the application
servers processing the workflow instance. However, in large enterprises, a long running
workflow instances may need services from several application servers which are located on
physically different sites. Thus, when multiple servers operate in a distributed fashion they
need to be deployed considering the location of application servers and the TMI generation
should be conducted in the same manner. That is, the TMI, which invokes an application
program that requires services from an application server, have to be created in the workflow
server which is the same or close to the application server.

3.1.5 Worklist handler and Client

The worklist handler plays a role in bridging TMIs and clients. Only one worklist handler can
exist in a workflow server. However, multiple worklist handlers can exist in the overall
system. TMI sends work items to worklist handlers in a push mode and the worklist handler
sends the work items to the corresponding clients in the same manner. Although a worklist
handler can be preferred by a TMI or a client, there is no need for a worklist handler to be
dedicated to a certain TMI or client. That is, a TMI can be connected to any worklist handler
to send work items to clients and a client can be connected to any worklist handler to receive
work items. Several worklist handlers can retain different worklists for a client but the
worklists for a client are usually maintained by the primary worklist handler. Figure 8 shows
the conceptual view of these connections.

Since a new worklist handler to the system can be added by changing slightly database and
the crash of a worklist handler does not imply disconnection of the TMI from the client, the

Worklist Worklist Worklist

handler handler handler

Figure 8. Conceptual view of connections among TMIs,
Worklist handlers, and Clients

1095



system is very scalable and resilient.
3.2 Support of Multiple Workflow Architectures

In this subsection, we explain how ICU/COWS supports multiple workflow system
architectures. Since most of the basic ideas have already been explained in the previous
sections, we only comment how the user requests are processed in [CU/COWS. When a
creation of control/monitoring oriented workflow instance is requested, GTMIG selects a
workflow server in which all the TMIs are generated using the TMIF. The selection of a
workflow server is under studying currently.

If requested workflow type is application server oriented, GTMIG searches feasible workflow
servers and creates TMIs in the selected workflow servers in a distributed fashion. The
decision of which TMI should be created in which workflow server can be guided by process
designers at design time. But if there is no guide input from the process designer, GTMIG
decides the workflow server based on the physical closeness to the application server.

If the requested workflow type is mobile client oriented, GTMIG creates TMIs on client sites.
In case when the client is not logged in yet, GTMIG asks the logging module to create the
TMI when the client is logged in on behalf of it. Note that the TMIs for mobile environment
should be designed to manage the situations like the TMI is disconnected with the workflow
server. More deliberate TMI design is required. We do not describe the details of the design
which is out of scope of this paper. In that way ICU/COWS changes its architecture
according to the input workflow types.

4. Performance Model of Workflow System Architectures

The performance model of this paper is based on the workflow system introduced in the
previous section. To understand the performance of each workflow system architecture, we
need to define the performance metrics of each architecture. The expected execution time of a
process instance is the major barometer for the performance evaluation. A process instance is
created before it is processed. Then the created process instance is processed according to the
defined path until it reaches the end point. Thus the total execution time of a process instance
can be defined as the equation (1)

TPIET = PICT + PIET (1)

where TPIET is total process instance execution time and P/CT is process instance creation
time and P/ET is process instance execution time.

4.1 Process Instance Creation Time

Basically the PICT is inverse proportion to the system load which is dependent on the inter
process instance creation request time. Thus we can represent PICT for centralized workflow
system architecture as the equation (2-1)

PICT, =n *local, /| 1 (2-1)

where local, is the time to create a local TMI, n is the number of TMIs in the process instance
and A is the inter process instance creation request time.

1096



In the decentralized workflow system, all the TMIs of a process instance are created in a
server and the creation time of TMIs is divided by the number of multiple workflow servers.
Thus PICT for decentralized workflow system is modeled as the equation (2-2)

PICT,,= (n *local,) | (m * L) (2-2)
where m is the total number of workflow servers in the decentralized workflow system.

In the distributed workflow system, TMIs of a process instance can be created both in local
server and remote servers arbitrarily. Thus PICT for distributed workflow system is modeled
by the equation (2-3)

PICT;=[n *(p *local, + (1-p) * remote; )]/ (m * L) (2-3)

where p is the probability that TMIs of a process instance is created in the local workflow
server and remote, is the time to create a remote TMI.

