18,720 research outputs found

    Magnetworks: how mobility impacts the design of Mobile Networks

    Full text link
    In this paper we study the optimal placement and optimal number of active relay nodes through the traffic density in mobile sensor ad-hoc networks. We consider a setting in which a set of mobile sensor sources is creating data and a set of mobile sensor destinations receiving that data. We make the assumption that the network is massively dense, i.e., there are so many sources, destinations, and relay nodes, that it is best to describe the network in terms of macroscopic parameters, such as their spatial density, rather than in terms of microscopic parameters, such as their individual placements. We focus on a particular physical layer model that is characterized by the following assumptions: i) the nodes must only transport the data from the sources to the destinations, and do not need to sense the data at the sources, or deliver them at the destinations once the data arrive at their physical locations, and ii) the nodes have limited bandwidth available to them, but they use it optimally to locally achieve the network capacity. In this setting, the optimal distribution of nodes induces a traffic density that resembles the electric displacement that will be created if we substitute the sources and destinations with positive and negative charges respectively. The analogy between the two settings is very tight and have a direct interpretation in wireless sensor networks

    Micro air vehicles energy transportation for a wireless power transfer system

    Get PDF
    The aim of this work is to demonstrate the feasibility use of an Micro air vehicles (MAV) in order to power wirelessly an electric system, for example, a sensor network, using low-cost and open-source elements. To achieve this objective, an inductive system has been modelled and validated to power wirelessly a sensor node using a Crazyflie 2.0 as MAV. The design of the inductive system must be small and light enough to fulfil the requirements of the Crazyflie. An inductive model based on two resonant coils is presented. Several coils are defined to be tested using the most suitable resonant configuration. Measurements are performed to validate the model and to select the most suitable coil. While attempting to minimize the weight at transmitter’s side, on the receiver side it is intended to efficiently acquire and manage the power obtained from the transmitter. In order to prove its feasibility, a temperature sensor node is used as demonstrator. The experiment results show successfully energy transportation by MAV, and wireless power transfer for the resonant configuration, being able to completely charge the node battery and to power the temperature sensor.Peer ReviewedPostprint (published version

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield

    Acoustic energy transmission in cast iron pipelines

    Get PDF
    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure

    Array signal processing for maximum likelihood direction-of-arrival estimation

    Get PDF
    Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0
    • …
    corecore