8 research outputs found

    Performance Portability Through Semi-explicit Placement in Distributed Erlang

    Get PDF
    We consider the problem of adapting distributed Erlang applications to large or heterogeneous architectures to achieve good performance in a portable way. In many architectures, and especially large architectures, the communication latency between pairs of virtual machines (nodes) is no longer uniform. We propose two language-level methods that enable programs to automatically adapt to heterogeneity and non-uniform communication latencies, and both provide information enabling a program to identify an appropriate node when spawning a process. We provide a means of recording node attributes describing the hardware and software capabilities of nodes, and mechanisms that allow an application to examine the attributes of remote nodes. We provide an abstraction of communication distances that enables an application to select nodes to facilitate efficient communication. We have developed open source libraries that implement these ideas. We show that the use of attributes for node selection can lead to significant performance improvements if different components of the application have different processing requirements. We report a detailed empirical investigation of non-uniform communication times in several representative architectures, and show that our abstract model provides a good description of the hierarchy of communication times

    Scheduling computations with provably low synchronization overheads

    Get PDF
    Work Stealing has been a very successful algorithm for scheduling parallel computations, and is known to achieve high performances even for computations exhibiting fine-grained parallelism. We present a variant of \ws\ that provably avoids most synchronization overheads by keeping processors' deques entirely private by default, and only exposing work when requested by thieves. This is the first paper that obtains bounds on the synchronization overheads that are (essentially) independent of the total amount of work, thus corresponding to a great improvement, in both algorithm design and theory, over state-of-the-art \ws\ algorithms. Consider any computation with work T1T_{1} and critical-path length TT_{\infty} executed by PP processors using our scheduler. Our analysis shows that the expected execution time is O(T1P+T)O\left(\frac{T_{1}}{P} + T_{\infty}\right), and the expected synchronization overheads incurred during the execution are at most O((CCAS+CMFence)PT)O\left(\left(C_{CAS} + C_{MFence}\right)PT_{\infty}\right), where CCASC_{CAS} and CMFenceC_{MFence} respectively denote the maximum cost of executing a Compare-And-Swap instruction and a Memory Fence instruction

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    From reactive to proactive load balancing for task‐based parallel applications in distributed memory machines

    Get PDF
    Load balancing is often a challenge in task-parallel applications. The balancing problems are divided into static and dynamic. “Static” means that we have some prior knowledge about load information and perform balancing before execution, while “dynamic” must rely on partial information of the execution status to balance the load at runtime. Conventionally, work stealing is a practical approach used in almost all shared memory systems. In distributed memory systems, the communication overhead can make stealing tasks too late. To improve, people have proposed a reactive approach to relax communication in balancing load. The approach leaves one dedicated thread per process to monitor the queue status and offload tasks reactively from a slow to a fast process. However, reactive decisions might be mistaken in high imbalance cases. First, this article proposes a performance model to analyze reactive balancing behaviors and understand the bound leading to incorrect decisions. Second, we introduce a proactive approach to improve further balancing tasks at runtime. The approach exploits task-based programming models with a dedicated thread as well, namely . Nevertheless, the main idea is to force not only to monitor load; it will characterize tasks and train load prediction models by online learning. “Proactive” indicates offloading tasks before each execution phase proactively with an appropriate number of tasks at once to a potential victim (denoted by an underloaded/fast process). The experimental results confirm speedup improvements from to in important use cases compared to the previous solutions. Furthermore, this approach can support co-scheduling tasks across multiple applications

    RE-LANG---A Parallel-by-default Programming Language

    Get PDF
    In recent years, programming language features such as lightweight threads have gained popularity in the software development workflow. Our research takes a critical look at these recent trends, rethinking them through an academic lens. We propose a construct called "smart assignment," supported by rewriting semantics, which enables a novel parallel-by-default programming paradigm. We present a new programming language—RE-LANG—that implements this feature. Specifically, we demonstrate how the design philosophy of RE-LANG makes imperative, parallel programming more developer-friendly. We discuss the implementation of the language and showcase performance benchmarks, as well as overhead analysis, to demonstrate its efficiency.Doctor of Philosoph