In fully distributed workflow system, all the TMIs are created in the client site. Thus if we
assume that at most one TMI of a process instance is created in a client site, we can represent
PICT for fully distributed workflow system as

PICTy=n * remote;/ (n * A) + n * oo = remote,/ A+ n * o (2-4)
where o 1s the coordination overhead to create TMISs in client sites.
4.2 Process Instance Execution Time

After a process instance is created, the process instance is processed getting services from
workflow system. The process instance execution time covers the span of the time from the
start to the end of a process instance. If there is no parallel execution during the processing
we can define the process instance execution time as

PIET = ZA[(k) c p[AIkET (3)

where PIET is process instance execution time, AI(k) is the k-th activity instance in the
process of the process instance P/, and AILET is the execution time of k-th activity instance.

When we contemplate the AILET, we can denote it by the equation (4) because the total
execution time of AIET is the summation of the time spent by workflow system and user or
workflow system and application respectively according to the type of tasks.

ALET = ST + UT (Manual Task) or
ST + AT (Automatic Task) 4)

where ST is system time, UT is user time, and A7 is application time. User time is the time
spent by workflow participants to complete the work item delivered to him/her and
application time is the time spent by the application program invoked by the k-th activity.
Since the user time and application time are independent from the workflow system, we only
take into account system time in this paper. System time is the time spent by the workflow

1097



system to complete the activity. The system time includes the time spent in sending work
item from workflow engine to clients and receiving the complete signal from clients to
workflow engine etc. For a work item to be delivered from workflow engine to clients, it has
to be relayed by TMI and worklist handler. Thus the relative location of TMIs, worklist
handlers, clients and application servers should be reflected in the system time. Taking the
fact into account, we represent the system time as the equation (5)

ST=(S;,+TW+ WC+ CW+ WT + TT)/ A (Manual Task) or
S;+TW + WA + AW + WT + TT) / A (Automatic Task) %)

where S; is the time spent by workflow system to service the execution of the activity except
the time spent in sending signals among TMIs, worklist handlers, clients, and applications.
Repository service time for worklist handler and history information maintenance is included
in the S;. Thus S; could be a fixed value independent of workflow system architectures. 7W is
the time to signal from TMI to worklist handler and WA is the time to signal worklist handler
to application. The other notation can be interpreted in the same way. If we do not distinguish
the direction of the signaling, we can simplify the equation of automatic task as the equation

(6)

ST = (S, +2TW + 2WA + TT) | A (6)
Again, the time of signaling between the objects in the same machine and the objects in the
different machines is not the same. Thus we can denote the system time of centralized

workflow system as the equation (6-1) because all the objects except application servers are
in a machine in centralized workflow system.

STC = [St + 2TVVlocal + 2[P0 * WAlocal + (l_pO) * WAremote] + TTlocal] /A (6'1)
where TWiyeqr and TTjpeq 1s the time to signal between objects in the same machine.
WAremote is the time to signal between objects in the different machines. In decentralized

workflow system, multiple servers work together where each server works in centralized way.
Thus the equation (6-1) can be changed to equation (6-2) in decentralized workflow system.

STm = [St + 2TVVlocal + 2[P0 * WAlocal + (l_p()) * WAremote] + TTlocal] / (m * A) (6'2)
where m is the number of servers in the decentralized workflow system.

In distributed workflow system, TMIs and worklist handlers can be located in remote
machines, the system time equation is denoted as the equation (6-3)

STd = [St + 2[}70 * TVVlocal + (]_p()) * TWremote]
+ 2[[?1 * WAlocal + (1—[?1) * WAremote]
+ 2[[?2 * TTlocal + (1—[?2) * TTremote]] / (m * /1) (6'3)

In fully distributed system, TMIs and worklist handlers are located in the same site and the
application server is located in remote site from client site. Thus the system time equation is

expressed by the equation (6-4)

STf= [St + 2TVVlocal + 2WArem0te + TTlocal] / (I’Z * A) (6-4)

1098



where 7 is the number of activities in the process instance.

From the equation (5), we can simplify the equation of manual task by the equation (7) like
the automatic task

ST=(S,+2TW +2WC + TT)/ A (7)
The system time of each architecture is defined as

STC = (St + 2TVVlocal + 2Wcremote + TTlocaZ) / /l (7-1)
STm = [St + 2TVVlocal + ZWCremote + TTlocal] / (m * A) (7-2)
STd = [St + 2[]?() * TVVlocal + (1—]?()) * TVVremote] + 2WCremote
+ 2[]72 * TT]UC‘II+ (1_p2) * TTremate] ] / (l’l’l */1)
(7-3)
STf: [St + 2TI/VIOC(JI + 2Wclocal + TTlocal] / (I’l * A,) (7-4)

respectively.
4.3 Performance Analysis

In this section, we analyze the performance of workflow system architectures based on the
analytic model defined in the previous subsection. For the analysis, we assume that the
following conditions are given. First, process instance creation request is invoked every
second and the process instance contains 100 sequential activities. That is, the value of A is 1
and the value of n is 100. Second, 4 servers are used to construct decentralized and
distributed workflow system. That is, the value of m is 4. Third, the relative time ratio £ of
remote/local, is dependent on the environment. The measured value is about 2 to 4 in the
SUN ULTRA 10 servers connected by 10 Mbps Ethernet network environment. Fourth, we
assume that the relative time ratio o/local, is 0.2. Fifth, the relative time ratio of
TW omote’ TWioea: 18 about 2.5 which is also measured value in the same environment.

Figure 9 shows the change of PICT as the ratio of local/remote, increases. For the distributed
workflow system, three cases with the values of p are 0.25, 0.50, 0.75 are evaluated in PICT
expectation. While the load of system does not influence to the time of remote, so much, the
time of /local, increases drastically as the system is overloaded. Thus the heavier the system
load is, the bigger the value of local/remote,. PICT of decentralized workflow system always

PICT
ST - PICTc
—~STc PICTm
- STm PICTd(p=0.25)
STd(p2=0.25) -+ PICTd(p-0.50)
STf ~+= PICTd(p=0.75)
-+ STd(p2=0.50) ~PICTF
—= STd(p2=0.75) 100 local,
25 local; ‘ =
I |
0.1 0.2 0.5 1 2 3 4 0.1 02 05 1 . 2 4 8
SY/TWeemote ratio local/remote, ratio
Figure 9. Process Instance Creation Time Figure 10. System Time of Process

Instance
1099



outperforms that of centralized workflow system because the work is divided in decentralized
system. PICT of distributed workflow system depends on the degree of distribution of the
generated TMIs. When the system load is light, the multiple server effect of distributed
workflow system does not appear, but when the system load is heavy, PICT of distributed
workflow system shows better performance than that of the centralized workflow system. In
the fully distributed workflow system, the influence of the system load is very weak as
expected.

Figure 10 shows the change of system time(S7) in PIET as the ratio of S/remote; increases.
As system load does not influence on the time of remote, so much and the time of S, increases
drastically when the system is overloaded, we may assume that the heavier the system load is,
the bigger the value of S/remote,. For the decentralized workflow system, the value of py is
set to 0.25, that is, 75% of the application invocation requires remote accesses. For the
distributed workflow system, the values of p, and p; are set to 0.25 as the decentralized
workflow system and three cases with the values of p, are 0.25, 0.50, 0.75 are evaluated for
the system time of PIET expectation. ST of decentralized workflow system always
outperforms that of the centralized workflow system because of the same reason that PICT of
decentralized workflow system outperforms that of the centralized system. ST of distributed
workflow system is dependent on the degree of distribution of the generated TMIs and
system loads. When the system load is light, the multiple server effect of distributed
workflow system does not appear as the case of P/CT, but when the system is overloaded
PICT of distributed workflow system shows better performance than that of the centralized
workflow system. In the fully distributed workflow system, the influence of the system load
is very weak as the case of PICT.

Although the results of the evaluation reveal the overall characteristics of each workflow
system architectures, it still has some limitations because the model does not take into
account the network conditions sufficiently. The network conditions are only reflected on the
value of the local/remote; S/remote,, and TW, emote/TWioear In the model and we fixed the
value for the evaluation. However the value should be changed in different network
conditions. We need to compare the result in this paper with the real data obtained from the
real workflow system to decide whether more deliberate model is required or not and which
will be our future work.

5. Related Work

Considerable work has been done on the research of the workflow (Alonso 1995, Ellis 1995,
Han 1996, Kim 1997 et al.). But most workflow systems fall into the centralized monolithic
workflow system. Recently various workflow system architectures are proposed to
accommodate various kinds of workflows. However few works have been done on the
performance model of workflow system architectures. There are several papers evaluating the
performance of distributed objects. But they are still in infant stage to apply the result to
estimate the workflow system performance based on their result.

The performance model developed in this paper can be applied to several other well known
distributed workflow systems because the sample workflow system introduced in this paper
has very general structure. ORBWork(Das 1997, Wang 1995) is one of the well known
distributed workflow system on CORBA environment for METEOR2 workflow model. They
organize the system with fixed task managers which manage the tasks that is assigned to the
task manager specified by the IDL interface(Wang 1995, Miller 1996). The task managers

1100



and tasks of ORBWork correspond to TMI and tasks respectively of our system.