    Simulation methodologies for future large-scale parallel systems

    Get PDF
    Since the early 2000s, computer systems have seen a transition from single-core to multi-core systems. While single-core systems included only one processor core on a chip, current multi-core processors include up to tens of cores on a single chip, a trend which is likely to continue in the future. Today, multi-core processors are ubiquitous. They are used in all classes of computing systems, ranging from low-cost mobile phones to high-end High-Performance Computing (HPC) systems. Designing future multi-core systems is a major challenge [12]. The primary design tool used by computer architects in academia and industry is architectural simulation. Simulating a computer system executing a program is typically several orders of magnitude slower than running the program on a real system. Therefore, new techniques are needed to speed up simulation and allow the exploration of large design spaces in a reasonable amount of time. One way of increasing simulation speed is sampling. Sampling reduces simulation time by simulating only a representative subset of a program in detail. In this thesis, we present a workload analysis of a set of task-based programs. We then use the insights from this study to propose TaskPoint, a sampled simulation methodology for task-based programs. Task-based programming models can reduce the synchronization costs of parallel programs on multi-core systems and are becoming increasingly important. Finally, we present MUSA, a simulation methodology for simulating applications running on thousands of cores on a hybrid, distributed shared-memory system. The simulation time required for simulation with MUSA is comparable to the time needed for native execution of the simulated program on a production HPC system. The techniques developed in the scope of this thesis permit researchers and engineers working in computer architecture to simulate large workloads, which were infeasible to simulate in the past. Our work enables architectural research in the fields of future large-scale shared-memory and hybrid, distributed shared-memory systems.Des dels principis dels anys 2000, els sistemes d'ordinadors han experimentat una transició de sistemes d'un sol nucli a sistemes de múltiples nuclis. Mentre els sistemes d'un sol nucli incloïen només un nucli en un xip, els sistemes actuals de múltiples nuclis n'inclouen desenes, una tendència que probablement continuarà en el futur. Avui en dia, els processadors de múltiples nuclis són omnipresents. Es fan servir en totes les classes de sistemes de computació, de telèfons mòbils de baix cost fins a sistemes de computació d'alt rendiment. Dissenyar els futurs sistemes de múltiples nuclis és un repte important. L'eina principal usada pels arquitectes de computadors, tant a l'acadèmia com a la indústria, és la simulació. Simular un ordinador executant un programa típicament és múltiples ordres de magnitud més lent que executar el mateix programa en un sistema real. Per tant, es necessiten noves tècniques per accelerar la simulació i permetre l'exploració de grans espais de disseny en un temps raonable. Una manera d'accelerar la velocitat de simulació és la simulació mostrejada. La simulació mostrejada redueix el temps de simulació simulant en detall només un subconjunt representatiu d¿un programa. En aquesta tesi es presenta una anàlisi de rendiment d'una col·lecció de programes basats en tasques. Com a resultat d'aquesta anàlisi, proposem TaskPoint, una metodologia de simulació mostrejada per programes basats en tasques. Els models de programació basats en tasques poden reduir els costos de sincronització de programes paral·lels executats en sistemes de múltiples nuclis i actualment estan guanyant importància. Finalment, presentem MUSA, una metodologia de simulació per simular aplicacions executant-se en milers de nuclis d'un sistema híbrid, que consisteix en nodes de memòria compartida que formen un sistema de memòria distribuïda. El temps que requereixen les simulacions amb MUSA és comparable amb el temps que triga l'execució nativa en un sistema d'alt rendiment en producció. Les tècniques desenvolupades al llarg d'aquesta tesi permeten simular execucions de programes que abans no eren viables, tant als investigadors com als enginyers que treballen en l'arquitectura de computadors. Per tant, aquest treball habilita futura recerca en el camp d'arquitectura de sistemes de memòria compartida o distribuïda, o bé de sistemes híbrids, a gran escala.A principios de los años 2000, los sistemas de ordenadores experimentaron una transición de sistemas con un núcleo a sistemas con múltiples núcleos. Mientras los sistemas single-core incluían un sólo núcleo, los sistemas multi-core incluyen decenas de núcleos en el mismo chip, una tendencia que probablemente continuará en el futuro. Hoy en día, los procesadores multi-core son omnipresentes. Se utilizan en todas las clases de sistemas de computación, de teléfonos móviles de bajo coste hasta sistemas de alto rendimiento. Diseñar sistemas multi-core del futuro es un reto importante. La herramienta principal usada por arquitectos de computadores, tanto en la academia como en la industria, es la simulación. Simular un computador ejecutando un programa típicamente es múltiples ordenes de magnitud más lento que ejecutar el mismo programa en un sistema real. Por ese motivo se necesitan nuevas técnicas para acelerar la simulación y permitir la exploración de grandes espacios de diseño dentro de un tiempo razonable. Una manera de aumentar la velocidad de simulación es la simulación muestreada. La simulación muestreada reduce el tiempo de simulación simulando en detalle sólo un subconjunto representativo de la ejecución entera de un programa. En esta tesis presentamos un análisis de rendimiento de una colección de programas basados en tareas. Como resultado de este análisis presentamos TaskPoint, una metodología de simulación muestreada para programas basados en tareas. Los modelos de programación basados en tareas pueden reducir los costes de sincronización de programas paralelos ejecutados en sistemas multi-core y actualmente están ganando importancia. Finalmente, presentamos MUSA, una metodología para simular aplicaciones ejecutadas en miles de núcleos de un sistema híbrido, compuesto de nodos de memoria compartida que forman un sistema de memoria distribuida. El tiempo de simulación que requieren las simulaciones con MUSA es comparable con el tiempo necesario para la ejecución del programa simulado en un sistema de alto rendimiento en producción. Las técnicas desarolladas al largo de esta tesis permiten a los investigadores e ingenieros trabajando en la arquitectura de computadores simular ejecuciones largas, que antes no se podían simular. Nuestro trabajo facilita nuevos caminos de investigación en los campos de sistemas de memoria compartida o distribuida y en sistemas híbridos
    corecore