The result of the work of Nortel(Nortel & University of Newcastle upon Tyne 1998,
Parrington 1998) is also very close to our system. Their main design goals are to achieve
interoperability, scalability, flexible task composition, dependability, and dynamic
reconfiguration. They have tasks and task controllers which are implemented as the CORBA
transactional objects. The task controller corresponds to our TMI but they do not have a
central controller that manages the whole workflow like our GTMI. They may be able to
change the workflow system architectures like our system but it seems that they are not
noticed of this aspect.

6. Conclusion

Various kinds of workflow types exist in the real business world. Control/monitoring oriented,
application server oriented and mobile oriented workflow types have been proposed
according to their characteristics and four different workflow architectures are also explained
in terms of the placement of execution objects for tasks. Since various workflow architectures
exist, a workflow system architecture has to be selected from them to fit certain environment.
Performance model of workflow system could be a good criterion for the selection.

In this paper we proposed a performance model for workflow systems. Performance tests for
workflow system architectures have been performed with the performance model. From the
results, we can confirm that the performance of distributed workflow system is very condition
dependent while the performance of decentralized workflow system almost always shows
good performance. Of course this does not imply decentralized workflow system is better
than distributed workflow system. Rather, this means that when you choose distributed
workflow system architecture, you should carefully examine the conditions and situation.

In the future, we plan to examine the test result of the performance model with the simulation
result of the queuing model of workflow system or the real data obtained from real workflow
systems.

References

Alonso, G., Giinthér, R., Kamath, M., Agrawal, D., Abbadi, A. E., and Mohan, C.
“Exotica/FMDC: Handling Disconnected Clients in a Workflow Management System,” In
Third International Conference on Cooperative Information Systems (CooplS-95), May 1995.

Das, S. “ORB Work: A Distributed CORBA-based Engine for the METEOR2 Workflow
Management System,” Master s thesis, University of Georgia, Athens, GA, March 1997.

Das, S., Kochut, K., Miller, J., Seth, A., and Worah, D. “ORBWork: A reliable distributed
CORBA-based workflow enactment system for METEOR2,” Technical Report, Dept. of
Computer Science, University of Georgia, UGA-CS-TR 97-001, 1997.

Ellis, C. A., Keddara, K., and Rozenberg, G., “Dynamic Change within Workflow Systems,”

Proceedings of the ACM SIGOIS Conference on Organizational Computing Systems, 1995,
CA.: Milpitas.

1101



Han, D. S., Shim, J. Y., and Yu, C. S. “ICU/COWS: A Distributed Transactional Workflow
System Supporting Multiple Workflow Types,” [EICE Transactions of Information and
Systems (accepted).

Kim, K. H., and Ellis, C. A. “A Framework for Workflow Architectures,” Technical Reports,
Dept of Computer Science, University of Colorado, CU-CS-847-97, December 1997.

Miller, J. A., Sheth, A. P, Kochut, K. J.,, and Wang, X. CORBA-based Run-Time
Architectures for Workflow Management Systems, [Dog96], (7:1), Winter 1996, pp. 16-27.

Nortel & University of Newcastle upon Tyne, Workflow Management Facility Specification,
Revised Submission, OMG Document Number: bom/98-03-01, 1998.

Parrington, G. D., Shrivastava, S. K., Wheater, S. M., and Little, M. C. “The design and
implemented of Arjuna,” USENIX Computing Systems journal (8:3), 1998, pp. 255-308.

Paul, S., Park, E., and Chaar, J. “RainMan: a Workflow System for the Internet,” Proc. Of
USENIX Symp. On Internet Technologies and Systems, 1997.

Silver, B. R. “The BIS Guide to Workflow Software: A Visual Comparison of Today’s
Leading Products,” Technical report, BIS Strategic Decisions, MA: Norwell, MA, September
1995.

Wang, X. “Implementation and Performance Evaluation of CORBABased Centralized
Workflow Schedulers,” Master’s thesis, University of Georgia, August 1995.

Workflow Management Coalition Specification Document, The Workflow Reference Model,
Version 1.1, November 1994,

1102



	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2000

	Workflow System Architectures and their Performance Model
	Dongsoo Han
	Jaeyong Shim
	Myungjae Kwak
	Recommended Citation



